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Abstract. We present a hybrid system using computer vision and graphics methods that effectively combines
fast automatic 3D model extraction with view-dependent texture mapping for the purpose of real-time person-to-
person 3D video teleconferencing. In our approach the problem of creating a dense disparity map is bypassed. We
compute only a sparse geometric model, which is textured from multiple cameras using an image-based rendering
approach. Using a commodity graphics card and three personal computers arranged in a cluster, we achieve a
performance of 3 to 4 frames per second. We demonstrate the ability to provide a 3D tele-immersive environment
with our system.

1 Introduction

Current teleconferencing systems are largely implemented
with conventional video, which results in a very different
experience from that of a face-to-face meeting. We have
been researching ways to create more immersive telecon-
ferencing systems using wide field-of-view displays and 3D
versus 2D imagery [24] [30]. Unfortunately, real-time ex-
traction of 3D data is a very difficult and computationally
demanding problem.

In this paper, we present a hybrid system using both
traditional computer vision and image-based rendering ap-
proaches to provide 3D tele-immersion. It consists of two
steps. In the first step, we use computer vision techniques
to create a simple and sparse geometric model or proxy of
the participant. In the second step, we render the geomet-
ric proxy using view-dependent texture mapping (VDTM)
[6]. The purpose of the proxy is to provide an approxima-
tion of the geometry onto which the textures are applied.
The result is a high-resolution virtual environment in which
artifacts introduced by the sparse geometry are masked by
the textures.

Although the techniques are very general, our proto-
type system is designed specifically for one-to-one telecon-
ferencing. In this type of system, each participant naturally
wishes to have a display positioned directly in front of him
or herself, and also to gaze in the direction of the other per-
son’s eyes. Since directly in front of each user is also the
natural position for a camera, this poses a problem. How-
ever, our system can re-project acquired imagery, so we can
position the cameras below and to the sides of the screen in
order to keep the center of the display clear. In Figure 1, we

Figure 1: Our Personal 3D Video Teleconferencing Station.
The system is displaying a synthesized view of the partic-
ipant, acting as a 3D mirror (we do not yet have a second
system to run in full-duplex mode).

show a prototype running.
The hybrid nature of our approach simplifies the task.

We are not trying to create a dense disparity map at every
frame as in [20]. Rather, we only compute a sparse set of
depth values at visually important areas, such as object sil-
houettes and highly textured regions. This greatly reduces
the computational complexity to help us meet the real-time
requirement. By using computer vision techniques we cre-
ate a reasonable proxy onto which to map the camera rays
used by the VDTM algorithm, enabling us to synthesize
new views from a few, sparsely-placed cameras.



The remaining of the paper is organized as follows.
The next section includes an overview of related work. Sec-
tion 3 introduces our proposed system, while the technical
details are discussed in Section 4. We present some results
in Section 5, and conclude in Section 6.

2 Related Work

The common teleconferencing system of today uses a small-
or medium-sized display with a single camera placed on top
of the display. Sometimes this camera can be controlled via
pan/tilt and zoom motors, but this is simply a setup adjust-
ment used only once or perhaps a few times during a meet-
ing. Typically the camera position remains fixed through
the length of the teleconference.

There is an indication that participants can enjoy a
much greater sense of presence if they can experience mo-
tion parallax. Systems by Gaver [8] and Cooperstock [4]
used a motorized camera that was controlled automatically
by the remote viewer’s motion. They report greater user
satisfaction with motion parallax produced by the slaved
camera. Their camera setup presents two problems: round-
trip latency and the fact that the camera position is offset.
The latter does not allow direct eye contact. A recent devel-
opment to enable camera positioning behind the screen is
glass that can be alternatively made translucent and opaque
for projection [13]. Our solution is to position the cameras
around the screen and dynamically reproject the imagery to
the viewpoint of the viewer.

A major goal of computer vision research is to con-
struct 3D models from camera imagery. Faugeras [7] pro-
vides a good overview of the variety of approaches that
have been employed, most of which have performed the 3D
reconstruction off line. Notable is the Virtualized Reality
project at CMU [25] that uses 49 cameras mounted on the
walls of a room to create, off line, a 3D model of people
moving in the room. Some systems are designed to work in
real time [21, 29], but this is very difficult because of the
large amount of computation necessary to perform a full
pixel-by-pixel 3D reconstruction. Recently, the VIRTUE
group [10] used a customized DSP board to speed up the
computation.

