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Abstract - The real-time visualization of complex virtual environments across the network is a challenging 
problem in Computer Graphics. The use of pre-computed visibility associated to regions in space, such as in 
the Potentially Visible Sets (PVS) approach, may reduce the amount of data sent across the network. How-
ever, a PVS for a region may still be complex, and further partitions of the PVS are necessary. In this paper 
we introduce the concept of a Smart Visible Set (SVS), which corresponds to (1) a partition of PVS informa-
tion into dynamic subsets that take into account client position, and (2) an ordering mechanism that enumer-
ates these dynamic sets using a visual importance metric. Results comparing the SVS and the PVS approach 
are presented. 

1. Introduction 
Computer Games are one of the most powerful forces 
driving graphics development these days. The recent 
advances in graphics hardware allows the creation of rich 
and complex scenarios, with advanced texture effects and 
lighting. One of the most promising aspects of the game 
business is on-line gaming, where several players interact 
with each other in a virtual environment across the 
network. Unlike personal gaming, on-line gaming has the 
challenge of streaming game information (environment, 
players positions, actions, etc) to remote clients, usually 
referred to as the latency problem. This is a hard problem 
to solve, as streaming complex environments with lots of 
geometry and texture can be very expensive. Therefore, a 
trade-off on streaming speed against environment 
complexity needs to be made, leading most of the times 
to simpler environments (seen in on-line massive 
multiplayer games such as Everquest or Ultima Online).        

If the networking speed is a limiting factor, one way 
to increase game complexity is to send information or-
dered by visual importance to the client. In other words, 
the complexity is not bound by the environment itself, 
but from the views that we obtain from it. This is a clas-
sical problem in graphics, including visibility and occlu-
sion-culling algorithms, and multi-resolution, level-of-
detail (LOD) and image-based representations of geome-
try.  Integrating these solutions to help solve the latency 
problem is the focus of our investigation.  

The pre-computation of visibility information and 
storage in Potentially Visible Sets (PVS) have been used 
in many applications and in games such as Quake. A 
PVS consists of a list of objects (polygons or other re-
gions), representing what can be seen from a region in 
the environment. The PVS needs to be sent only once for 
each region, and while the client stays in this region, the 
PVS of adjacent regions (hopefully predicting the client 
path) can be sent to maintain full use of network band-
width, allowing spatial coherence to be explored. If a 

single PVS is still more than what the network can han-
dle, further orderings or simplification of geometric de-
tail based on an importance metric are alternatives need 
to be performed. 

In this paper we propose the Smart Visible Sets 
(SVS) approach to allow pre-computed visibility infor-
mation to be adapted to the needs of a client viewing 
parameters.  Usually, PVS information is not stored in a 
way that can be efficiently adapted to further processing. 
In the SVS, objects are first grouped by angle into direc-
tions that span the hemisphere of viewing directions.  
Organizing features by angle allow the ones located 
along the client’s viewing direction to be sent before the 
ones behind the viewer. The angle break-up of viewing 
directions can be made as flexible as possible, into as 
many directions as necessary, and region specific (i.e., 
adapted to its visibility set). Additionally, each angle 
group is broken into subgroups with respect to its dis-
tance to the PVS region. Having the distance information 
pre-computed allows faster selection of LOD or image-
based replacements to geometry. 

Therefore, the SVS represents an indexed data struc-
ture to visibility information, classified into angle and 
distance subgroups. Along the representation, an order-
ing mechanism that uses a pre-defined importance metric 
(maybe user-defined), can efficiently enumerate the in-
formation in such a way that data can be streamed across 
the network.  

The paper is organized as follows. In the next sec-
tion, we review past and relevant work. The SVS ap-
proach is described in Section 3, presenting several ideas 
to break viewing directions into groups. Results are dis-
cussed in Section 4 while conclusions and directions of 
future work are presented in Section 5.  

