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Abstract. We introduce concepts and algorithms for control of visual motor commands and realistic simulation
of basic abilities as visual servoing and perception for robotics simulation. The introduced tools can also be used
in a straightforward way to build computer animated devices as virtual agents, and avatars. We use the tools to
build part of a humanoid (arms and head) robot, effectively named “Câmbio”. We will describe Câmbio’s design,
providing an overview on the most used feature extraction techniques for perception, discussing implementation
issues. We intend to show the usefulness of a simulated platform as an inexpensive alternative for testing and
developing computer vision algorithms in real-time robotics applications and its possible extensions to computer
animated agents and avatars.

1 Introduction

A great deal of effort has been made recently towards devel-
oping new techniques (also improving existing ones) for the
extraction of features from visual data (images) acquired
by robotics vision platforms in restricted or open environ-
ments. The main issues are: what kind of features should
be extracted from the environment and how to obtain them,
how to define a feature, how to process the acquired im-
ages, how many time to look for a region in order to allow
the system to get the desired features, and how to do all of
this efficiently. All of these issues are still object of study in
most of the computer vision and robotics research centers.

Usually, research in computer vision applied to robotics
requires fragile and quite expensive pieces of machinery on
which to perform experiments. Among this sort of equip-
ment we may find cameras, small robots, and, mainly, stereo
heads, which are robotic heads like the one shown in the top
of Figure 1. Setting aside the cost of such dedicated archi-
tecture, the use of robots also restrict the development for
the algorithms and experiments for the specific characteris-
tics of that particular robot (number of DoFs, sensorimotor
devices, etc). Also, it is not recommendable to perform
any kind of experiment on a real robot; a dangerous task
could compromise its (expensive) structure. For these main
reasons, several algorithms are developed first in simulated
devices, then placed into the real platforms.

In light of the above mentioned issues, this work presents
a simulated device for robotics and humanoid research named
Câmbio. With the use of such a simulated robot, research
in Computer Vision and Robotics can be done at reduced

Figure 1: Current configuration of UMASS Torso “Mag-
illa”, gently offered by the Director of the Laboratory for
Perceptual Robotics of UMASS. Thanks to David Wheeler,
for risking his life:-). Picture used with permission.



costs, requiring only a computer and a freely avaliable graph-
ical library. The simulated envirionment allow us to run
different tests using different robotic setups. Also, we can
test algorithms and situations that put the robot to its lim-
its, without the fear of (or even intending) breaking it up.
By using efficient simulation tools, we can work on var-
ious robotic fields, like cognition, attention, sensorimotor
development, computer vision, and other fields, without the
immediate need of a real robot. Mathematical models for
those areas can be created and developed in these tools un-
til they get mature enough to be tested “online”. Of course,
all of this come at some computer cost for modelling and
running the simulated world. There are some associated
costs not only related to running the world, but to the task
of defining rules for such world, and to simulating it as well
as the real world the robot will face later. We propose, how-
ever, that we could reach a reasonable amount of similarity
to the “real world” if we put the simulated domain within
certain bounds, and slowly stretch these bounds to upper
limits.

In this work, we bound the simulated work to the do-
main of Computer Vision. We can thus provide a dynamic
simulation of a stereo head and its image processing ca-
pability and of two integrated arms. Some of the tools for
feature abstraction provided by the simulator Câmbio as the
basis for high level processes (like, for instance, visual at-
tention) are: use of Gaussian derivative operators for fea-
ture extraction, use of Multi Resolution Images (MR) for
data reduction [9], use of Stereo Disparity and Motion fea-
tures, and use of statistical moments. In the current version,
we also offer two simulated arms to complement the visual
information.

2 Related Work

The three dimensional simulator model proposed in this
work, Câmbio, has carried out from the needs of develop-
mental improvements to be done in another simulated robot
environment, “Roger-The-Crab” [11, 10]. Roger is a bidi-
mensional simulator imitating a crab which was originally
proposed in 1991 to be used as a tool for low-level computer
vision research. Since then, it has been used to develop
tools and algorithms for many applications as for example
attention control [7, 4], the study of meta-heuristics in ma-
chine learning algorithms for pattern categorization [6], the
development of new models for computer animation [3],
the development of tools for local perception in virtual ani-
mated agents [3]. Some of these works were the test-bed for
real-time attention control and pattern categorization algo-
rithms involved in robot cognition, which were later used
in the online, real-world stereo head shown in Figure 1
[9, 8, 5]. Another important contribution was the devel-
opment of computational models for robots, in the study of

