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Abstract 
 

For the production of smooth animation of flow 
simulation out of only several data steps many 
interpolated intermediate data steps are needed. 
Especially for the meteorological visualization of moving 
clouds for TV broadcasting purposes such interpolations 
are of high importance. The traditional method for the 
animation production is to fade one dataset out and to 
fade the next dataset in. The visual result is not very 
realistic if the clouds should move quickly and the 
distances between them are too great, because blending 
produces no clouds movements. In this paper we present 
the Abalone Interpolation for the calculation of visually 
realistic cloud movements. The presented solution is not 
only suitable for meteorological visualization but also for 
visual preparation of the flow calculation results. 
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1. Introduction 
 

Numerical weather simulation models, like these of 
the National Center for Atmospheric Research (NCAR) or 
the German Weather Service (DWD), produce twice a 
day large quantities of simulation data, which must be 
visualized for the presentation on television. Even if the 
simulation programs internally generate high amounts of 
finely resolved data they can only store data blocks lying 
30-60 minutes apart because of the extremely high storage 
requirement and also the long time needed for the storage 
process itself. On the other hand, for the presentation of 
weather forecast on television, time-lapse animations of 
up to 30 seconds are needed. 
 
2. Problem description and related work   

 
Nowadays the standard TV weather visualization 

software like TriVis [1], [2], [3] uses blending for cloud 

animation. The clouds of data time step i disappear slowly 
as clouds of data time step i+1 slowly appear. If in two 
following time steps the clouds are close to each other, 
the spectators hardly notice this, but if there are wide 
cloudless areas in-between, the animation appears quite 
bad, because clouds are popping up and disappearing 
again. This method does not take advance of the wind 
field data, which is always another result of any weather 
simulation. For the generation of a realistic animation we 
need moving clouds. The simulation of the cloud 
movement is the purpose of our Abalone interpolation 
algorithm. One of the problems is to find the 
corresponding cloud areas in two following time steps. 

 

 
 
Figure 1.  Did clouds B and C develop from 
 cloud A? 
 

Figure 1 shows the initial situation: the first data set 
(left side) contains only one cloud, in the other data set 
(right side) there are two clouds different positions. 
During the animation the spectator will find out if the 
cloud A corresponds with cloud B, or with cloud C, or 
even with both of them (after it divided) or maybe with 
none, because B and C just appeared as a product of a 
different atmospheric effect.  

So the main problem is how to solve this 
correspondence problem having two data steps being 30-
60 minutes apart. A method for solving this problem is to 
search for some specific features, which can be found in 
clouds of both data sets. With these features and the wind 
data set a prediction can be made about the probable 
movement of the cloud. However, clouds quite quickly 
change their appearance and the air humidity, which is the 
base value for extracting a cloud from the simulation data 
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set. The humidity is always very close to 100%, so the 
feature extraction from a cloud data set is quite a problem. 
A single cloud has nothing really special to be easily 
identified and recognized by an algorithm. We hoped to 
find a general solution of this, which with some luck 
could be reused to visualize similar flow field problems. 
We found an idea for the solution after playing a game of 
"Abalone". An Abalone player has to build groups of his 
spherical stones on a playing grid and uses them to move 
his opponent's (smaller) stone groups out of the grid. Now 
think of the black stone groups as of clouds and of white 
stone groups as of the air masses around them. The white 
stones move the black ones over the grid and vice versa. 
A wind flow field replaces the human-controlled 
movements. In this way not only the clouds are 
considered as particles (though they are our main interest) 
but also the surrounding air masses. In this way the whole 
grid is considered as being full of particles and now the 
solution is much easier.  

Silver [4], [5], [6], [7], [8], [9], [10] found a solution 
to the problem of correspondence of a flow field features 
in two following time steps. She extracts objects from the 
flow field and follows their movements, developing a 
strategy for the reduction of memory usage. The detailed 
form of the object was not interesting for the special 
problem investigated by Silver. The aim was not to find 
time-interpolated data steps but the recognition of given 
features in given following time data steps. In contrast to 
this our purpose is to interpolate the given cloud data 
steps in time to get more data steps to produce a smooth 
animation of clouds. For a smooth and realistic animation 
for broadcasting purposes a highly detailed data is of high 
interest. In fact for the interpolation of detailed objects 
morphing could be a suitable method. Most of the 
morphing algorithms can be classified into two classes: 
parametric correspondence method or implicit function 
interpolation method. The parametric correspondence 
method algorithms search for corresponding points on the 
boundary of the bodies to be transformed into each other. 
Examples for this kind of algorithms are the Sedeberg 
method [11] and the method of Alexa [12]. For the 
function based method a function is developed for the 
start and the target body. Then the start function is 
transformed into the target function in a possibly smooth 
way. There are two kinds of functions used for this: the 
inside/outside function or the characteristic function. The 
inside/outside function is binary, which means that ‘0’ 
means the actual position is outside of the object and ‘1’ 
means it is on the object boundary. The signed distance 
function is more explicit, it gives the euclidic distance 
between the actual position and the next point on the 
object boundary. Morphing algorithms based on this type 
of function generate very plausible results already when 
using very simple interpolations. After Türk et.al.[13] the 
parametric method is mostly quicker and needs less 

