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Abstract. We present a model for geometric modeling and rendering of individual feathers for computer graph-
ics purposes. The model represents the feather structure with a collection of parameterized Bézier curves. This
parametrization allows easy generation of the existent types of feather structures with biologically-motivated pa-
rameters. Once the feather structure is defined, the feathers can be rendered either in a non-photorealistic rendering
style or using texture mapping to achieve a more natural look.

1 Introduction

The modeling of natural phenomena in computer graphics
has been addressing phenomena from all kingdoms: min-
eral, vegetable, and animal. It is interesting to note that the
development of this field of research in computer graph-
ics is mimicking the complexity of Nature itself. We can
already model satisfactorily many phenomena in the min-
eral [12, 10] and vegetable kingdoms [9, 5, 14]. The re-
search frontier is certainly in the animal kingdom, with
countless possible avenues left for research – mainly hu-
mans and animals. Among these we mention the model-
ing of birds, and particularly feathers. Although feathers
have exquisite structures and colors, they have been, un-
til recently, completely neglected by the computer graphics
community as a research topic.

In this paper we propose a biologically inspired model
for modeling the structure of feathers and also their render-
ing. We have chosen this biological approach – as opposed
to a more algorithmically approach – since biologically mo-
tivated models have the potential to deliver more realistic
renderings [11]. In previous work [6] we have presented
a simple model for generating only the structure of feath-
ers. Here we present our extended model and introduce an
effective way for addressing the rendering of the feathers,
taking advantage of our Bézier structure.

2 Previous Work

In the context of modeling natural phenomena, when search-
ing for inspiration to model feathers, one would have to
look necessarily into previous approaches modeling branch-
ing structures such as L-systems [13]. L-systems and all its
extensions have been very successful at modeling trees and
vegetation in general, and have recently been used to model
the structure of feathers [2]. Another possibility would be
to model feathers as particle systems [15]. Particle systems
have been used for modeling fuzzy phenomena, e.g., fire,

explosions, and even forests [16]. While both approaches
– L-systems and particle systems – would have potential
to be explored for feather modeling, we decided for design-
ing and implementing a specific model targeted for feathers,
mainly because we believe that in doing so we would have
better chances of succeeding.

The only published model targeted specifically for
feathers was presented by Wen-Kai Dai et al. [3] in 1995.
In their approach, they model the structure of feathers as
line segments branching from a main structure. This ap-
proach was inspired on other branching objects, such as
trees and plants [1, 16]. The overall structure can be con-
trolled by user-defined functions acting on the parameters.
The need to define these functions introduces a heavy bur-
den for the user. The visual aspect of their feathers was
implemented through texture mapping, where the textures
were computed from simulations of dynamical systems. A
main limitation of this work is that it only models one type
of feathers (from Galliformes).

Recently, yet-to-be published papers have addressed
the modeling and rendering of feathers [2, 18]. The work
by Chen and colleagues [2] uses parametric L-systems for
the modeling of the feathers and texture mapping and cus-
tomized Bidirectional Texture Functions [4] for the render-
ing. The results are visually impressive and they also devel-
oped a technique to arrange a collection of feathers on the
bird’s polygonal model.

Our work shares many similarities with the model by
Streit and Heidrich [18], but both have been developed in-
dependently. In Streit and Heidrich’s model, the feathers
are modeled as a collection of Bézier curves, as in our case.
The overall shape of the individual feathers is achieved by
the user specifying key barbs from which the other barbs are
derived by interpolation. The rendering uses texture map-
ping to add color to the barbs. While the idea of interpo-
lating key barbs is powerful for some cases, it demands the
user specification of each key, and for some feathers and



bird coats this task could be time consuming and boring for
the user. Our model has a more direct way of specifying the
overall feather shape, leaving for the system the automatic
generation of barbs based on a set of parameters. It is fair to
say that in general terms their model has a more ambitious
goal than ours since they are able to model also the growth
of feathers and the modeling of the bird’s coat.

