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Abstract. Texture information is useful for image data browsing and retrieval. The goal of this paper is to 
present a texture classification system for remote sensing images addressed to the administration of great 
collections of those images. The proposed classifier is a hybrid system composed by an unsupervised neural 
network and a supervised one. Starting from a small portion of the image (pattern) the system should recognize 
the most similar class to a pattern in a database as well as to identify the images that contain similar patterns. 
The texture feature vectors used to characterize the patterns are obtained from the images processed by a bank 
of Gabor Filters. Some experimental results using textures of the Brodatz album, multi-spectral and radar 
images are presented here. 
 

1. Introduction 
In the last few years a large amount of digital image data 
has been collected every day. Therefore, it is important the 
existence of an easy way to store, to organize and to 
retrieve those image data. Systems developed to organize 
and to retrieve large digital image collections in a database 
are called image retrieval systems. Research in this subject 
can be divided in two major groups: Database Management 
and Computer Vision [1]. They have studied image data 
retrieval from two different points of view: text-based and 
visual-based systems. 

Text-based image retrieval system use image content 
annotation and Database Management System (DBMS) to 
accomplish the image search and recovery through 
keywords. The data processed by these systems are not the 
image itself but information related to the image content. 
This information is represented by concatenated 
alphanumeric characters (strings) and the queries are 
performed by traditional languages like SQL (Sequence 
Query Language). The main drawback is that the manual 
image annotation and the human perception subjectivity 
can affect the annotation precision. Two comprehensive 
surveys on this topic are presented in [2] and [3]. 

Computer vision researchers have attempted to 
overcome the difficulties found in the text-based image 
retrieval process [4, 5, 6]. Instead of using text-based 

keywords, the images are indexed by their own visual 
content data such as color, texture, shape etc. [1]. 

Aerial and satellite images have become very 
important for public and private institutions due their 
various remote sensing applications. One may wish to 
locate, for instance, all images that contain a certain region 
such as parking lots, agriculture, train stations, popular 
house set, highway crossings, bridges, clandestine mines, 
factories etc. Few works have been focused on remote 
sensing image retrieval systems [7, 8, 9, 10]. It is evident 
that there are many difficulties or even the impossibility to 
perform the manual image browsing and retrieval in a 
reasonably short time acceptable by the user. 

This work proposes the development of an image 
texture classification system addressed to the 
administration of great remote sensing image collections. 
The classification system identifies similar objects that 
belong to the same class that is characterized by texture 
features. Each object has its specific texture pattern that 
characterizes the class that it belongs. Besides the texture, 
other features such as color and shape can also be used to 
characterize the classes. In this work a texture descriptor 
based on a multiresolution decomposition using Gabor 
wavelets has been proposed. 

Several works have considered the use of texture 
information for image data retrieval [10, 11, 12, 13, 14]. 
Manjunath and Ma [11, 12] have performed an evaluation 
using Gabor filters for texture analysis, but they performed 



  

tests only with aerial photographs. In this work tests with 
multispectral and radar images, besides aerial photographs, 
were performed to verify the system robustness in 
providing suitable texture feature for different kinds of 
remote sensing images. A brief description of Gabor filters 
is presented in Section 2. 

In order to facilitate the pattern retrieval task we 
propose to use a neural networks that learns how to 
recognize the similarities among the objects in the feature 
space. The proposed system is composed by two 
processing steps: (1) an unsupervised neural network 
(Kohonen's Self-Organizing Map – SOM and (2) a 
supervised neural network (Learning Vector Quantization - 
LVQ). The former generates the initial classification map, 
while the later one refines the initial classification 
accuracy. 

The Kohonen’s Self-Organizing Map divides the 
feature space in different regions. Each region belongs to a 
specific class that is characterized by a texture feature 
vector. SOM algorithm is a kind of code and compression 
system [15] similar to a vector quantization process [16]. 

Section 3 describes the neural network operation for 
the proposed system. The network training phase and the 
region-based feature space representation named 
“contextual map” are also described in Section 3. The 
method has been tested on Brodatz’s textures album [17]. 
Section 4 presents some preliminary results obtained for 
remote sensing images.  

2. Gabor Filter Bank 
Edge detection is an important step in many computer 
vision process because edges contain the bulk of 
information within an image [18]. Another important 
aspect is that the most interesting features in the images are 
usually present in many different sizes and orientations. An 
efficient way of analyzing such features is using 
multiresolution decompositon based on Gabor wavelets. 