memory than the function-based method. The drawback is 
that the transformation of objects with different topology 
is more complicated than with the function-based method. 
The function-based method has also less problems with 
self-penetrating faces. Türk et al. [13] combined the 
parametric method with the function-based method and 
developed a smooth transformation for objects in every 
dimension. For using one of these methods you need to 
know for which objects the interpolation should be 
calculated. We do not know this (see figure 1) therefore 
morphing is not the best solution of our problem. But one 
part of the morphing-algorithms is the solution of the 
correspondence problem and we have a correspondence 
problem. The solution of our problem is not the 
computation of correspondence of polyhedral bodies but 
the analyze the whole volume of the model. The Abalone 
Interpolation computes the correspondence of two volume 
data sets of a fluid simulation. 
 
3. Abalone interpolation algorithm 
 

The Abalone Interpolation Algorithm is subdivided 
into two sub-algorithms, which is comparable with one of 
Silver's tracking procedure [10]. First, the movement of 
the clouds and the air is traced over the time steps, which 
have to be interpolated. Then the time steps have to be re-
traced to find the corresponding clouds. This is done 
indirectly by interpolating the (scalar) humidity values of 
the particles. In the following we discuss these two parts 
in more detail. 
 
3.1. Particle tracing 
 

To follow the movement of the particles through the 
interpolated data steps, the wind flow fields have to be 
interpolated through the time. Therefore we compute the 
flow simulation using Runge-Kutta's 4-th order 
interpolation, which is the best trade-off between 
computation time and correctness of the result [14]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.:  Particle tracing through all 

interpolated flow fields. 
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Knowing the interpolated wind flow fields we can 
start the computation of the particle movement. We start 
putting a particle on every grid point of the given data set. 
In fact, there are only two kinds of particles: cloud 
particles and non-cloud particles. We now trace their 
movement through all interpolated time steps, starting 
with the data set t0. Figure 2 shows possible ways of 
particles starting from t0 to tn which is the second given 
meteorological data set. The intermediate data sets t1 – tn-1 
are the interpolated ones. 
 
3.2. Interpolation of the particle values 
 

After the particle tracing is done it has to be checked, 
if they changed their status after the flight. This can be 
done, by checking if they landed in the same medium (air 
or cloud) as they started. If they did not, their values have 
to be interpolated. Otherwise the particles keep their 
value. In our sample implementation of the Abalone 
algorithm we do not have a binary case. We use the 
particle humidity, which is a scalar value produced by the 
meteorological simulation. In Figure 3 the four cases are 
shown which can occur: 

 
1. A non-cloud particle lands in a cloud 

2. A cloud particle lands out of a cloud 

3. A cloud particle lands in a cloud 

4. A non-cloud particle lands out of a cloud 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The Interpolation of the particle values 
 

In cases 3 and 4 the scalar humidity value will 
approximately stay constant. In cases 1 and 2 the particle 
value has to be interpolated during the flight. We use a 
linear interpolation for this computation. In Figure 3 the 
interpolation needed is visualized. 
 

4. “ Proof of concept” 
 

The presented algorithm can be divided into two parts. 
At first a particle with its own scalar value is set at every 
data grid point. These particles are traced through the 
interpolated wind flow fields. The second part of the 
algorithm compares the starting values of the particle and 
the scalar value of the data grid point where the particle 
lands and – if needed - interpolates the scalar value of the 
particle for the intermediate data sets t1 - tn-1. The method 
is simple and usable for visual interpolation of given data 
sets. What we still need is a proof that it works and meets 
the specification. This proof can be found in the next 
section. 
 
4.1. Analysis of the Abalone-interpolation 
 

Abalone Interpolation is a general algorithm for visual 
interpolation of flow-dependent data sets. It should be 
used for visual processing of the data, which should not 
be altered by its usage. As the algorithm should only be 
used for visual analysis of data, physical correctness is not 
provided. This feature provides the advantage of 
independency of the original fluid problem and results in 
a general usage of the algorithm as a visualization tool. 
We start with given meteorological simulated humidity 
data sets m0 ... mu and the corresponding wind data sets. 
We call the mi data set t0 and the mi+1 data set tn during 
the abalone interpolation. This section discusses the 
assumptions we made, describes every single module of 
our procedure and shows that the result is correct as long 
as the assumptions are right. 
 
