Probabilistic Intensity Mapping in MRI Image Registration
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Abstract. In this work, we present a method which is able to relate different MR sensors with respect to intensity
distortions in the output images. For the important problem of image registration, the method makes possible a
principled approach to likelihood modeling or the construction of similarity metrics. Likelihood models can be
used as prior knowledge of the relationship between intensities in both images, providing a fundamental infor-
mation resource for image registration. A poor model of the intensity mapping for the image pair to be matched
may lead to false matches, regardless of the prior morphological constraints assumed and will bias all subsequent
analyses. A formal analysis of robustness under different kinds of noise is also provided and the findings compared
to other relevant similarity metrics. Experiments are controlled based on the application of synthetic spatial and
intensity deformations that guarantee a fiducial basis for comparison.

1 Introduction

During the past decades, advances in the technology of med-
ical image processing has been responsible for a revolution
in the field of non-invasive diagnosis. Nowadays, the use
of techniques such as magnetic resonance imaging (MRI)
is broadly disseminated even in underdeveloped countries
and constitutes a great benefit to mankind. Although this
technology is able to provide detailed information regard-
ing human anatomy, the same cannot be asserted of tech-
niques used to interpret and classify these data. Images are
only two-dimensional signals unless symbolic information
regarding to what is being imaged can be extracted and this
constitutes the main challenge of medical imaging research.

Different MRI sensors may provide distinct intensities
for the same tissue, due to differences in the magnetic field,
noise, positioning and other variables related to the acquisi-
tion step. The purpose of this work is to propose a method
which is able to relate different sensors with respect to in-
tensity distortions or artifacts in the imaging process and
support robust data analysis. The importance of the pro-
posed method is manifold. It is a tool to model the sensors
used in the acquisition step, whose behavior must be better
understood in order to improve subsequent data process-
ing. For the important problem of image registration, the
method should also make possible a principled approach to
likelihood modeling or the construction of similarity met-
rics. Likelihood models can be used as prior knowledge of
the relationship between intensities in both images, provid-
ing a fundamental information resource for image registra-
tion. A poor model of the intensity mapping for the image
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pair to be matched may lead to false matches, regardless of
the prior morphological constraints assumed and will bias
all subsequent analyses.

The first step in the process of image registration is the
acquisition of the original images, which are obtained by a
sensor (e.g. MRI scanner) and stored in digital format as
an array of two-dimensional slices. One of the images is
used as an atlas or reference Ir which will be deformed
to match each of the fest subjects I in the study. Since
the reference and test volumes may be misaligned with re-
spect to one another, due to differences in head positioning
inside the scanner, a global registration step consisting of
rigid transformations (translation and rotation) is applied in
order to approximately register corresponding features and
aid the warping process. :

The local registration step or warping is responsible
for the non-rigid deformation of the reference image onto
the subject’s image. Image volumes may be described as
continuous media to which a constitutive model will be pre-
scribed. The linear elasticity model proposed by Broit and
Bajcsy [1], in which the image is deformed as an elastic
body, is the most commonly used. The model guarantees
smoothness to the deformation, so that neighboring struc-
tures in the reference image will be matched to neighbor-
ing structures in the subject’s image, preserving the gross
anatomy common to the majority of individuals in the pop-
ulation. The output of the local registration step is a set of
spatial mappings or displacement fields, one for each sub-
Jject, which describes the point-wise deformation that was
needed to match I to Ir.



The results of image registration essentially depend on
two aspects: an appropriate model of deformation and an
intensity mapping strategy that provides a similarity mea-
sure to evaluates each candidate displacement field. Many
similarity measures or metrics, such as the cross-correlation
[3), mutual information [14, 9, 10] and histogram-matching
approaches [8] have been used in image registration. These
metrics provide a measure of similarity between a region in
the reference image and the corresponding region in the test
image, which were mapped by means of the displacement
field resulting from warping. Due to the fact that these mea-
sures provide scalar values rather than a distribution for the
intensity mapping between the two spectra, intensity arti-
facts may not be properly accounted for and favor incorrect
deformations.

In this work, we propose a novel approach to address
the evaluation of similarity for a candidate deformation.
The method computes a probability distribution that gives,
for each intensity in the reference image, the likelihood
that it corresponds to an intensity of the test image spec-
trum. The distribution can be used to measure similarity,
but essentially provides more complex information that can
be used as prior knowledge in the local registration pro-
cess, for matching other images that were acquired with the
same sensor. The method determines a likelihood model
for each sensor, accounting for inherent intensity distortions
and therefore increasing the robustness of the warping pro-
cess with respect to the influence of strong artifacts.