relationship between different sensorial systems like vision
and touch to be used together on a close manipulation and
grasping system [2]. The main improvement we propose
on the previous version is the addition of the third dimen-
sion to the world model and also to the perception module.
Other improvements as multi-processing, and other built-in
capabilities as stereo disparity, vergence, gaussian and other
convolution operators, are also been put on. We believe that
this model will provide a much more accurate representa-
tion of the “real world” for systems that will later be im-
plemented in online robots. This is a vital requirement, for
instance, in the development of navigation algorithms and
in the development of policies for humanoid robots based
in visual information.

Visual attention can be defined as the ability to select
a region of interest (a target) for extraction of information
which could be useful to some task. A harder, related prob-
lem, is to add the ability of changing the attentional focus
from one region of interest to another, be it due to changes
in the environment or be it to acquire more, different data.
In this work, the regions of interest are virtual objects de-
termined by the mathematical model. This visual attention
control is a measure of interaction between the robot and its
environment. Some works[18, 12, 15] define only station-
ary images as the target of their attentional algorithms, not
considering temporal aspects like motion, stereo, and be-
haviour. A common technique used in some works [14, 13]
is the use of operators based as derivatives of the gaussian
function for the extraction of features from a certain image
(based on biological evidences [14]). A line of research
based on explaining and imitating the working system of
human biological eye is [17, 13]. In [13], they try to simu-
late a “fovea” region in which to put the zones of interest.
To achieve this, multiple scales of a same image are gen-
erated, with the intent of centering the region of interest in
the scale with bigger resolution. However, in general, these
works do not usually apply to simulated robots, being in-
stead developed in online robotic platforms. Another line
of research related to our proposed simulator is the study
of movements in virtual agents. Several works involving
control of motion try to find techniques to generate realistic
and precise behaviours for humanoid arms, legs, actuators.
The use of inverse kinematics has been proved to be useful
by many such works. In [1] it is used as a powerful tool in
order to syntethise motion through the definition of special
initial instances, and the interpolation of these instances to
generate the final animation.

3 Theoretical background

The main developmental work done for this first stage of
Câmbio was the design and implementation of the mainly
used techniques for image processing in a simulated envi-



ronment. The main issue we had to take into account is
that the computational platform will have to handle with the
workload of executing a dynamic simulation, beyond per-
forming the usual processing that takes place in an online
robot. When taking such issues into account, we stress the
importance of designing efficient implementations of the
above mentioned algorithms, which can lead to new math-
ematical models for solving such problems in a better fash-
ion.

3.1 Multi Resolution Retinal Images

In practice, to apply a complete low-level vision operator
to an acquired image, it is generally necessary to perform
several operations of “convolution”. Each convolution to be
applied to an � sided image through a � sided kernel ( � and
� being an integer amount of pixels) requires �

�
�

�
mul-

tiplication operations. This yields a very bad result, spe-
cially when it is required to apply several operators in a
sequence, in a given image, which is often the case in low-
level vision. The use multi-resolution (often called multi-
scale) images is a technique which tries to diminish this
processing cost. This technique consists of using several
smaller images (usually some 3 to 5) downsampled from
the same original image. The images are obtained in such
a way that they contain (in conjunction) the same (or little
fewer) amount of visual energy (visual information) con-
tained in the original image. The use of Gabor wavelets
[16] has being one of the used approaches to generate such a
multi-scale image representation in computer graphics and
computer vision fields. In the current work, we use a sim-
pler multi-resolution approach carrying out an image repre-
sentation which is similar to the one present in the human
eye, often called retinal image. In the human eye, the im-
age captured by the retina is not sensed in an homogeneous
manner. There is a central region in which occurs a higher
concentration of structures for detection of color (light in-
tensity). Therefore, the part of the image which lies in this
region is perceived with greater detail than other parts of
the image. This resolution falls off as we approach the pe-
riphery. Structures for detection of motion are more reg-
ularly distributed along the retina. This explains how we
can see motion even for objects with image projected in
regions far from the center of our retina. That is not true
for object shapes (that need texture). Figure 2 illustrates
a multi-resolution retina in which the most inner part (the
right picture) appears in high resolution.