Wavelets are families of basis functions obtained 
through dilations and translations of a basic wavelet. This 
decomposition provides a compact data structure for image 
representation [19]. The image representation obtained by 
convolving the original image with Gabor filters has been 
shown to be an optimum solution in the sense of 
minimizing the joint two-dimensional uncertainty in the 
space and frequency [20]. These filters can be used to 
detect lines and edges of different sizes and orientations. 
Besides, statistic measures obtained from filtered images 
can also be used to characterize the underlying texture 
information. 

2.1      Gabor Functions 
Gabor function describes a complex sinusoid with 
frequency W modulated by a Gaussian envelope with 
duration σ. A two-dimensional Gabor function and its 
Fourier transform can be written as [20]: 
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where σu = 1/2πσx, σv = 1/2πσy and j=(-1)1/2. A self-
similar filter dictionary can be obtained by appropriate 
dilations and translations of g(x,y) through the generation 
function [11]: 
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where θ=nπ/K and K is the total number of orientations. 
The scale factor a-m in (3) is meant to ensure that the 
energy is independent of m. This set of functions form a 
non-orthogonal basis of functions for the multiresolution 
decomposition [20]. 
Figure 1 shows an example of the real part in the spatial 
domain of a filter in a certain scale and orientation (eq. 1). 
The elements of the filter are presented in gray levels to 
facilitate the wavelet form identification. Figure 2 shows 
the 3D profile of the same Gabor filter. The amplitude axis 
indicates the value of the elements. 

 
 

Figure 1 - The real part of a 64x64 pixels 
Gabor filter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2      Texture Feature Vector Extraction 
Let I(x, y) and gmn(x, y) be the image and the filter, 
respectively. The filtered image is [20]: 
 

1111
* ),().,(),( dydxyyxxgyxIyxW mnmn −−= ∫ ,     (4) 

where * indicates the complex conjugate. The statistic 
measures used to generate the texture feature vectors are 
the mean (µmn) and the standard deviation (σmn) of the 
Gabor transform coefficient values [11]. 

Four scales and six orientations have been used in all 
experiments. Therefore, 24 Gabor filters and feature 
vectors with 48 elements each one are created as following: 

 

[ 464612121111 ,,...,,,, σµσµσµ=f ]                            (5) 

The subscript of each vector component in (5) 
represents the scale and the orientation numbers. 

3. Neural Network and Texture Pattern Recognition 
According to Haykin [19], artificial neural networks were 
conceived based on the knowledge that the brain process 
information in a different way that a digital computer does. 
The main characteristic of an artificial neural network is its 
generalization ability. Generalization refers to the fact that 
the neural network produces appropriate exits for entrances 
that were not in the training phase (or learning). This 
makes the neural network an efficient procedure to solve 
complex problems that, in some cases, are untreatable by 
conventional methods. 

Kohonen’s Self-Organizing Map (SOM) and Learning 
Vector Quantization (LVQ) compose the proposed 
classification system. Texture features extracted by Gabor 
filters are input to the SOM algorithm that performs an 

initial partition of the feature space into clusters of similar 
patterns. No previous knowledge of similar pattern groups 
is necessary. Afterwards the neural network weight vectors 
are submitted to the LVQ process for a fine adjustment. 
Figure 3 shows the schematic diagram of the classification 
procedure. 
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 Figure 2 - The Gabor filter 3D profile. Figure 3- Texture Neural Classifier. 
 

A “conscience factor” is used in the training phase in 
order to perform a correct representation of neurons in the 
feature map concerning to the statistical distribution of the 
classes into the original feature space. 

3.1      Kohonen's Self-Organizing Map 
The Kohonen's Self-Organizing Map (SOM) [21] is a 
special class of unsupervised neural network. These 
networks are formed by one or two-dimensional neuron 
grids (larger dimensions are possible but it is not common) 
that modify their synaptic weights in a competitive learning 
process. This work proposes a two-layer network to 
transform high-dimensional input features into a two-
dimensional discrete map. The topological relationship 
between different features is preserved. The first neuron 
layer receives the input features and the second one 
presents the decision results in a 2-D map. 

This network can adaptively separate clusters in the 
feature space. The output neurons are topologically ranked 
so that neighboring neurons correspond to similar clusters 
in the high-dimensional feature space [12]. 

In the competitive learning process, the neurons 
calculate their respective Euclidean distance values. The 
closest neuron to the input pattern is declared winner. 
Starting from the winner neuron, it is established a neuron 
neighborhood that will receive reinforcement in its 
synaptic connections. That will build a cooperation base 
among the neighbors to correlate the input pattern with an 
area of the neuron grid. Excited neurons modify their 
individual values through appropriate adjustments. The 
winner neuron response (and its neighborhood) gets better 
whenever a similar pattern to the one that previously 
excited it is applied to the net. 