3 Feather Basics

Since our model derives its inspiration from real feathers,
we briefly review in this section basic information on the
biology of feathers. Feathers cover the body of birds, play-
ing an important role during flight. They also have many
important properties, among them thermal properties, re-
sponsible for maintaining the bird’s body temperature.

Figure 1: Structure of a typical feather (from [19]).

Feathers are a type of branching structure, flexible and
yet strong [7]. They present a main rigid structure called
calamus at the base (with no branching structures) and the
rachis where the main body of the feather develops [8] (see
Figure 1). From the rachis a variable number of barbs
are originated. The collection of barbs at each side of the
feather’s body is known as vanes. Each barb is built from
two sets of interconnected barbules: the anterior and the
posterior barbules. For some feathers each barbule has in
turn microscopic barbicles (not labeled in the figure), struc-
tures with small hooks that connect the anterior barbule of
one barb to the posterior barbule of the next barb. This con-
nection helps maintaining the feather overall shape.

There are 5 types of feathers and the main 4 types are
illustrated in Figure 2. The most familiar type is the con-
tour feather (Figure 2(b)). The semiplume (Figure 2(d)) has
a structure between the contour and the plume. The plume
type (Figure 2(c)) is soft and the length of the barbs is typi-

Figure 2: Types of feathers (hand drawn): (a) filoplume, (b)
contour, (c) plume and (d) semiplume.

cally longer than the length of the rachis itself. Finally, the
filoplume (Figure 2(a)) and the bristles (not shown in the
figure) are very small specialized feathers.

4 The Proposed Model

4.1 Overview of the Modeling Process

To model a single feather, the user initially defines a cubic
Bézier, which represents the rachis, and two Bézier curves
with five control points, that define the boundaries of the
overall feather structure (the vanes). From the rachis we
generate a variable number of barbs, controlled by the pa-
rameters explained below. Each barb is itself a Bézier seg-
ment with 4 control points.

4.2 Modeling the barbs

In order to construct the individual barbs we follow a well-
defined procedure. As we can see in Figure 3, for each
Bézier curve representing a barb, we will have four control
points: ��� , ��� , ��� , and ��� . Even though we are using cubic
segments, the resulting Bézier in practice has enough flexi-
bility to represent a wide range of possible barb shapes. We
initially assume that ��� and ��� are the same point on the
rachis and that ��� and ��� are also a single point located on
the limit of the vane defined by the user. The procedure will
move the points �	� and ��� away from their initial position.



Figure 3: Constructing the structure of a single barb.

In Figure 3 we illustrate this process. First we compute the
distance � between points ��� and ��� . In order to move the
point ��� , we draw two random values � � and � � , following
an uniform distribution, with � � in the interval � �������
	��� ,
and � � in � �������
	������� . ��� controls the amount of varia-
tion and will be more explained in the next section. The
final position of �	� will be given by: �	����� ��������� � , and
������� ��������� � . In an analogous way, for the point ���
we draw two values � � and ��� , with � � in � ��	����� and ���
in � �������
	������� . The final position of ��� will be given by:
������� ����������� , and ������� ��������� � .

This method of applying random values to the points
was chosen because it is simple and visually efficient. At
the same time, the other parameters will also influence this
process. For instance, � �
! may change the distance � be-
tween points ��� and ��� , and also parameters such as "$# and
"&% will determine whether or not the random values will be
generated new for each barb or if they will be kept the same
for all barbs. We explain next the exact roles of �'�
! , "&# ,
"&% , and other parameters.

4.3 Parameters

The study of biological formation of feather structures [19,
8] and research in previous work [3] has allowed the identi-
fication of a minimum set of parameters which can be ma-
nipulated such that we can create the structure of a feather
as we wish. Besides these parameters, we have others that
are not strictly related to biology and were added to facil-

itate the process of building different feathers structures.
Our model has 7 main parameters summarized in Table 1.

Parameter Range Values Description(*)
[0, 5000] Number of barbs+-,/. 0 13254�6

Variation on length of barbs+7) 0 13254�6
Variation on form of barbs8 . 9;:�+
Symmetry of vanes<>= 9;:�+
Uniformity of barbs (form)<7? 9;:�+
Uniformity of barbs (length)@�A 0 13254�6
Start of second segment

Table 1: The parameters of the model.