To transpose this idea to a computer-based domain,
we’ll take an image and reduce its size and resolution, get-
ting a smaller representation of the same image. We achieve
this through the use of an “average” filter on the original
image. To produce the multi resolution image, we apply a
number of these averaging filters with different kernel sizes

Figure 2: Multi-resolution image of a sphere. All images
have the same number of pixels, in this case, ���������	��
���
pixels.

Figure 3: Multi-resolution image of a sphere. In the figure,
they are re-scaled so one can note the region that each image
covers on the original image.

through differently sized portions of the main image (so
that each smaller portion is fully inside a bigger portion).
This makes further algorithms and computations required
by higher level processes easier. We’ll end up with differ-
ent images with different levels of resolution, representing
different portions of our original image. The original rep-
resented portions can be seen in Figure 3, where the MR
images in Figure 2 are re-scaled to show the region size
that they cover on the original image. This directly re-
lates to the “fovea” scheme presented above, for the final
image with greater resolution shows a smaller portion of
the original image, and each bigger portion is represented
with lower resolution. Now, with these smaller images, we
can apply other desired operators at a very reduced cost.
Usually, for border detection and generic features extrac-
tion from the image (like light intensity and motion calcu-
lations), the lower resolution image will work fine for our
needs. In some cases if we need higher resolution, as for
instance for pattern matching, we can “foveate” the current
region of interest, that is, put it inside the area of the smaller
covered region, the higher resolution image. Then, process
this higher resolution image which contains just a region of
interest.

Gaussian operators

The gaussian operator is a convolution operator generated
by a gaussian function applied to the size values of the bi-
dimensional convolution mask to be generated. It is used in
many algorithms for feature acquisition due to its very in-
teresting property of “smoothing” the image. In general,
this is a pre-processing phase before highlighting image
borders. For different levels of smoothing and border de-



tection, the gaussian functions first and second derivatives
are also often used as well. Ballard, in a recent work [13],
has used up to the third order gaussian derivative as direc-
tional filters for feature detection, applied to recognition
and attentional tasks. We have used up to the second or-
der in previous work, for the same purpose [9]. In the cur-
rent work, we provide up to the second order (Laplacian
of Gaussian) Gaussian operator. Equation 1 represents the
basic formula for the gaussian distribution. Equation 2 rep-
resents the gaussian convolution function and its derivative
kernels are given by Equations 3, 4, and 5, in two orthog-
onal directions each. One can note we have modified the
kernels of the derivatives, without loss of generality. This
modification makes easier the implementation done, using
integer values.
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Stereo disparity

Stereo disparity can be defined as the perceived difference
between the positions of an object (or a point) in two im-
ages generated by a pair of cameras (or eyes) set apart a
certain distance from each other. There are several ways to
calculate the stereo “disparity map”, that is, a map where
it is determined the disparity for each pixel in one image
in relation to its corresponding in the other image. In this
work, a simple correlation approach is used to determine
disparity at each pair of images at each resolution level,
over the second order derivative, considering estimations
given by previous levels. By finding out the amount of
stereo disparity between all points in the two images we
can use the result to rebuild the three dimensional model
that generated those images. We have showed in [9] that a
multi-resolution stereo disparity map is enough for the pur-
poses of attention control and object categorization, so we
do not provide depth information (the reconstruction) in the
current work. In order to accomplish attention control, we

must choose a point in world space and try to put that point
in both cameras, as to reduce stereo disparity to just what
we need, then to extract three dimensional information. We
provide an algorithm to do that through the “vergence” al-
gorithm discussed above. This means centering the point
in world space in one of the images (the “dominant eye”),
and moving the other eye small amounts, while trying to
minimize the stereo disparity around the central point in
the dominant eye. The use of MR images can aid this task
(which requires many calls to the “stereo disparity” func-
tion) by making it cheaper to estimate stereo disparity for a
smaller image. The disparity of the lower resolution images
is then used to estimate the disparity in the higher resolution
ones, which are centered around the place where we wish
to center our image. This scheme is shown in Figure 4.
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Figure 4: Stereo computation process in cascade.

Motion

Another use for the disparity map between two images is
the retrieval of motion features in a dynamic scene. If the
system wishes to turn its attentional focus into an area which
contains moving objects, it can take a series of images ob-
tained by a still camera, and figure out the disparity maps
for them. Since the camera does not move, any disparity
found will be due to mobile objects in the scene, being
the disparity intensity proportional to the motion intensity.
Here we compute motion separated for each image in the
several resolution levels. That means, motion is computed
as the disparity between the image taken in the instant O and
the image taken in the instant O @ � . In the same way as the
above Gaussian images above, a MR motion image is pro-
duced. We prefer to use disparity as the measure of motion
since this can solve most problems in attention control and
other cognitive tasks. In the past works [9, 8], motion was
computed as a simple image difference (what is enough for
attention control).