2 Methods

The choice of candidate points for matching relies on us-
ing a model that describes the likelihood of correspondence
between the intensity of a voxel at position p in the test
image, given that the intensity of a voxel at position q in
reference image has been observed. If we know the model
that relates both MRI scanners, we can choose the points
in the the test image that are most likely to fit the model
description. The best candidates can be evaluated by an
optimization algorithm which finds the configuration that
minimizes the overall displacement of points, according to
morphological constraints [5].

2.1 Likelihood Models

The relationship between the variables of the intensity map-
ping problem in image matching can be better understood
when they are displayed as a causal model [11]. The model
in Fig. 1 specifies that the intensity of each voxel in the
image depends on the tissue mixture within the voxel and
on the voxel’s position within the scanner volume. Due to
sampling in the acquisition step, a voxel may be composed
of a mixture of tissues, which will result on a wide variation
of intensities shown for each one. Variable V' can be inter-
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Figure 1: A causal network for the intensity mapping prob-
lem with the associated probability distributions.

preted as the intensity output that is due exclusively to the
tissue mixture M of the voxel being inspected. It is known,
however, that the actual intensity output is influenced by
the position in which the voxel is placed within the scanner
volume. The model shows that the same voxel composed
of a fixed mixture M of different tissue types may produce
different intensities T and R when placed in different po-
sitions or scanners P and @, respectively. Taking output
intensity T as an example, its value would be equal to V' if
only the tissue were taken into account. However, since it
is placed at position P, its value is also influenced by the
sensor characteristics.

Since the intensity variable T is influenced by the voxel’s
intensity output V' which is due to tissue mixture and the
position P at which the voxel is placed, the probability that
it assumes a value ¢ is conditioned on the values of V' and
P. This quantitative information is denoted as P(t|v, p),
which represents an observation model. We can state the
same for intensity observations in the reference image for
the matching problem, where P(r|v,q) is the conditional
probability that a voxel presenting intensity v, due to tis-
sue composition, will result on intensity 7 when placed at
position q.

During the matching process, for each voxel positioned
at q of known intensity 7, the aim is to find its correspond-
ing voxel in image T'. To do so, it is necessary to determine
how likely it is for a voxel with intensity ¢ placed at can-
didate position p to contain the same tissue mixture that
voxel q is composed of. The problem can be stated as the
determination of the probability P(t|p, r, q). The values p,
r and q are evidences that change the prior degree of belief
on the values of T. Conditioning P(t|p,r,q) on the ex-
haustive continuous range of output intensities values due
to tissue mixture, we have that

+oo

P(tlp,r,q) = / P(tlp, r, a,v)P(vlp,r, a)dv. (1)

—00

In addition to the dependencies between the variables,
the causal model in Fig. 1 also represents the conditional



independent relationships between them. In fact, given that
intensity value v is known, the information about variables
R and @} does not contribute to our belief on the value of T'.
In other words, T is conditionally independent from R and
@ given that V is known. Moreover, since T is unknown, it
causes the variable V' to be independent of P. These inde-
pendencies can be denoted as P(t|p,r,q,v) = P(t|p,v)
and P(v|p,r,q) = P(v|r,q), which together with Eq. 1
leads to

+o0

P(t|p,r,q) = P(tlp,v)P(vlr,q)dv.  (2)
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Using Bayes’ formula, we have that

P(r,qlv)P(v)/P(r,q),
which together with Eq. 2 leads to

P(v|r,q) =

+o0
P(tlp,r,q) Pira) / P(t|p,v)P(r,qlv) P(v)dv.

3)
Using the definition of conditional probability we have that
P(r,qlv) = P(r|q,v)P(qlv), where P(qlv) = P(q),
since () is independent from V when variable R is un-
known. From Eq. 3, it follows that

+oo
P(tlp,v)P
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Finally, conditioning P(v) on the continuous exhaustive
range of tissue mixture values, we have that

-

which together with Eq. 4 leads to

P(tlp,r,q) = (rla,v)

P(vim)P(m)dm,

P(tlp,r,q) = 57, P (tlp,v)P(r|q,v)
( Q)

&)

+o00
P(v|m)P(m)dmdv.
—0Q

Eq. 5 shows that P(t|p, r, q) is an average of the prod-
uct of the observation models, for each partial volume tissue
mixture, weighted by its a priori probability.