This set of parameters allows real time generation of
many feather structures, from contour feathers to semi-
plumes, plumes, and even filoplumes. The meaning and
role of each parameter is explained below:

B Number of Barbs - C��
This parameter is intuitive and determines the number
of barbs that the feather will have in each vane. In
practice we have used up to 2000 barbs.

B Variation on length of barbs - � �
!
This parameter allow us to randomly change the length
of each barb individually as they are by default limited
to the boundary of vanes that were defined by the user.
�D�
! will determine how much this limit will vary in
percentage. For each barb, one random value between
���D�
! and ���D�
! will be generated, and this value will
be used to rescale that barb’s length. Visually, the ef-
fect of this parameter is to change the position of point
��� (in Figure 3) away either positively or negatively
from the limiting Bézier defining the vane. We illus-
trate in Figure 4 the effect of changing � �
! on the re-
sulting feather.

Figure 4: Variation on length of barbs: (a) �'�
!��E��F G (with
border), (b) � �
!��H��F G (no border), (c) � �
!��H��F I , (d)
�D�
!J�E��F K .
B Variation on form of barbs - �*�

This parameter affects directly the form of each barb.
The values � � , � � , � � and ��� , which determine the
points ��� and ��� , will be random values affected by
��� which is used to scale the distance � between ���



and ��� . In Figure 5, we can see results of different
values for ��� .

B Symmetry of vanes - � !
This parameter is used to make the left vane identical
or not to the right vane. If � ! is set to TRUE then the
form and the length of the barbs will be the same in
both vanes. As a boolean value, if this parameter is set
to FALSE, different values will be generated from the
��� and �D�
! parameters, and the barbs in the left vane
will be different from the barbs in the right one.

B Uniformity of Barbs (shape) - "$%
Some types of feathers, in special the contour feath-
ers, have barbs with a regular form, i.e., all barbs have
almost the same shape. For simulation of this effect
the parameter "$% is used. As we explained before, in
order to build the Bézier curve that represents a barb
four random values are generated. When the boolean
parameter "&% is set to TRUE, the first four generated
values are kept, so that all barbs will have the same
relative form.

B Uniformity of Barbs (length) - "$#
This parameter is used to maintain or not all barbs with
the same length. In the implementation, if this param-
eter is set to TRUE we do not pick a different � �
! each
time.

B Start of second segment - ���
As we saw in Section 3, there are different kinds of
feathers and each one has several different structures.
Thus, some feathers may have regular structures, while
others may have irregular structures, where the barbs
are not connected. Between these two main types,
there are feathers whose structure is regular in a re-
gion and irregular in another one. We use the parame-
ter ��� to simulate this effect. Using this parameter, it is
possible to divide the rachis into two segments, at the
point defined by ��� . Thus, it is possible to select dif-
ferent values to the parameters for each segment. For
example, it is possible to define the barbs uniformly
in the first segment and non-uniformly in the second
segment.

With these parameters we are able to build a wide range
of different feather structures. In Figures 6 and 7 we show
three examples of synthesized feathers with no texture at-
tached, just to emphasize possible structures.

4.4 Rendering

Once the structure of a single feather is built, we can render
it in a non-photorealistic way (as exemplified in Figure 6)
or we can apply a texture and render with the texture. For

Figure 5: Variation on form of barbs: (a) �*� ��� , (b) ��� �
��F ��� , (c) ��� � ��F � , (d) ���&�E��F K�� .

(a) (b)

Figure 6: Examples of results rendered with non-
photorealistic style. Compare these with feathers in Fig-
ure 2 (b) and (d).

Figure 7: Synthesized and hand draw filoplume. The
feather on the left is the drawing.



each feather we maintain the set of control points which
define the rachis and the barbs at each vane (left and right).
The sampling of the Bézier curves is user-controlled and it
allows us to generate the feathers at multiple multiresolu-
tion levels, from coarse (very few sampling points) to fine
(many sampling points). This could be used, for instance, to
fine-tune the rendering according to the distance the camera
is from the feather. The results in this paper were all gen-
erated sampling the barb Bézier curves with 30 points and
connecting these points with line segments.