4 Implementation

Figure 5 shows a screenshot of the interface. Câmbio was
developed using a modular architecture. A multi-process
application was generated so that each of Câmbio’s mod-
ules can execute as a different process. The need to simu-
late a “real time world” leads to modular independence as
an important requirement. Another nice feature we use is
the ability to completely exchange one module for another



implementation of the same module, without touching any
other parts in the simulator. Câmbio currently possesses
four modules that seen in Figure 6: World Model Module,
Sensory Servo Module, Decision Making Module and Con-
trol Module. The multi-processing used is a kernel-based
one, for the GNU/linux operating system.

Figure 5: Câmbio’s resources, including two eyes and two
arms.

Figure 6: System modules.

World Model Module (WMM)

In Câmbio’s architecture, the world is modeled in a simpli-
fied geometric fashion. Objects are stored through a set of
their mathematical features. For instance, a sphere in a sim-
ulated room is stored by the values of its key index which
identifies it uniquely among all objects in the world, its type
index which defines what kind of primitive object (sphere,
square, etc) it represents, the �3*-, integer world coordinates
for the sphere’s center, its radius’ length value and color
values. We are interested in further improving this world
model with information of the object’s physical properties.
A special kind of object in the world models, in our current
context, are Câmbios parts themselves. The world will store
the parameters for these objects, and alter them according
to the Control Module’s requests. Currently, Câmbio pos-
sesses 3 kinds of “objects” in its design: neck with one de-
gree of freedom (DoF) - rotating left and right around its

axis; eye which is capable of acquiring sensory informa-
tion and possessing 2 DoF and arm, possessing 4 DoF and
a touch sensor at its end. Another role of the WMM is to
produce sensory information as requested by the Sensory
Servo Module. In this interface, the SSM asks the WMM
to provide the readings for one of the robot’s sensors. It
provides the World Model with the parameters needed to
check up the simulated world info and generate the senso-
rial answer. For instance, when the Sensory Servo Module
wants to work on an image, it will ask for the sensory in-
formation of an eye, to the WMM, informing it from which
eye it wants the information. The WMM will then use the
eye’s position and orientation to build the visual informa-
tion and send it to the process running the sensory servo
module. Currently, the acquisition of visual information is
done by generating an OpenGL scene using the geometri-
cal information of the objects of the world, and using the
built in libraries to render the image based on the position
and direction of the camera. The sensory information is
acquired by a first round of “bubble” algorithm to find out
which objects are candidate for “touching”, and then geo-
metrically testing each of these candidates against the end
point of the arm. Since our initial concern is Visual feature
extraction for attention, we do not worry about the arm “go-
ing through” objects now, but we will further provide this
feature.

Sensory Servo Module

The Sensory Servo Module (SSM) must process the infor-
mation received from the WMM, according to the requests
of the Decision Taking Module (DTM). In the current stage
of development, the SSM is a visual information server
which processes images building feature maps needed for
several, different algorithms to be used for high level pro-
cesses as attention control. The sensory information for the
arm, currently, is directly forwarded to the DTM without
further processing. The SSM generates a Multi Resolution
Image composed of 4 M
 � M 
 pixel images from the orig-
inal 
��� � 
��� pixel image. The smaller images are gen-
erated through the MR algorithm described above, using 1,
2, 4 and 8 pixel-sided convolution masks for the averag-
ing filter. It then applies any required convolution operators
over this MR. Actually, we provide the partial derivatives
of the Gaussian Operator (its zero, first, and second deriva-
tives), for the � values of 1.4, 2.7 and 4. The use of Gaus-
sian operators has been proved to be useful for feature ex-
traction as basis for attentional and categorization purposes
[13, 9, 4]. We note that, in the current implementation, the
use of the Gaussian function with other parameters, or even
completely different convolution mask functions is possible
with very little code changing. Also, it is offered the dis-
parity operator which produces a multi-resolution disparity



map out of two images. This operator is used to compute
the stereo disparity between the two current frames and also
for detection of motion, between frames acquired in dif-
ferent time instants. Besides in the attentional behaviour,
stereo will be also used in the vergence controller imple-
mented in the Control Module, based on the disparity be-
tween the image acquired from both eyes at the same time.
For motion detection, the server saves the image for a num-
ber of consecutive cycles and sends to the DMM the dispar-
ity between these images.