In order to use Eq. 5 as a similarity measure to image
registration, the observation models P(t|p, v) and P(r|q, v)
must be specified. Based on the characteristics of MRI sen-
sors [4], the probability distribution functions can be model
as Gaussian distributions. This model is appropriate for
MRI images, but should be replaced with the relevant dis-
tribution in other imaging situations. Since the probabilities
are represented in practice by tables, our method is applica-
ble to any class of distributions. Assuming Gaussian distri-
butions for the observation models, Eq. 5 becomes
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where « represents the constant terms that do not affect the
degree of belief on ¢, given the evidence, and is such that
the exhaustive sum of P(t|p,r, q) over all possible values
of ¢ is the unity. The variances 0% and ¢% can be assumed
spatially constant and are easily determined from the image
background, for each sensor [4]. The means piTpy, fRqu
express the expected output intensity for a voxel being im-
aged at each position of sensors 7" and R.

2.2 Robustness analysis

The choice of which measure to use as a similarity function
in the elastic matching model should take into account the
behavior of the measure under position-dependent noise.
As seen, the output intensity value does not depend exclu-
sively on the tissue being imaged, but is in fact distorted by
the variations of the magnetic field inside the scanner, re-
sulting in image artifacts. While it is proven that the cross-
correlation, mutual information and histogram matching ap-
proaches to similarity measurements are invariant only to
constant noise [7], we show that the likelihood model mea-
sure is invariant to any sort of position-dependent noise:

Theorem 2.1 The likelihood model measure is invariant to
generic additive noise.

PROOF — The hypothesis is true if
P(tlp,r,q) = P({lp,r,q), @)

where § is intensity t added by a noise K which is function
of p:

=t+ K(p). ®)
Since K is a function of position, the mean intensity value
UTpy Will also be added by K (p), resulting on

ﬂTpv = KTpv + K(p) (9)
The additive noise K (p) does not affect variance 0.
6% = am. (10)

From Eq. 6 to 10, it follows that

“+oo
oz/ exp (—
—00
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exp (— —zlﬁi"—)—)/_ P(vlm)P(m)dmdv =
a/+°°exp(_(t+K(p)

+o0
exp (— —T";‘Qﬂ"—)/ P(v|m)P(m)dmdv,

(t - /~‘L'I’pv)2 )
202,

HTpy — K(p))2 )
203



which completes the proof.

Theorem 2.2 The likelihood model measure is invariant to
generic multiplicative position-dependent noise.

PROOF — The hypothesis is true if and only if

P(tlp,r,q) = P(flp,r,q), (11)

where t is intensity t multiplied by a positive noise K which
is function of p:
t = K(p)t.

Since K is a function of position, the mean intensity value
UTpy will also be multiplied by K (p), resulting on

(12)

.D/Tpu = K(p)lLTpv- (13)

The multiplicative noise K (p) affects variance o% in that
it is multiplied by the square of noise K :
ot = K(p)*ot. (14)

From Eq. 6 and 11 to 14, it follows that

+o0 t — pr 2
a/ exp(—————( 2‘;2‘”) )
o 2
exp (-l [ P(ojm)P(m)dmdv =
—0C

N e _ (K(p)t — K(p)P'TPV)Z ‘
a/ exp ( 2K (p)?o2 )

2 +oo
exp (—(—T:-?%’:‘fi)/ P(v|m)P(m)dmdv,

—00

which completes the proof.

2.3 Implementation

In the likelihood model described in Eq. 6, the means prp,
and ppqo have special meaning. Taking sensor T' as an
example, the mean prp, is the expected output intensity
for a voxel being imaged at position p, which would give
output v if only its tissue composition would influence in-
tensity. Variable V' could be thought as the output of an
“ideal sensor” which is able to precisely determine the out-
put intensity based exclusively on the tissue composition of
the voxel. Since no real sensor is able of producing perfect
output, the mean values can be estimated in the discrete do-
main, based on a set of images segmented into tissue types.
The rationale for the method is closely related to the use of
deformable atlases. In image registration, a reference im-
age called the atlas is deformed to match other images in
order to serve as a basis for shape comparison. In the pro-
posed method, a specific observation model will be used as
a observation model template that will be matched to the
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observation models with which the reference and test im-
ages were acquired. The connection among the observation
model template, the reference and test observation models
can be better understood with the aid of Fig. 1. The ref-
erence observation model is determined by the probability
function P(r|q,v) relating variable R to variables @ and
V. In a similar way, the test observation model is deter-
mined by the probability function P(t|p,v) relating vari-
able T to variables P and V. The variable connecting these
two probability functions is V', which is influenced by tissue
composition. The observation model template is described
as a probability function P (v|m) which gives the likelihood
that each tissue mixture m will produce output intensity v.
While the reference and test observation models depend on
position (variables @ and P, respectively), the observation
model template is determined only by the tissue mixtures
being imaged. We shall prove that any probability function
P(v|m) can be used as an observation model template.