A lateral interaction in the winner neuron 
neighborhood is necessary to influence the neighboring 
neurons and therefore to recognize similar patterns. This 



  

excitation area is function of the distance between the 
winner neuron and others: as the larger distance the weaker 
adjustments are applied [21]. It is also important that this 
lateral interaction includes the entire neuron grid in the 
initial learning stage (ranking phase) and only a few or just 
one neuron is included in the final processing (converging) 
phase [15]. A Gaussian function has been used to perform 
the lateral interaction process. Figure 4 shows a Gaussian 
neighborhood function at three different learning stages, 
from the beginning (left) to the end (right). 

 

 

 

 

 

 

 

 

3.2      Conscience Factor on Kohonen's Map 
The Kohonen’s map fails in representing the feature space 
statistical distribution. Computational simulations have 
demonstrated that the SOM algorithm represents low-
density input features excessively whereas high-density 
input features are poorly represented [15]. The conscience 
factor in Kohonen net aims to get a probability about 1/N 
of a neuron in the output layer to be chosen to represent an 
input pattern [22]. In other words, the conscience algorithm 
is a modification of the SOM algorithm that forces the 
density matching to be exact [23]. The conscience 
algorithm registers how many times each neuron wins the 
competition [15]. If a neuron wins frequently it “feels 
guilty” and leaves the competition preventing poor 
representations of high-density input features and favoring 
the better proportion between the feature space and its 
representation map. 

3.3      Learning Vector Quantization 
The SOM algorithm provides an unsupervised initial 
partition of the feature space into a number of distinct 
clusters. The patterns belonging to each cluster are 
topologically similar. After this first phase, the output 
neurons are labeled using the training feature vectors. The 
output neurons are assigned to different classes by majority 
voting. The feature map aims to approximate the input 
feature vectors or their probability density function [8]. A 
network fine-tuning phase is necessary to improve the 
classification accuracy. 

A fine-tuning process is performed in a second phase 
using a Learning Vector Quantization (LVQ) algorithm 
[20]. The LVQ improves the feature space partition by 
“moving” the weight vectors away from the decision 
borders. Kohonen has developed three algorithms named 
LVQ1, LVQ2 and LVQ3 [21]. The later one has presented 
better results than the others have and it was chosen to be 
implemented [8, 20]. 

4. Results Discussion 
Initial tests were performed to evaluate if the feature 
vectors can efficiently represent their respective texture 
patterns for the Euclidean distance-based classification. 
This method has been tested on the Brodatz’s album [17] 
as well as on remote sensing images. The neural 
classification system was tested only for the Brodatz’s 
album (Figure 5). 
 
 
 

Figure 4- Gaussian neighborhood function in 3 stages.
 
 
 
 
 
 Figure 5- Textures classes from Brodatz’s album. 
 

4.1      Feature Vector Validation 
Some experiments were performed using the Brodatz's 
album with 32 classes [17]. The idea is to evaluate the 
suitability of the texture feature for the classification 
process. The distance between the feature vectors that 
belong to the same class should present the smallest value. 
Each class has 16 patterns. Euclidean distances between 
each two different patterns were calculated. The retrieval 
system evaluation has been accomplished by verifying how 
many feature vectors belonging to the same class are 
among the first 16 retrievals. If all of the 16 first retrievals 
belong to the pattern class one has 100% of success. Figure 
6 presents the success percentages for each one of the 32 
classes using texture features and Euclidean distance 
normalized by the standard deviation. 
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Figure 6- Success percentage in classification. 

 
 
 
 
Another way to evaluate the classification system 

performance is through the kappa coefficient [24]; the 
larger the value of Kappa the better the classification 
system performance (kappa <= 1). The resulting 
classification shown in Figure 6 presented a kappa value of 
0.8594 (considered excellent). 

A test to verify the efficiency of the texture feature 
vectors for remote sensing images has been performed. 
Normalized Euclidean distance was used as a similarity 
measure. An aerial photograph of Recife’s airport runway 
was partitioned in squares of 64x64 pixels (sample). For 
each sample a feature vector was extracted. The test 
consisted on choosing a sample (at the pointer) of a 
significant texture pattern (Figure 7, left) and locating the 
10 closest samples by comparing their features through the 
normalized Euclidean distance. The closest samples 
retrieved by the system are shown in Figure 7 (right). One 
may notice that the results are visually similar to the first 
one. 