4.1.1. Correspondence condition 
 

We assume that there is a direct coherence between 
the wind and the movement of the clouds, hence if a 
particle was in a cloud in the data set t0 and lands again in 
a cloud in a data set tn then we assume it was in a cloud 
for the whole time. We assume a correspondence between 
the clouds from the data sets mi and mi+1. The existence 
of this correspondence is a basic condition, which has to 
be met for the correctness of the procedure. If this 
correspondence condition is not met, the error can not be 
found directly, but can be detected using a higher time 
resolution of the given data set m. 

 
4.1.2.  Interpolation of the cloud movement of m0    ...  

mi      mi+1     ...      mn 
 

If the correspondence condition is met it becomes 
clear, why the movement of the clouds from mi to mi+1 can 
be computed. We can now also compute how clouds 
divide into several parts. Indirectly the dissolving of old 
clouds and the development of new clouds can be 
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computed, too. In case 2 ( see section 2) a cloud particle 
from data set t0 lands out of any clouds in date set tn. If 
the correspondence condition is met, we can assume that 
the part of a cloud, which was represented by the particle 
was dissolved. The cloud existing in the meteorological 
data set mi disappears in mi+1, which could be for instance 
caused by rain. In the same way a development of a new 
cloud can be computed. Of course, if the interpolation 
works between mi and mi+1 it works for the whole set of 
the given simulation data m0,..., mi, mi+1, ..., mn . 
 
4.1.3. Extrapolation of particle values 
 

For the implementation of the algorithm we should 
take into consideration that the particles do not flow 
exactly to a given grid point but in most cases land 
somewhere between the grid points. It means that for 
every interpolated data set the extrapolation of the particle 
values has to be computed (see figure 4). The 
extrapolation of the particle values correspond to the 
trilinear interpolation of the grid point values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. The particle value extrapolation 
 
4.1.4.  Interpolation of the cloud movement of mn    ...  

mi+1      mi      ...      m0 
 

Until now we only showed that the interpolation 
works in the direction from m0 to mn.. We did not 
determine if it works in the reverse direction mn     m0. If 
the Abalone Interpolation was a bijective function, the 
correctness could be shown easily. Unfortunately, during 
the interpolation more than one particle of t0 can land in 
one voxel of the grid tn. Other voxels of the data set tn get 
no particles at all. The interpolation is not bijective. In 
figure 5 the result of the algorithm (as presented so far) is 
shown.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5:  The last iteration of Abalone (t29) 

differs from the next original data set 
(t30) 

  
The data set interpolation is very smooth. However 

the last computed interpolated data set t29 is very different 
from the given meteorological data set t30. We guessed 
this difference is resulting from particles moving into and 
out of the voxel mesh. Until now we were not speaking 
about the particles moving into or out of the analyzed area 
in ti (0<i<n). The particles leaving the area are 
automatically considered. Even if the value of a particle 
getting out of the area at tn is not known, we can make 
some assumptions about it, which make it possible to 
compute its value. We found the following assumption 
working best: If a particle leaves the grid area at ti (0<i<n) 
it keeps it last value. On the other hand particles, which 
started outside the area of the dataset cam move into the 
area by the wind. They can also develop from ascending 
vapor. A quite obvious but memory intensive method to 
solve this problem is to introduce a “backward 
interpolation”. The starting data set is declared to be the 
final one and vice versa. The flow field is also reverted. In 
this way the incoming particles are integrated into the 
Abalone computation. During the backward interpolation 
they are treated as particles moving out. Finally the 
forward and backward interpolated data sets are weighted 
and combined. In this way both kinds of particles are 
integrated into the Abalone Algorithm. 

Figure 6 demonstrates that the introduction of the 
backward interpolation the particles moving into and out 
of the grid are integrated into our method. The 
interpolation results change smoothly from data set t0 to 
tn. 
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Figure 6:  Results of the combined backward 

and forward interpolations. 
 