Decision Making Module

The Decision Making Module (DMM) is the most “user
managed” of the modules. It uses the information acquired
from the SSM, applies some sort of user defined algorithm
in them, which results in actions to be forwarded to the
Control Module. The DMM may contain learning, atten-
tion, and pattern recognition sub-systems based on the ser-
vices provided by the other modules. Currently, we have
implemented the upper level controller for the vergence al-
gorithm, and the standard-input controls for moving each
part of the robot and requesting information from the SSM.
Other high-level tasks vary with what use is made of the
simulator and will be inherent part of high-level algorithms
further developed over the current architecture. Most of
these high-level issues are not treated here, since they are
not the purpose of the current paper.

Control Module

The role of the Control Module (CM) is to receive the high
level actions from the DMM, and to turn them into lower
level control directives for the robot actuators. For instance,
while the DMM would say to the CM “move the right eye
to the left”, the CM would send that to the WMM as a
“increase the angle

�  ���  ���  � in the object “right eye”
using servo controller � � � by 1 degree” command, which
the WMM would in turn execute. The CM stores the same
low level information about the “robot objects” as the world
does, and alters them according to its actions. This redun-
dancy exists to provide a certain degree of error to Câmbio,
where the CM believes, by its actions, certain actuators to
be in certain states, while in fact these states can be a lit-
tle different due to real world errors. We currently imple-
mented the existence of errors by using a simple gaussian
noise operator applied to the controller which will effec-
tively move Câmbio’s physical resources towards a given
target. Also, we have another error due to the discretiza-
tion done to perform movements in the computer device.
That is, a movement is broken into several differentiable
but discrete sub-movements. So, at the end of a motion,
some error will be present due to this discrete process (the
resource will not be exactly on the target, but somewhere

close to this. Note that by implementing this error sim-
ulation model, we approximate our device to a real plat-
form, and that, differently of the real platform, we have
ways to check where exactly a given resource is by using
the information redundancy. This is useful in the develop-
ment of high-level algorithms in commuter vision, since we
have a high-controlled device. Finally, the Control Module
takes charge of a few low level algorithms that can be ran
“in background” for the DMM. These “background con-
trol tasks” are small, yet possibly complicated tasks that
are useful for many different kind of algorithms.

Currently, we have implemented the “vergence con-
troller”, where the idea is to keep both eyes “verged” in one
place in the world space while the robot searches for a new
focus of interest, as in [4]. For the achieving and keeping
of vergence on an point in space, we need to take two con-
straints into account. The first is the amount of degrees that
each eye can move horizontally and vertically. We’re devel-
oping simulator with a visual system based on the human
physiology, thus we need to constrain the eye’s movement.
The eyes are attached to each other so that they cannot
perform independent vertical movements. Also their hor-
izontal movement has certain limits to a maximum degrees
of vergence. Second, how to decide when Câmbio should
move its eyes and when it should move its neck, and what
are the motion parameters for each object in each direc-
tion, that is, what are the length and velocity/acceleration
for each motion controller. With these constraints in mind,
we propose to use a control architecture composed by two
independent eye controllers, a coupled vergence controller
and a main controller.

Figure 7 shows a scheme with the mechanical degrees
of freedom of Câmbio’s head. Each eye controller receives
horizontal and vertical angle displacements from the ver-
gence controller in order to position themselves in the en-
vironment. In the current setup, these angles are limited to
30 degrees in relation to each eye normal. If a movement
requires for an eye to pass this limit, a neck movement has
to be done in order for both eyes to reach the goal. The limit
of the eye movement must be tinkered with until an optimal
result can be reached.

Figure 7: Mechanical DOFs in the Head.