 
 
 
 
 
 
 
 
 

The same test was performed for other types of remote 
sensing images including radar images. The test radar 
image, acquired from a SAR- 580 airborne sensor, has 
seven texture classes that were defined by a remote sensing 
interpreter. One 32x32 pixels square extracted from a 
texture class was chosen as the pattern (Figure 8 (left)). In 
this case, the 20 closest samples were retrieved (Figure 8 
(right)). One can observe that samples with similar texture 
were found. 

 
 
 
 
 
 
 
 
 Figure 8- Radar image. Query texture (left). 

Returned ones (rigth).  
A similar test was performed for a multispectral image 

acquired from Landsat-5 (bands 3, 4 and 5). Feature 
vectors were extracted from 64x64 pixels squares using 
three bands. The feature vectors obtained for each band 
were concatenated in just one feature vector. The test 
consisted on evaluating if this new feature could improve 
the classification when compared to the resulting 
classification obtained for just one band.  

Figure 9 (left) shows the query square (at the pointer) 
and the retrievals for band 3. Figure 9 (right) shows the 
results when considering the three bands. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7- Air photograph. Texture pattern 
chosen (left). Squares returned (right). 

 
 
 
 
 

Figure 9- Multispectral image. Query with features 
from one band (left). Query with associated features 

(right). 

One may observe that in Figure 9 (right) there are 
more squares visually closer to the query pattern than those 
in the Figure 9 (left). Apparently the use of a multi-spectral 
image (3 bands) improves the resulting classification. 



  

4.2      Neural Classifier 
Initial tests were performed for textures in Brodatz’s 
album. Figure 10 shows a 10x10 output neuron grid of a 
Kohonen’s feature map. Five texture classes were used in 
the training stage and different colors were associated to 
each class. The training features were introduced to the net 
and the winner neurons received the respective class color. 
As can be seen in Figure 10 (left) there is a topological 
organization of the neuron clusters. They are the most 
representative neurons to its respective class. 

Classification tests of unknown patterns, however, are 
processed on a modified feature map, called contextual (or 
semantic) map [15]. Contextual map displays the self-
organizing feature map so that each neuron appears labeled 
according to the class it stored during the learning stage. 
The neurons receive labeled patterns and the closest pattern 
determines the label of the neuron. The resulting map for 
the same five classes is shown in Figure 10 (right). This is 
a good way to verify the topological map organization; an 
unknown input pattern is labeled by the neuron it excited 
on the grid. It is expected that similar patterns, especially 
those not trained by the net, excite neurons in the same 
region on the map. 

 
 
 
 
 
 
 
 
 
 
The Brodatz’s 32-texture classes were divided into 

two groups: a small group (1/3 of the features) for training 
and another large one for test. Feature vectors were 
extracted from those patterns. The training feature set was 
submitted to the SOM algorithm in a 25x25 neurons grid 
with and without conscience factor. The classification 
accuracy evolution during the training process was 
calculated at each 5 epochs by the kappa coefficient. The 
contextual map was generated and the testing features were 
submitted to the classification system. The final kappa 
coefficients were 0.6276 and 0.6628 without and with 
conscience factor, respectively (see Figure 11). 

The LVQ3 algorithm was applied in the net 
considering the conscience factor. The kappa value 
obtained was the same value as obtained before, 0.6628. 
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Figure 11- Kappa coefficients in the SOM training 
process. 

5. Conclusions 
One has observed that texture features obtained from 
Gabor filters are a good texture pattern representation even 
for remote sensing images. 

The classification accuracy obtained with the SOM 
algorithm is considered good although no significant 
improvement was observed when using conscience factor 
or LVQ3 algorithm. It is possible that the texture classes 
chosen in the experiments are very different amongst 
themselves; it is necessary a larger bank of classes with 
evident similarity between some of them to make the 
classification task harder. One must take into account that 
training phase and the net parameters influence the results. 

Most of the researches on texture feature extraction by 
Gabor filters use only air photographs as remote sensing 
images. This work showed that this methodology can also 
be applied on others kinds of images, like radar and 
multispectral images. 

Figure 10- Kohonen's map output (left). 
Contextual map (right). 

This work is addressed on feature extraction and 
neural network implementation. Unfortunately, 
comparisons with others approaches were not performed 
up to this moment. 

For the future, we intend to test the neural 
classification system with textures obtained from remote 
sensing images, to study an indexing system to recover 
images from a database and perform comparisons with 
others approaches. 
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