The difficulty of creating 3D models has motivated re-
search into image-based rendering (IBR). We can divide
IBR approaches into three categories, those that deal purely
with images, ones that use per-pixel range (or disparity),
and hybrid approaches that combine geometry with images.
The purest image-only approaches, such as the Light Field
[16], Lumigraph [9], and Concentric Mosaic [27] meth-
ods, resample captured imagery into a database using a 3D
or 4D parameterization of light rays (a simplification of the
full 5D location and direction). Unfortunately, these ap-
proaches require a very large number of cameras in order

to keep reconstruction artifacts to a tolerable level [3]. The
Lumigraph used computer vision methods to construct, off-
line, a rough geometric model in order to obtain more ac-
curate reconstruction. This sparse geometry used for IBR
reconstruction is now referred to as proxy geometry. We
generate proxy geometry dynamically at interactive rates.

McMillan and Bishop [19] introduced a simple warp
to map images from known viewpoints to any desired view.
The images contain disparity (a measure inversely related
to depth) values along with color at each pixel. For our
purposes the capture of a disparity value is equivalent to
computing depth, so this is not an acceptable approach.

Debevec, et al. [5] presented a method for captur-
ing and rendering of architectural models that uses a small
number of static source images. A human operator marks
features and a program uses geometric constraints to create
a simple model. The regularity of the architectural models
makes this feasible. At run time, view-dependent texture
mapping (VDTM) is used to render color on the model.
This is implemented by assigning texture coordinates and
blending weights at the vertices of the geometric model (a
real time implementation is described in [6]). Debevec’s
method is a hybrid of human-assisted computer vision and
IBR.

There are newer systems that also employ hybrid ap-
proaches. Using computer vision methods, Heigl, et al.
[11] create a geometric model, off line, from a sequence
of camera views produced by sweeping a handheld camera
back and forth across a scene. They then use VDTM from
the three cameras nearest (in view angle) to each geometric
primitive. Buehler, et al. [2] present a detailed analysis
of the issues, such as resolution, angle, etc. involved with
selection of VDTM imagery at each pixel. They call the
resulting assignment of camera-image weights to pixels of
the desired image a blending field. A geometric proxy is
created manually, and graphics hardware is used to render
novel views using the blending field for VDTM at interac-
tive rates.

Our system dynamically creates a geometric proxy in
real time and assigns texture to the proxy using a VDTM
technique based on that of [2].

3 System Overview

The basic components for two-person teleconferencing are
the video acquisition system (e.g. cameras), the display sys-
tem (e.g. monitor or projector), and a communication chan-
nel connecting the two locations. Figure 2 shows a sketch
of our tele-immersive system. Location 1 and location 2 are
the two different places that communicate with each other
and have exactly the same components, i.e. a set of digital
IEEE 1394 cameras, a set of personal computers (PC clus-
ter), one projector, and a white projection screen. Note that



Figure 2: Top view of Tele-Immersion conference System.

our current prototype has only one location and displays a
mirror image of what is captured. We plan to soon imple-
ment both sides of the system.

The video images captured by the cameras, for exam-
ple in location 1, are processed by the PC Cluster with im-
age processing and computer vision techniques in order to
generate an approximate 3D model of the subject. This 3D
model is used to generate a view-dependent texture mapped
(VDTM) image, to simulate an image seen from a virtual
camera. A great advantage of this method is that the vir-
tual camera can be placed in the middle of the screen. The
video generated from the virtual camera is projected onto
the screen in the opposite side, location 2 in this example.
Our specific approaches and algorithms for these tasks are
described in detail in the next section.

The communication channel arrangement, represented
by the PC cluster box, is intentionally not detailed here be-
cause it is beyond the scope of this work. Rather, we con-
centrated our attention on the computer graphics and com-
puter vision techniques as well as on the visual presentation
aspects.

The cameras shown in Figure 2 are placed below and
to the sides of the screen, thus they do not interfere with
the projected image (see Figure 5). The projector is placed
behind and above the subject so that the subject does not
cast a shadow onto the screen. With this arrangement the

user of our tele-immersion system is able to see the other
conference partner being projected in natural life-size, and
from a point of view as if he/she would be sitting right in
front of the table. This is one important factor to give the
users the so-called sense of presence, the sense of being
near the other person in the other location.