The reason for allowing the eye controllers to having
independent horizontal movement is that, usually, the fi-



nal vergence position requires different horizontal angles
to the normal for each eye. The vergence controller aids
the system by putting together the information obtained by
each eye, and defining the central angle. The central con-
troller is responsible for adjusting the neck position. The
basic algorithm goes like the following. One of the eyes,
given by some attentional process, is chosen to become the
“dominant eye”. This eye is then moved so that the ver-
gence point is as close to the center of its image as possi-
ble. If this requires a horizontal movement greater than 30
degrees, the neck is moved along towards the target point.
Otherwise just the eye moves. After the dominant eye is set-
tled, the other eye’s (called “non-dominant”) position is ad-
justed in a loop which tries to minimize the disparity in the
space around the vergence point. If this requires the non-
dominant eye to perform a horizontal movement greater
than its limits, the whole system is turned to allow more
movement to the secondary eye (the dominant eye position
is corrected). While doing all of that, the system also takes
care for the eye axis to not pass the parallel to each other,
when opening (besides this is physically possible even in
humans we do not want for Câmbio to do that).

5 Experiments and demonstrations

In order to manually test the correlation algorithm for dis-
parity working in the control of vergence, we put one of
Câmbio’s eyes still in an object point (in the right border of
the sphere). Then we let the simulator to start its operating
loop (the other eye is parallel to the first). The final eye
images of this experiments are seen in Figure 8. In the top,
besides a color, textured image is shown, we remember that
every calculation is performed on the multi-resolution gray-
level version of the object images (with texture) obtained
by OpenGL. As a result, the other eye axis goes close to
the first eye one, by minimizing disparity between the eye
centers, that means by maximizing correlation between the
images. This is a very good visual result for this textured
image. One can note depth from the images by verging the
eyes, one in each picture. The same experiment with a cube
(a not textured object, only using shading for the correla-
tion) is seen in the bottom of Figure 8. In this case, the
algorithm could verge close to the object, but it did not per-
form that well due to the lack of texture. To minimize this,
one can include more objects in the scene.

Next we move Câmbio back in its environment, far
from the object, keeping the same point in space for the
right eye (the cube). It keeps verged in the same object and
other objects are put in the scene, entering its visual field, as
seen in Figure 9. The correlation approach and the sparse
distribution of the objects in the environment makes these
objects interfere a little in the vergence. Besides, depth can
also be noted here by verging the eyes.

Figure 8: Letting Câmbio’s eye verge on 3D objects.

Figure 9: Câmbio gets back and verge again.

In other tests for the vergence algorithm, we put Câmbio
in execution with its eyes initially in parallel, then wait for it
to verge and send some eye motion commands to its control
system (this is called a saccadic movement in the same way
as our biological eyes do). That is, Câmbio had to move
from point to point in the scene. Figure 10 shows the initial
situation for both eyes (verged in a cube). An angular dis-
placement is calculated and passed to its control software
in order to move to other region (to the cube on the left part
of Figure 10). We could see that, while moving, its eyes
can not stay verged due to the motion algorithm used (one
eye following the other). But, when the dominant eye stops
the movement (reaches the target), the other eye verges im-
mediately by correlating the images, now in the other cube.
Figure 10 shows the initial state of the eyes (looking to a
certain place) and the final state of this sacaddic motion.
One can note stereoscopy on the environment by fixing one
eye on each of the images. We note that there is no atten-
tional algorithm operating here, so Câmbio is not exactly
verged in any object, but in a given target entered by the
operator. Several attentional policies will be implemented
later, as other research work, based on the current features
defined.



Figure 10: Câmbio executing a saccadic movement.

6 Conclusions and future work

Currently, we have the Gaussians, averaging, disparity and
Sobel’s operators implemented in Câmbio by using OpenGL
(“C”) directives. It is our aim to add as many different op-
erators as possible, so that one can try different approaches
to feature extraction and higher level processes. We in-
tend to perform comparative studies of such operators using
Câmbio’s architecture. We also plan to add more complex
objects to the world model and implement some more real-
istics physics laws to the world simulation, like the ability
to bump into objects and, consequently, develop a policy to
perform motion in such a populated environment. Finally
we intend to implement, test and compare different atten-
tional and feature extraction learning systems, like those
presented in the references, as this is the main goal used
for the development of this simulation.

References

[1] J.-S. M. P. Baerlocher, R. Boulic, and D. Thalmann. Us-
ing an intermediate skeleton and inverse kinematics for mo-
tion retarding. The Eurographics Association and Blackwell
Publishers 2000, 2000.

[2] S. Botelho and L. Garcia. Combining local perception, low-
level manipulation and task achievement control in multi-
robot teams. In Proceedings of International Joint Confer-
ence IBERAMIA/SBIA’2000, pages 246–255, Atibaia, SP,
Brasil, November, 19-22 2000. Springer Verlag.
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