5. The compiled Abalone Interpolation: 
 

The different steps of the Abalone-Interpolation can 
be compiled to one procedure as follows: 
 
- Interpolation of the wind vector data for every frame 
- Computation of the forward interpolation with mi = t0 

and mi+1 = tn and for the backward interpolation with 
mi+1 = t0 and mi = tn . These computation include the 
following steps: 
- Tracing the particles through all the frames t0 to 

tn. 
- Interpolation of the humidity value of the traced 

particles 
- Extrapolation of the humidity value of a particle 

at the surrounding grid values. 
- Weighted combination of the data sets computed by 

the forward and backward interpolation. 
- Isosurface generation or raytracing 
 

The described procedure for visual interpolation of 
flow-dependent data needs quite much memory: 
3n*resX*resY*resZ. The computation time is linear with 
the number of data steps, O(n), but there is a high 
constant, depending on the number of interpolation steps 
and the size of the data grid. Thus an optimization of the 
procedure is a needed. 

 
6. Optimization with “Divide and Conquer” 
 

As described so far, the particle values are interpolated 
first and then extrapolated on the data grid. During the 
visualization we found that the clouds in the interpolated 
frames loose some of their volume. These losses are 
caused by the interpolation and extrapolation. By 
inevitable numerical errors noise is introduced into the 
procedure, which is perceived as a volume loss of the 
clouds (see also figure 6). To avoid the volume losses we 
had to leave out the extrapolation. At first, as in the not-
optimized version, the wind vector data sets are 
interpolated. However in the next step the particles are not 
traced any more but a divide and conquer method is used 
(see figure 7). For every grid point of data set tn/2 we find 
the starting position of a particle from tn which lands at 
this grid point. We also look for the further way of the 
particle and find the grid position where the actual 
particle is going to land in tn. The humidity values of the 
grid in t0 and tn are well known, so the value of the 
particle can be interpolated as before. This calculation 
step has to be repeated recursively. In this way all grid 
values of ti (0<i<n) can be calculated. In this way the 
extrapolation can be left out and we save also 50% of the 
memory compared with the original procedure, because 
the particle positions do not need to be buffered for all the 
computed frames. Only the wind fields have to be still 
held in memory. However even the interpolated winds 
can be computed on the fly for a further memory 
optimization, but only on the cost of higher computation 
time in the interpolation step.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Optimized Abalone Interpolation 
 

The results are presented in three movies. Pictures of 
the movies (figure 8 and figure 9) are attached on the end 
of the paper. In the first fire movie (fire.mpg) you can see 
the visualization of the original datasets. The frames are 
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repeated. So it is easy to compare the original frames with 
the interpolated frames (interp.fire.mpg). The cyclone 
movie shows 37 original time steps with 18 interpolated 
time steps in between. The grid resolution of the used 
dataset is 80 x 96 x 35. The calculation of the abalone 
interpolation takes 45 minutes and for rendering we need 
14 seconds per frame on an AMD Athlon 1,2 GHz. 
 
7. Summary and discussion 
 

The most important condition for the proper work of 
the Abalone Interpolation is the correspondence 
condition. If the data does not fulfill this condition the 
interpolation has errors, which are not perceivable in the 
visualization. For meteorological applications this 
condition can only be violated if the data set mi contains a 
cloud, which is replaced by a completely new cloud in the 
data set mi+1. If there is no information about the 
disappearance of the old cloud and the creation of a new 
cloud, the process will not be detected by our algorithm 
(and, probably, by no other). This limitation can be 
overcome by the addition of new meteorological 
information. In this paper we do not do it, because we 
wanted to keep the procedure universal. Of course it is 
possible to extend the algorithm to adjust it for this 
specifically meteorological problem. The universal 
usability, an easy implementation and visually convincing 
results are important advantages of the Abalone 
Interpolation. The attached file interp.fire.mpg is an 
example animation of a fire flow simulation and compare 
them with the original fire simulation data set 
visualization in file fire.mpg. Some frames from the 
animations are shown in figure 8. The original goal of our 
development was the visualization of meteorological 
simulation data. The introduced procedure can be used to 
generate more detailed and prolonged animations out of 
given data sets. In this way details can be visualized in the 
animation, which would not appear in a shorter film. The 
optimized procedure needs only the memory for the 
computation of the data set mi and mi+1. The computed 
data can then be stored as a polygonal model of the 
iso-surface or as a volume grid. 
 
8. Future Work 
 

Generally the Abalone Interpolation can process any 
fluid simulation data. It would be interesting to find out if 
the method can be reused for processing of data sets 
which were not generated by fluid simulations, for 
example finite element simulation data. Another 
important step will be the integration of the rendering data 
into rendering algorithms as these shown in [15], [16], 
[17], [18]. 
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Attachment: 
 

 
Figure 8: Some frames from a sample 

visualization of a flow simulation of 
a fire. See the video file fire.mpg for 
the whole animation.  

 
 
 
 
 

 

 
 
Figure 9: Some frames from a sample Abalone 

Interpolation used for meteorological 
visualization. See file cyclone.mpg for 
the whole animation. 

 