Figure 8: Texture mapping a feather.

The texture map can be either images of real feath-
ers or artificially painted images. The best results are, of
course, with real feather images. The way our feather is
constructed allows us to easily compute texture map coordi-
nates, since the Bézier curves (rachis and barbs) are already
parameterized in the � ��	
G  interval. When rendering the in-
dividual barbs, we compute the ���-	���� texture coordinates as
follows: the � coordinate will vary from � at the rachis to G
at the outer boundary of each of the vanes; the � coordinate
will vary from � at the base of the feather to G at its tip.

We split the texture map in the middle into two parts,
such that the left part will be mapped to the feather’s left
vane whereas the right part will be mapped to feather’s right
vane (see Figure 8). Given a texture image with resolution� x � and texture coordinates �	� (for the left vane), ��
 (for
the right vane) and � for the rachis, we compute the index
�������	������ or �����
 	������ to the texture map as follows: ������ �/F ��������� � � ��G ������� ��� ��������
�� � ���	
 F ��� ���D� ��� ��� .

5 Results

Our system is implemented in C++ using OpenGL [20]. All
results are rendered in real time on a Pentium II 400Mhz
with a GeForceII graphics card and 128Mb of RAM. Ta-
ble 2 summarizes the parameters used for each result pre-
sented in the paper.

In general we were able to render feathers visually
similar to the real ones (Figures 9 and 10). The peacock re-

Figure 9: One example of our results. The feather in the
middle is the real feather.

Figure 10: Hawk feather. The feather in the middle is the
real feather.



Figure
(*) +-,/. +7) 8 . <>= <7? @�A

Figure 6 (a) 10 0.6 0.8 T F F 0.25
80 0.04 0.4 T T F -

Figure 6 (b) 80 0.3 0.5 F F F 0.8
20 0.01 0.4 T T F -

Filoplume, Figure 7 0 0 0 F F F 0.85
4 0.15 0.3 F F F -

Blue Feather 200 0.1 0.4 T T F 0.2
2000 0.01 0.2 T T F -

Hawk Feather 200 0.2 0.3 F F F 0.2
2000 0.03 0.2 T T F -

Peacock Feather 300 0.4 0.5 F F F 0.4
600 0.03 0.3 T T F -

Table 2: Values of parameters for the results. The second
line in each entry presents the parameters for the second
segment of the feathers.

sult (Figure 11) illustrates an artistic possibility of using our
system. In general, the more regular feathers (contour) will
have small values for � �
! and ��� whereas semiplumes and
plumes will demand more irregularity and therefore larger
values for these parameters. In comparison with the ap-
proach presented by Dai [3], ours has approximately the
same number of parameters but they are defined and used
in a more intuitive way. Our results are visually similar to
the results presented by Streit and Heidrich’s model [18]
although our method presents a more direct way of speci-
fying the overall shape of the feather with the boundary left
and right Bézier curves defining the vanes.

6 Conclusions

We have presented in this paper a biologically motivated
model for modeling and rendering individual feathers for
computer graphics use. The model divides the task of mod-
eling the feathers into two parts: modeling the structure of
feathers and the rendering. The user defines the main struc-
ture with three Bézier curves that define the feather overall
shape. From this shape the system constructs the individ-
ual barbs as Bézier curves, based on a set of user-defined
parameters. The rendering step can either render the result
in a non-photorealistic style or use texture mapping to add
colours to the individual barbs. Each barb is rendered with a
collection of line segments connecting the sampling points
on the curve. Although we have not explored this possi-
bility yet, we can use this feature to model the feathers at
multiple resolutions.

Our system allows a great deal of user control and this
can be both good and bad. We plan to include a library with
the most common feather shapes and also textures that the
user could load and play with, while generating the feath-
ers. Possible interesting and more ambitious extensions to
this work include the investigation of an illumination model
targeted for feathers [17] and the ultimate goal of covering

Figure 11: An example of an artistic feather resembling a
peacock feather.

a bird’s body.
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