4 Method

Our view synthesis method uses a combination of com-
puter vision and computer graphics techniques. It consists
of two steps. In the first step we create a proxy, a simple
and sparse geometric model. In the second step, we render
the geometric proxy using view-dependent texture mapping
(VDTM) [6]. The purpose of the proxy is just to provide a
rough approximation of the geometry onto which to apply
the textures.

4.1 Geometry Proxy

We adopt the plane-plus-parallax method [12] to generate
our geometric proxy. At each frame, we first segment out
the foreground objects, then use the silhouettes of fore-
ground objects to find a best-fitting plane. Salient features
on the foreground objects are extracted to provide the off-
sets from the plane. To facilitate the rendering, the final
proxy is a triangular mesh. Figure 3 shows a schematic di-
agram of the procedure for creating a geometric proxy.

Figure 3: A block diagram for creating a geometry proxy

4.1.1 Plane Approximation

We have developed a robust and fast method to find the best
approximating plane of the foreground object from a seg-
mented stereo image pair. The basic idea is to match the
silhouettes.

Much research has been conducted to find image sil-
houettes. Some are based on the visual hull concept that



requires a number of cameras from all directions [18, 14,
15]. Some try to match the silhouette segment directly [23],
which is a very challenging task because image silhouettes,
usually on the occlusion boundaries, may represent differ-
ent parts of the object in the stereo images, i.e., the silhou-
ette in the right image is not the same as in the left.

For our application, we only want to find an approx-
imating plane from the image silhouettes representing the
rough depth of the object. For a pair of stereo images, a
pixel (�p) on the silhouette of the first image defines a view
ray; that ray defines an epipolar line in the second image.
The epipolar constraint [7] states that �p’s corresponding
point must lie on the epipolar line. So we can intersect the
epipolar line with the silhouette to find �p’s matching point.
Note that the matching point may not correspond to a real
point on the object, but it is a good approximation of where
the object is. In our implementation, we first rectify the
images so that the epipolar line is parallel to the scan line.
Thus the matching process is very simple. For each scan
line, we simply match the leftmost foreground pixel in the
first image with the leftmost one in the second image, and
similarly for the rightmost pixels. Thus we get two depth
points for each scan line containing foreground.

This matching scheme will have difficulty dealing with
silhouette edges that are nearly parallel to the epipolar line.
Instead we use a robust method to fit these points onto a
plane. We first fit a plane using the least squares method.
Then we compute the mean and standard deviation of the
fitting – the distance to the fitted plane. We remove any
point with a residual distance greater than three times the
standard deviation (applying the standard “3σ” rule), and
refit the plane. We repeat this process until the mean dis-
tance is less than a threshold or the number of iterations ex-
ceeds a user-set limit. From our experiments, we find that
the accuracy of the fitted plane is greatly improved after two
or three iterations. In practice, we could use the fitted plane
from the last frame to bootstrap the robust fitting process,
reducing the number of iterations by exploiting the tempo-
ral coherence between frames.

4.1.2 Stereo Feature Tracking

We pose the reconstruction of sparse feature points as a
spatio-temporal tracking problem to take advantage of the
temporal coherence.1 Our tracking problem can be for-
mally stated as follows:

Given a pair of stereo images I0,t and I1,t at time t, two
sets of 2D points S0 = {�p=[u, v]T } and S1 =
{�q=[a, b]T } from that image pair, their corresponding
map M = {�pi↔�qj}, and a pair of stereo images I0,t+1

and I1,t+1 at time t+1,

1Our tracking method is based on the work by Yang and Zhang [31].

Determine A subset M ′ ⊆ M whose corresponding �p’s
and �q’s have matches, denoted by S′

0 = {�p′} and S′
1 =

{�q′}, in I0,t+1 and I1,t+1.

We first conduct independent feature tracking for each cam-
era from time t to t + 1. We use the KLT2 tracker [17, 28,
26], which works quite well.

However, the matched points may have drifted or even
be wrong. Therefore, we again apply the epipolar constraint
to remove any stray points. In practice, due to inaccuracy
in camera calibration and feature localization, we cannot
expect the epipolar constraint to be satisfied exactly. For
a pair of matches (�p′ and �q′), if the distance from �q′ to �p′s
epipolar line is greater than a certain threshold, this triplet
is considered to be an outlier and is discarded. We use a
distance threshold of 1.5 pixels in our experiments.