 



2. Previous Work 
Techniques for rendering complex scenes in interactive 
walkthroughs especially in networked virtual environ-
ments have been reported in the literature lately [9]. Most 
of the research addresses acceleration of local rendering, 
transmission of graphical information over a network and 
scene simplification (refer to Teler and Lischinski [6] and 
Pires and Pereira [8] for discussion on these topics, 
which will not be specifically surveyed here).  

One of the problems in the real time rendering of 
complex scenes is the computation of visibility informa-
tion, which is a classical problem in Computer Graphics 
[5]. Our first approach to deal with the visibility problem 
is based on the computation of PVS.   

Potentially Visible Sets can be computed from 
points or regions (or cells) in a scene. The precomputa-
tion of the PVS from a cell is more effective regarding 
computational costs than that for a point, and is stored 
readily for usage during rendering in interactive walk-
throughs. Although there is an inherent space problem 
due to the large number of cells in complex scenes, the 
problem of reducing or simplifying PVS information has 
not been frequently addressed in the literature. A tech-
nique to compress precomputed visibility sets based on 
the clustering of objects and cells was presented by Van 
de Panne and Stewart [7] while Gotsman et al encode 
visibility information in a hierarchical scheme [2]. 
Cohen-Or et al [3,4] are concerned with the transmission 
of the visibility sets from server to the client. The same 
research group [4,1] also discusses the selection of the 
best cell size depending on the size of the PVS  More 
recent results are reported by Koltun et al. [10]. Instead 
of storing a PVS for each cell, these authors use an in-
termediate representation that is used for generating the 
PVS itself during rendering.  This intermediate represen-
tation is based on virtual occluders, which are a compact 
representation of the aggregate occlusion for a given cell.  

3. Smart Visible Sets 
Smart Visible Sets (SVS) are an alternate form of 
visiblity storage to PVS. To generate the SVS we break 
the PVS of each cell into several subsets by using an 
additional parameter. We have been working with (1) 
viewing frustum and (2) distance. 

Once this structure is in place, data streaming 
routines can combine the SVS to allow the most relevant 
data to be sent first, or to allow the culling of the non 
crucial data. 

In this work, we focused on 2.5D environments, 
mainly cities. In this kind of dataset, our discussion of 
breaking viewing directions is simplified to a planar 
problem, but nevertheless has interesting aspects and 
allows us to explore the SVS concept.  

We currently use the Binary Space Partitioning Tree 
(BSP-Tree) and the PVS generated by the QBSP3 and 

QVIS applications (developed by ID Software) as a base 
for our work.  The scene data is stored in a BSP-Tree and 
the PVS stores cell-to-cell visibility information. The 
PVS for each cell is stored as an array of bits (each ON 
bit meaning that the leaf is visible) and we store the SVS 
in the same way. 

Like the PVS, the calculation of the SVS is done in 
a pre-processing step, causing no impact to the perform-
ance of the applications that use them. 

3.1 Breaking Visibility by Angle 
One way to split a PVS into different subsets is to break 
the hemisphere of viewing directions into groups 
(viewing frustums). Since we are dealing with 2.5D 
scenes, we use the azimuth to split the PVS, not worrying 
about frustum tilt or elevation. Deciding which are the 
best angles to split the PVS is the question to be 
answered.  
 
Constant Number of Angles and Orientations 
Our initial approach was to use a constant set of splitting 
frustums. In this approach, the PVS of all cells are 
broken by the same angles (the angles are chosen by the 
user). 

To split the PVS using a set of angles we need to 
calculate the volumes that are represented by each cell. 
Then we build two line equations using the splitting frus-
tum limits and check if the other cells’ volumes lie inside 
or outside these lines. To speed up the calculations we 
use the original PVS so we only need to check frustum 
visibility on the cells that were already visible in the 
PVS. 