The process of estimating the mean values will be pre-
sented taking observation model T' as an example. The
value of p7p, can be approximated by considering the in-
tensity values that each tissue assumes in the neighborhood
of position p. The region of the test image around position
p will be called A. The first step is to compute the inten-
sity THr and tissue T Hy histograms in region A based
on the gray-level and segmented images, respectively. The
dimensions of A are parameters to be determined experi-
mentally. If the area is too large, it may encompass strong
position-dependent intensity variation; if it is too small, the
histograms will be of reduced statistical confidence. In or-
der to assure a smooth distribution and ameliorate the effect
of the smaller region dimension, the intensity histogram
should be smoothed with the aid of a kernel function [13]
(e.g. a Gaussian with small variance).

The role of the tissue histogram is to enable the calcu-
lation of the expected intensity histogram in the observation
model template. If the tissue distribution 7' Hr for region A
in the test image is known and the observation model tem-
plate P(v|m) gives the expected distribution of intensity v
for tissue m, the expected intensity histogram for the ob-
servation model template, I Hgr(v), can be computed as

400

[Hor(v) = / P(olm)THy(m)dm,  (15)

—0o0

where T'Hr (m) is the a priori probability distribution P(m)
for the tissue mixture m. In practice, the integral at Eq. 15
is replaced by a sum, since segmented images are discrete
valued and usually contain just three major tissues types:
cerebrospinal fluid, gray and white matter.

The final step in determining the mean values is match-
ing the expected histogram I Hgr computed by Eq. 15 to
the test intensity histogram I Hr. For each intensity v, the
corresponding matched intensity in the histogram I Hr is
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Figure 2: The relationship between the cumulative areas in the histogram matching process. The gray areas shown in the

histograms have the same value.

the mean value prp, for the region around p. The mean
values can be computed incrementally by satisfying the fol-
lowing relationship:
[ETP IHp(z)dx a
[ [Hr(z)dx

fi’oo IHgy(z)dz

T [Hpr(z)dz

(16)

An important aspect of the proposed method is that
Eq. 6 produces the same probability value P(t|p, T, q), re-
gardless of the observation model template P (v|m) used:

Theorem 2.3 Let P(t|p,r,q) be the likelihood of match-
ing intensity t at position p to intensity r at position q,
computed based on observation model template P(v|m).
Let also ]s(t]p,v", q) be the likelihood of matching inten-
sity t at position p to intensity r at position q, computed
based on observation model template P (9|m). Then, for
any P(v|m) and P(3]m), P(tp,r,q) = P(¢p,,q).

PROOF — Applying the definition of P(t|p,r,q) stated in
Eq. 6, the theorem is true if

+oo t— 2 r— 2
af " exp (- L1 ey (U hee)
s T R
P(v|jm)P(m)dmdv =
— o0
e (t = frps)? (r — itrgs)?
a exp (—————5—) exp (——— ")
/_,___O%OA 202, 20%
P(d|m)P(m)dmdo,
—OC

amn
where prpy and jLpqgy are the resulting mean values of
matching the expected histograms | Hgr and IHgp, com-
puted based on observation model template P(v|m), to IHr
and I HR, respectively. In a similar way, firpy and ftrqs
are the resulting mean values of matching the expected his-
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tograms 1Hgp and 1H gy, computed based on observa-
tion model template f’(’ﬁlm), to IHr and IHR, respec-
tively. The relationship between the intensity domains v
and ¥ can be better understood with the aid of Fig. 2. The
computation of the corresponding intensities among the ob-
servation model template, the expected intensity histogram
and the image intensity histogram is done by matching cu-
mulative areas. Based on the observation model template
P(v|m), the probability distribution for intensities, P(v),
can be computed as

+oo

P(v) P(vlm)P(m)dm. (18)

—00

The same can be done for the observation model template
P(d|m):

A +m A

P(®) = / P(%|m)P(m)dm.
—0oC

The probability functions describing the atlases are contin-

uous, so the cumulative area function Cy (v), defined as

(19)

Cy(v) = /L P(z)dz, (20)

is also continuous and monotonic. The cumulative function
Cy (0) for P(0) can be defined in a similar way. It follows
that, since both Cy (v) and Cy,(0) are continuous mono-
tonic and the areas bellow P(v) and P (%) equal to unity,
for each area Cy (v) there will be a corresponding area
value for Cy ().