An important feature of our tracking method is
a regeneration scheme that automatically finds additional
“good” feature point pairs to track at every frame. A “good”
feature point must have rich texture information to facilitate
tracking. We first select 2D points in image I0,t+1 using
the criteria in [26], and again use the KLT tracker to find
its corresponding point in I1,t+1 (thinking of it as applying
the tracking in the spatial domain). If the matched pair re-
turned by the tracker passes the epipolar constraint test, we
will add it to the matched pair set for the next frame. This
scheme replenishes the feature points lost due to occlusions
or non-rigid motions, thus improving the model accuracy
and tracker stability.

4.2 Rendering Video Frames with View Dependent Tex-
ture Mapping

The image projected onto the large screen is generated by
the view-dependent texture mapping method. For this task,
we need the proxy information as well as the texture images
captured from the cameras. The general concept is to blend
together the appropriate pixels from the cameras in order to
compose the correct scene for a virtual point of view.

The location of the viewpoint is determined by the lo-
cal user, at any time, even during the tele-conference ses-
sion. The scene on the wide screen can be adjusted so that
the projected size of the participants is the same as real life-
size. Currently the viewpoint is adjusted manually, but we
plan to track the viewer’s head to generate new viewpoints.
The new viewpoint is also known in the literature as the de-
sired view point, and we refer it as point D in the rest of
this section.

4.2.1 Multiple Texture

Multiple textures are applied to all triangles of the geometry
proxy using the respective blending weight for each texture.

2KLT: Kanade-Lucas-Tomasi [1]



Computation of the weights is described below. The texture
images come from all cameras at as high a frame rate as
possible.

The frame buffer is used as an accumulation buffer. If
multi-texture hardware is available, textures from multiple
cameras can be rendered at once, reducing the total number
of rendering passes.

In the texturing process, each vertex of a triangle is
assigned a set of blending weights for each texture image.
Note that any of these weights may be zero, i.e. that camera
will have no effect. Then, texture is applied onto the trian-
gle as many times as the number of cameras, but only the
texture images with non-zero weight value will contribute
to the final image for the desired viewpoint.

The use of multiple blended textures from the nearest
cameras makes the final rendered image be very similar to
the real image for the given viewpoint. This is an advantage
of using cameras around the subject to be rendered and as-
signing them appropriate weight values.

Since all texturing tasks are done by the graphics hard-
ware, the multiple texture process is very fast if compared
with software image processing techniques. Our multiple
texture method is based on the work reported by Devebec,
et. al. [6] and Buehler, et. al. [2].

4.2.2 Computing the Blending Weights

The geometry proxy is formed by a set of points in 3D
space, which are triangulated to form a contiguous surface
that approximates the subject’s surface. For each proxy ver-
tex, a set of blending weights is computed, one for each
camera respectively. Since the nearest cameras from the
proxy point gives more contribution to its intensity, they
must have the larger weights. So, we compute the angle θi

formed by the desired view point D, the geometry proxy
vertex V , and the center of projection of camera Ci, as
shown in figure 4. A small angle means that the desired
view is near that particular texture camera. So, the compu-
tation of the blending weights wi, is given by the following
equations.

ŵi = exp(
−θ2

i

2.σ2
) (1)

wi =
ŵi

∑N−1
j=0 ŵj

(2)

where σ is a constant value for the limit maximum angle,
i = 0, 1, ..., N −1, and N is the number of cameras. As can
be noticed, the blending weights at each vertex in the image
plane are normalized so that their sum is one. For cameras
with angle higher than the limit σ, a blending weight of
zero is assigned. At the end of this process, we have a list
of weights for all cameras.

Figure 4: Top view of angles θi formed between desired
view camera D and texture cameras Ci, at a proxy vertex
V .