We use a recursive function to calculate the bound-
ing volumes of all the leaves in the scene. Starting with 
the bounding volume for the whole scene, we traverse the 
BSP-Tree left-side first. At each non-leaf node, we split 
the bounding volume in two (using the partitioning plane 
stored on the node) and then we start two new recursions 
using the resulting bounding volumes and the node's sons 
as parameters. When we reach a leaf we save its bound-
ing volume into an array. 

For each cell and each splitting frustum, we deter-
mine two line equations. Each line equation is defined 
based on the x and z coordinates of one point of the 
source leaf's bounding-box and one of the splitting frus-
tum limits. To determine the correct line equation we 
must pick the correct point from the leaf’s bounding box, 
based on the angle value and if the angle is the starting or 
ending limit of the frustum (Figure 1). Notice that we use 
the bounding-box, not the bounding-volume. Choosing 
the wrong point or using the bounding volume instead of 
the bounding-box causes incorrect visibility calculations.  

Using those two line equations, we calculate the 
new cell-to-cell visibility, storing it in a bit array.  We 



also store information about the viewing frustum limits in 
the beginning of each SVS. 

To solve the new cell-to-cell visibility problem we 
check if the bounding volume of the target cell lies com-
pletely outside of both frustum limits (using the two line 
equations) in which case that leaf will not be visible. We 
only need to check cell-to-cell visibility for those cells 
that are visible in the original PVS. 

Figure 1: Determining the line equations. 

Finally we store the visibility information for each 
splitting frustum as a bit array (Figure 2). So each leaf 
will store a set of bit arrays (instead of just one, like in 
the PVS). The size of the visibility information for each 
leaf is: 

Visibility Size = Number of leaves * Number of splitting angles 

Figure 2: Visibility information for each splitting 
frustum. 

To determine the visibility for a given leaf using the 
default PVS, we simply check which bits are ON in the 
PVS of that cell. If we want to determine visibility using 
a SVS split by angles we need to OR the bit arrays whose 
angles intercept the user viewing frustum. Figure 3 
shows how different viewing frustums generate different 
visibilities in a SVS split by three angles. 

Adaptive Number of Angles and Orientations 

After extensive testing with the constant frustum 
approach, where the user chooses the splitting frustums 
that are used to generate all the SVS, we explored a more 
adaptive approach. 

The main problem with the constant frustum ap-
proach is that we often have a SVS storing too many visi-
ble cells, while others store just a few. If the SVS belong-
ing to a cell are too unbalanced, they won’t be very 
efficient. The ideal solution would be that each of the 
cell’s SVS stored the same number of visible cells. 

In this new approach, we select different splitting 
frustums for each cell. The user only indicates how many 
candidates will be tested each time and what the maxi-
mum number of splitting frustums is. The algorithm is: 

1. Starting with a 360o degree frustum, choose a set of 
splitting candidates (the number of candidates that are 
actually tested is picked by the user). 

2. Split the frustum using the candidates and choose the 
best split. The best split is the one that generates the 
lowest absolute value: 

Number of visible cells in the 1st frustum – Number of visible 
cells in the 2nd frustum value. 

3. Recursively choose candidates and pick the best splits 
using the two halves of the frustum until the 
maximum number of splitting frustums has been 
reached. 

Figure 3: SVS split by three angles. 

Once the splitting frustums are chosen, the cell-to-
cell visibility calculation and the storage procedures are 
the same as in the constant approach. 

3.2 Breaking Visibility by Distance 
Another way of splitting the PVS into different subsets is 
to use the minimum distance between the cells. By 
comparing the faces from the cells’ bounding-volumes 
we are able to calculate the minimum distance between 
them. A faster way of calculating cell-to-cell distance is 
to simply calculate the distance between the cell’s 
centers, but this is also a less precise algorithm as we can 
see in Figure 4, where the dotted line shows an 
erroneous approximation of cell distance in a top view 
of the scene. 
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Figure 4: Distance between cell’s centers. 