In order to proceed with the histogram matching, let
us define the cumulative function for the other histograms
depicted in Fig. 2, IHgt, IHt, IHgR, IHR, I1H g and
ITHpp, which will be denoted Cer, Cr, CgR, Ch, CET
and Cgp, respectively. From the equality of areas shown in
Fig. 2, it follows that



Cr(trpy) = Cer(ver) = Cv(v) = Cer(ver) =
CR(NRqU) = CT(,&Tpf/) = CE'T(ﬁE‘T) = CV 17) =
Cir(0gg) = Cr{fRqs)-

@n

Now, consider the inverse of the cumulative function

which, given a cumulative area, finds the corresponding in-

tensity in the histogram. Based on the relationship stated in
Eq. 21, we have that

- ey
HTps — v\V))
hrw = CrH(Cv(v), @
fres = Cgr'(Cy(9)).

The cumulative function of a histogram has the property
that its derivative is the original histogram. Applying this
property to Cy and Cy,, we have that

dCy (v) = P(v)dv and dCy(v) = P(d)db. (23)
From Eq. 18, 19, 22 and 23, the integration variables of
Eq. 17 can be changed from v to Cy (v) and from ¥ to

Cy (9), resulting on

1 ¢t Ccl(C 5
a/ exp(~( Cr (ZV('U))) )
0 20%
+oo
(=R Cv@))?\ [ Plm)P(m)dm ~
exp 207 )f:': P(v|m)P(m)dm v(v) =
1 i 2
a/ exp (— (t— C (g (v))) )
0 20 Tf B
(r=Cz' (Cy (9)))* P(%|m)P(m)dm »
exp (— 50Z )T p<v|m)p<m>dmdcv(”)-
24)

The inner integrals can be canceled. From Eq. 21, we have
that Cy (v) = Cy (0), leaving identical the right and left
hand sides of Eq. 24

3 Results

The likelihood model was compared to the cross-correlation
and mutual information metrics in a set of 1624 experi-

ments in which controlled synthetic deformations and position-

dependent low-frequency artifacts were applied to the Har-
vard Atlas — a labeled brain scan of a white, 25-year-old,
right-handed male (see [12] for details about the dataset).
The effectiveness of matching for each similarity measure
was quantitatively evaluated based on the mean squared de-
formation error, computed from the resulting displacement
field u and the original synthetic deformation s applied to
the data:

MSDE(u,s) le (p) + u(p +s(p))/*,
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where | | denotes the vector magnitude and n is the number
of voxels in the image. The error is measured in square
pixels.

The set of experiments comprised two steps: the gen-
eration of input files and image registration. The warping
algorithm used to deform the reference image to match the
test images is based on the elastic matching model and im-
plemented in a multiresolution way [2, 6]. The input files
required for matching are the reference and test images at
each resolution level, grid files describing the mesh of finite
elements and elastic properties of the media. In our mul-
tiresolution elastic matching experiments, the images were
matched in 5 different levels of resolution and the results
obtained at a coarse level were used as the first approxi-
mation to the next finer level. No global registration was’
required in this set of experiments, since the slices were al-
ready rigidly aligned.

(b)

Figure 3: Deformed image (c) obtained by matching slice
48 of the Harvard Atlas (b) to its noisy deformed version
(a), using likelihood models.