5 Results

The experiments of our real-time 3D video teleconferenc-
ing were performed in the laboratory shown in Figures 1
and 5. Our current prototype (as shown in Figure 5) in-
cludes four SONY IEEE 1394 firewire cameras, which were
placed around the projection screen and pointed in the user’s
direction. The system also includes two InFocus projec-
tors, only one of which is used in the current implementa-
tion. The other projector was not used. We implemented
our methods under the MS-Windows environment running
on the PC cluster mentioned in the System Overview sec-
tion. Two PCs with 1394 cards are used as servers for video
acquisition from the four cameras. The video frames are
individually encoded to JPEG format in order to save net-
work bandwidth. The sequences of encoded images are
sent from the video servers to a Geometry/Renderer PC
through a 100Mbit/s local area network. This latter PC,
a 2.2GHz Pentium 4, has a graphics video card using the
NVidia GeForce3 chip set, and directly drives the projector.

Figure 5: The projectors and cameras setup. The dotted
circles in the image highlight the four cameras we use. The
inset shows the projectors, designed to display stereo image
pairs. We are currently only using one of them.



Figure 6: Oblique view of our geometry proxy.

(a) plane (b) parallax (c) plane+ paral-
lax

(d) plane (e) parallax (f) plane+ paral-
lax

Figure 7: The proxy of Figure 6 texture-mapped with two
blending cameras (a,b,c) and four blending cameras (d,e,f).

At each video frame, the Geometry/Renderer PC de-
codes the stream of JPEG images, then performs the geom-
etry proxy extraction as well as the texture mapping pro-
cesses. In Figure 6, we show an oblique view of the ge-
ometry proxy that was generated by our method. This same
geometry proxy was textured mapped with images from the
cameras resulting in the views shown in Figure 7. Figures
7(a), 7(b), and 7(c) are the results for two blending cam-
eras, and Figures 7(d), 7(e), and 7(f) are the results for four
blending cameras.

We can also notice in Figure 7 the effect of the geom-
etry proxy on the final image. In Figures 7(a) and 7(d) the
geometry proxy is just a plane that can be easily noticed
from the oblique view point. Figures 7(b) and 7(e) show
the results with the parallax method only. When compar-
ing the parallax with the plane-only method, we can notice
that the shape is nearer to the real subject geometry. The
plane-plus-parallax method combines the two approaches
and results in the best images in our experiments, as shown

Figure 8: Different views of the participant.

Figure 9: Another user testing out our system.

in Figures 7(c) and 7(f).
We also find the number of cameras to be used an im-

portant issue in 3D video teleconference. While in Figure
7(c) we have used only two cameras, i.e. the same two cam-
eras used for the proxy extraction, in Figure 7(f) all four
cameras were blended for the texture-mapping of the 3D
geometry proxy. Recalling that the proxy is the same for
both cases, the use of more cameras with appropriate blend-
ing weights results in a more natural view of the subject in
the scene.

The performance of our prototype system achieves an
average rate of 3 to 4 frames-per-second. The segmenta-
tion process is the most time consuming taking 180ms to
200ms. The geometry proxy extraction surprisingly takes
only 27ms to 57ms, being fast enough to enable our system
to work close to real time if we could reduce the cost of
segmentation. We are therefore currently porting the seg-
mentation code to run on the video server PCs. We expect
this change will substantially improve the overall system
performance.

In Figures 1, 8 and 9 we demonstrate the ability to
change the point of view of the virtual camera. The user
can choose to see the distant location from any point and
from any angle. We will couple this with a head tracker.
Since this teleconference experiment is in loop-back mode,
the participant just sees himself/herself on the screen. How-



ever, in this way it is easy to demonstrate the change of the
scene position on the screen while the subject remains in
the same position, as in Figures 1 and 8.

A compressed movie file that demonstrates the fea-
tures of our prototype system can be accessed at [22].

6 Conclusions

We presented a prototype hybrid system for 3D video tele-
conferencing. It uses our fast, automatic geometry proxy
extraction method and view-dependent texture mapping to
render the subjects in a 3D tele-immersion environment.

From these experiments we have learned that it is pos-
sible to have a real-time 3D video conference by using a
combination of fast vision and graphics methods with an
off-the-shelf computational system. Since our techniques
are implemented in software, the process does not need any
specialized hardware, just commodity graphics cards and
personal computers, lowering the total cost of the equip-
ment.

Also, despite the trade-off between the number of cam-
eras and the rendered image quality, our prototype system
was able to deliver natural images at reasonable frame rate
with a small quantity of cameras.

We will continue working on this system in order to
build a new version with head-tracking for each user. The
frame rates of the rendering portion of the system are fast
enough for this purpose, but we would like to increase the
update rate. This will require a faster segmentation process-
ing.
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