By setting a few distance ranges, we are able to 
build a new set of SVS that adds distance information to 
the visibility information. To make bitwise operations 
easier, we also store the distance based SVS as bit arrays. 
Each distance SVS stores a viewing distance and which 
cells are visible within the distance range for that cell.  

Once again we use the original PVS to perform dis-
tance calculations only on those cells that were already 
visible. The distance PVS are stored in an ascending or-
der. 

If we want to take into account the distance between 
the cells we can do an AND between the visibility result 
(OR of all SVS that intersect the viewing frustum) and 
the SVS that represents the desired distance range. 

By changing the distance SVS that is being ANDed 
the user can quickly change the rendering quality of the 
scene. We are also exploring an adaptive solution to gen-
erate the best possible rendering quality of the scene 
while still maintaining a desirable frame rate. 

Another possibility is combining distance based 
SVS and level of detail (LOD) strategies. Checking the 
distance from objects to the user requires simple calcula-
tion of which cell the object is inside. Once we have that 
information, the SVS can be checked to see what level of 
detail should be used. 

3.3 Visual Importance Metrics 
The main use for the SVS is the ordering of information. 
In a client-server environment, we can order the 
information that needs to be sent to the client using the 
SVS, thus sending more important data first. It is easy to 
see how data that lies inside the client’s viewing frustum 
and closer to the client’s position should have a higher 
priority over data that is far away and outside the viewing 
frustum. 

Using SVS we can determine which cells are closer 
or/and inside the client’s viewing frustum with a small 
number of bitwise operations and then order the informa-
tion that needs to be sent across the network according to 
its visual importance to the client. 

Without a defined visual importance metric it’s hard 
to answer questions such as: “Should data that is closer to 
the client but outside its frustum be sent before data that 
lies inside the viewing frustum but is farther away?”. We 
are currently working on a graph based metric that will 
allow quick reconfiguration and testing of the visual 
quality of the scene. 

4. Results and Discussion 
In order to test our implementations of these algorithms 
as well as run benchmarks and check results, we have 
developed a 3D application. It allows such operations as: 
• Loading of scenes 
• Visualization of the bounding-boxes of each cell in 

the scene 
• Visualization of the original PVS 
• Visualization of SVS (viewing frustum and distance), 

individually or merged with any number of other SVS 
• Cell culling based on the user viewing frustum (using 

the viewing frustum SVS) 
• Cell culling based on the distance from the user cell 

to other cells (using the distance SVS) 
• Creation, storage and loading of walkthrough paths 

(that are later used for benchmarking) 
• A free camera mode and an user camera mode 
• Benchmarks that take into account: raw number of 

cells rendered in each frame and total number of cells 
seen during a path 

The two camera modes were created to make visu-
alization of information easier. All culling and visualiza-
tions are done based on the user camera and position. 
The user himself is represented as tetrahedron. Using the 
free camera mode, we can walk around the scene without 
changing the current culling or visualization parameters, 
making it easier to check if the algorithms are working as 
intended.  

Finally, the possibility of easily changing the ren-
dering parameters and creating walkthrough paths allows 
the comparison between the SVS and PVS methods and 
among SVS built with different splitting parameters. The 
environment was implemented using Visual C++ and 
OpenGL. 

Our first batch of benchmarks tested the times 
needed to generate different SVS. Table 1 shows these 
times, for a scene with 600 buildings. The BSP tree for 
this scene has 1257 leaves. These benchmarks were ob-
tained in an Athlon 1.5 machine with 256 MB RAM, 
Windows 2000. We include the PVS generation time on 
this table.  

Table 1: PVS and SVS computation times. 