The results for one of the 1624 experiments of im-
age registration based on likelihood models, in which both
spatial and intensity distortions were applied is shown in
Fig. 3. The mean squared deformation error obtained for
this experiment was equal to 2.37 squared pixels. The same
registration experiment based on the cross-correlation and
mutual information similarity metrics resulted on errors of
2.57 and 5.19, respectively. For the global and local his-
togram matching methods, the obtained error were respec-
tively 5.26 and 3.33. For the whole set of experiments,
the average error obtained with the cross-correlation was



19.75% larger than the one obtained with the likelihood
model metric. The difference between the results obtained
with cross-correlation and likelihood models is progressively
more substantial as larger deformations are applied. The
results obtained with mutual information exemplifies the
method’s inability to handle local deformations. For the
whole set of experiments, the average error was 94% larger
than the obtained with the likelihood measure. In all cases,
the error was proportional to the amount of deformation im-
posed by the synthetic distortions, whereas it did not vary
much as a function of the synthetic intensity distortion or
the anatomy. Indeed, all the measures proved to be rea-
sonably stable with respect to the particular slice used for
matching.

The variance of the mean squared deformation error
also deserves attention. It can be interpreted as a measure
of instability of a given measure with respect to changes
in the imaged anatomy, amount of deformation and arti-
facts. Whereas the mean error is a measure of effective-

ness, the variance may reflect robustness. When consider-
ing the whole dataset, the variance for the cross-correlation
was 70.91% larger than the one obtained for the likelihood
models.

Figure 4: Joint probability histogram obtained for image
registration with likelihood models, intensity and spatial

distortion (a). The joint probability histogram obtained
from rigid registration without spatial distortion is also
shown (b).

The relationship between the intensities in the refer-
ence and test images can be observed if we plot a global
joint histogram that graphically shows the probability of
mapping intensity r of the reference to intensity ¢ of the
test image. This distribution, denoted by P(t|r), may pro-
vide information about artifacts in the image, which causes
a given intensity r to be assigned to more than one inten-
sity ¢, with equally high probability. Fig. 4 shows the joint
histogram computed based on the resulting displacement
field of the experiment depicted in Fig. 3. It can be com-
pared to the joint histogram generated by rigidly matching
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the original image to its noisy version (without spatial dis-
tortion), which provides a good reference for the true dis-
tribution. Probabilities are displayed in logarithmic scale,
in order to enhance the visualization of details in the distri-
bution. Intensities are normalized so that, for each column,
the largest probability value is shown as white. It can be
seen that the likelihood-based method provides a good ap-
proximation for the distribution, which corroborates to its
effectiveness and partially explains the superior results ob-
tained in the experiments on image registration.

4 Conclusion

In this work, we have presented a discussion of similarity
measures used for image registration. Similarity measures
are essential to the image warping process, since they repre-
sent the external forces that are applied to the reference im-
age, in order to produce a warped version that matches the
test image. A poor model of the intensity mapping between
a pair of images to be matched using intensity-based mea-
sures can result in incorrect registrations and impact mor-
phological analyses. The main objective of this work was
to develop a computational tool that provides accurate data
to support subsequent analysis of anatomical deformations
and pathologies.

A novel algorithm was presented, which estimates a
probability density function based on prior information about
the sensors used in image acquisition. It implements a Bayesian
approach to density estimation which is both efficient with
respect to computational cost and robust to artifacts. In
the discrete implementation, the method requires a labeled
volume for each scanner, from which the likelihood mod-
els are constructed once and used together with the elastic
matching algorithm for subsequent registration of images
acquired with the same sensors.

The proposed measures were evaluated and compared
to other well-known similarity metrics based on the analy-
sis of effectiveness and robustness. The effectiveness and
robustness of a similarity metrics may be reduced when the
images to be matched exhibit strong spatial or intensity dis-
tortions. While the robustness of the cross-correlation, mu-
tual information and histogram-matching approaches are
proven to be restricted to constant noise, likelihood mod-
els extend robustness to the class of generic noise.

The application of synthetic spatial and intensity dis-
tortions provided a basis for comparison. Instead of a few
manually-chosen landmarks, the evaluation of matching was
applied to full resulting displacement fields. Effectiveness
was analyzed based on a set of qualitative and quantitative
evaluation procedures. Quantitative evaluation is achieved
by computing the mean squared deformation error, which
numerically compares the resulting displacement field with
the synthetic spatial distortion applied to the test images.



A set of 1624 experiments with different images, synthetic
spatial and intensity distortions was conducted. The av-
erage mean squared deformation error obtained with the
cross-correlation measure was about 20% larger than the
one obtained with the likelihood model metric. Moreover,
difference between the results obtained with cross-correlation
and likelihood models was progressively more substantial
as larger deformations were applied, showing that similar-
ity prior models should be considered important sources of
information to improve the results of image matching and
provide quality data to further analysis.
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