Function Time 



PVS 2h 37m 40s 
SVS (3 Angles) 14s 
SVS (4 Angles) 16s 

SVS (4 Angles, 5 Splitters) 71s 
SVS (4 Angles, 10 Splitters) 137s 

SVS (4 Distances) 12s 
 

Then we did a series of tests to measure the effi-
ciency of different splitting algorithms for the SVS. Re-
sults were obtained by running a set of different paths in 
an environment with 600 buildings. All paths were exe-
cuted five times using different splitting options, which 
include: splitting in three angles, splitting in four angles 
and splitting in four angles using an adaptive algorithm. 
Path 1 starts in the center of the city and moves to one of 
its corners; path 2 is a straight line from one side of the 
city to the other; path 3 starts in the center and moves to 
one of the sides of the city, and finally path 4 is a square 
shaped path around the center of the city 

During the execution of the path, the visible leaves 
on each frame were marked. After the path was complete, 
the total number of marked leaves allowed us to measure 
how much information would need to be sent to the client 
using that particular partitioning strategy. Table 2 shows 
the results. 

We also include two pictures of the environment 
taken during these benchmarks. Figure 5 shows the cull-
ing done by a 3 angle SVS. The darker buildings are the 
ones that are visible in the PVS but have been culled by 
the rendering engine because they lie in SVS that don’t 
intersect the user’s viewing frustum (the user is repre-
sented by the tetrahedron located in the middle of the 
picture). 

Figure 6 shows the splitting of a PVS by 4 dis-
tances. The large white area is the non visible area. The 
different shades of gray represent the partitioning of the 
visible area by different distances. The more distant cells 
were rendered with darker colors. 

Table 2: Number of cells seen on different par-
titioning strategies. 

 Path 1 Path 2 Path 3 Path 4  Totals 

PVS 824 

100% 

918 

100% 

889 

100% 

927 

100% 

  100% 

SVS  

3 Angles 

81 

98.4% 

612 

66.6% 

638 

71.7% 

863 

93.0% 

  82.4% 

SVS  

4 Angles 

724 

87.8% 

775 

84.4% 

694 

78.0% 

880 

94.9% 

  88.7% 

SVS 

4 Angles  

5 Splitters 

739 

89.6% 

827 

90.0% 

614 

69.0% 

748 

80,6% 

  82.3% 

SVS 647 779 425 747   72.9% 

4 Angles  

10 Splitters 

78.5% 84.8% 47.8% 80,5% 

5. Conclusions 
Client-server applications over the network often have to 
deal with the problem of having too much information to 
send to its clients, or too many clients connected. They 
need fast and reliable ways to cull that information when 
needed. 

In this paper we introduced the idea of Smart Visi-
ble Sets, and explained the algorithms used for its im-
plementation. The SVS is a tradeoff between space (both 
memory and storage) and performance. It can be effi-
ciently used to sort server data according to its visual 
importance to the client. Then, the more important infor-
mation for rendering can be sent first, resulting in a 
smoother experience of the simulation by the user. It can 
also be used to cull a part of the information (the least 
important part of it) if the network traffic exceeds a limit 
(either the server limit or the client limit). In a server 
with a big number of clients or in slower network envi-
ronments the use of SVS can represent a big leap in per-
formance.  

We also performed a series of tests that show the 
advantages of the adaptive approach over the constant 
approach for choosing splitting angles. We have also 
proved that the SVS generation does not introduce a sig-
nificant overhead in the pre-computation of visibility 
information since it’s only a small fraction of the time 
needed for the PVS determination.   

We have not executed tests in very large environ-
ments yet because the tools we use to generate the PVS 
perform poorly on large open areas. We are currently 
studying the use of different PVS generation algorithms. 

The next steps in this work are (a) developing a cli-
ent-server application and comparing the visual results of  
the SVS and PVS solutions; (b) adding textures to the 
BSP Viewer Environment so it can look more realistic, 
and (c) studying the possibility of using 3D-frustum as 
splitters for the SVS. 
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Figure 5: Scene with 600 buildings, SVS split by three angles. Visible cells are light and culled information is dark. 

 



Figure 6: Scene with 600 buildings, SVS split by 4 distances. Darker regions are more distant from the user 

 
 

 
 

 
 


