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Abstract. We present an experimental setup to evaluate the relative performance of single gaussian and mixture
of gaussians models for skin color modeling. Firstly, a sample set of 1,120,000 skin pixels from a number of
ethnic groups is selected and represented in the chromaticity space. In the following, parameter estimation for
both the single gaussian and seven (with 2 to 8 gaussian components) gaussian mixture models is performed. For
the mixture models, learning is carried out via the expectation-maximisation (EM) algorithm. In order to compare
performances achieved by the 8 different models, we apply to each model a test set of 800 images - none from the
training set. True skin regions, representing the ground truth, are manually selected, and false positive and true
positive rates are computed for each value of a specific threshold. Finally, receiver operating characteristics (ROC)
curves are plotted for each model, which make it possible to analyze and compare their relative performances.
Results obtained show that, for medium to high true positive rates, mixture models (with 2 to 8 components)
outperform the single gaussian model. Nevertheless, for low false positive rates, all the models behave similarly.

1 Introduction

A large number of applications require the location of peo-
ple in digital images, such as face detection [3, 4, 5, 6], face
and hand tracking [2, 7, 8] and gesture recognition [9]. As
a strategy to reduce the search space for human targets, in
several methods the image is initially segmented into “skin”
and “non-skin” regions based on pixel colour. The goal is
to detect people in the image in a faster and more accurate
manner.

Several models for human skin colour have been pro-
posed, most of them based on a single bivariate gaussian
kernel to represent the skin cluster in some colour space
(e.g. [2, 5, 6]). An alternative to the single-gaussian model
is presented in [1], where the skin colour distribution is
modelled with amixtureof bivariate gaussian components.
A comparative study between the single-gaussian (SG) and
the double-gaussian models has been presented there, but
a more detailed analysis is lacking to understand how the
model behaves when a higher number of gaussian clusters
is used in the mixture.

This work proposes a performance evaluation tech-
nique to analyse the behaviour of models with respect to the
number of gaussians. The analysis took into consideration
models ranging from 1 to 8 gaussian components, which
lead to two main conclusions. Firstly, skin colour mixture
models clearly outperform the single gaussian model for
medium to high true positive rates. In this case, however,
no major differences are noticed among the performances
of the 7 mixture models. Secondly, when low false-positive
rates are required, all the 8 models tested perform quite sim-
ilarly.

The paper is organized as follows. In section 2, the

feature space for representing the human skin colour and
the sample set used to train the models are presented. In
section 3, the standard SG model is described. In section 4,
we review our GM model approach as an alternative for SG.
Section 5 reports the experiments applied to a test set, with
models ranging from one to eight gaussian components. Fi-
nally, in section 7 we draw the conclusions and outline fu-
ture work.

2 The Colour Representation and the Training Sample
Set

2.1 The Colour Feature Representation

The colour space chosen to represent the human skin colour
is thechromaticityspace. The chromaticitiesr, g andb are
defined as

r =
R

R + G + B
, g =

G

R + G + B
, b =

B

R + G + B
,

(1)
whereR, G andB denote the red, green and blue compo-
nents that describe the pixel colour. Here we only user and
g to describe the skin colour, given that the third compo-
nent depends on the other two (b = 1− r − g). The reason
for using this colour space is due to evidences that human
skin colour is more compactly represented in chromaticity
space than in other colour spaces, such as RGB, HSI, SCT
and YQQ [10]. In addition, the chromaticity space is nor-
malized with respect to the illuminant, so it is more robust
under lighting variations than other illuminant-dependent
colour spaces.



2.2 The Training Sample Set

In order to cover a wide range of skin chromatic character-
istics, a set of 1,120,000 skin pixels was collected from im-
ages of people from four different databases. These images
cover a large spectrum of ethnic groups, such as Caucasian,
African, Asian, and Hispanic, each group mostly repre-
sented in a separate database. In total, 550 images were
collected both from random sites on the Internet and from
the Web-available Stirling University face database [11].

The skin samples used to train the model were selected
manually, avoiding areas of high luminance variation and
highlights. Exactly a quarter of the samples (280,000 pix-
els) were collected from each of the four databases, aiming
at avoiding bias to any ethnic group. Figure 1 shows the
distribution of all skin samples in the chromaticity space
used to train the models. Its visual inspection suggests that
a bivariate gaussian may be a suitable model to fit the dis-
tribution, such as presented in section 3.

Figure 1: Distribution of the entire sample set of skin pixels
in chromaticity space.

3 Single-Gaussian Model (SGM)

Results reported in the literature indicate that a single bi-
variate gaussian probability density function (pdf) can be
used successfully as a model for the skin colour, even when
multiple ethnic groups are considered [3, 4, 5, 6]. The
model can be obtained via the maximum likelihood crite-
rion, which looks for the set of parameters (mean vector
and covariance matrix) that maximizes the likelihood func-
tion. The likelihood function for a multivariate gaussianpdf
has a single maximum, and the estimatesµ andΣ for the
mean vector and the covariance matrix are obtained analyt-
ically and have well-known values given by [12]

µ =
1
n

n∑
k=1

xk (2)

Σ =
1
n

n∑
k=1

(xk − µ ) (xk − µ )t
, (3)

where µ is the estimated mean vector,Σ is the estimated
covariance matrix,n is the number of observations in the
sample set, andxk is the kth observation. The resulting
gaussianpdf that fits the data is then [12]

p(x| µ ,Σ) =
1

(2π)
d
2 (det (Σ))

1
2

× exp
(
−1

2
D2

)
(4)

where
D2 = (x − µ ) Σ−1 (x − µ )t (5)

is the square Mahalanobis distance andd is the dimension-
ality of the gaussian function (d = 2 in our particular case).
Figure 2 shows a plot of the function estimated from the
sample data set with the application of eq. (2), eq. (3) and
eq. (4).

Figure 2: Estimated SGM for the skin colour sample set
described in section 2.

4 Gaussian-Mixture Model (GMM)

As the training sample set histogram in fig. 1 shows, the
skin distribution is clustered in a specific region of the colour
space. We may ask, however,how well-clustered it is. In
order to look for an answer to this question, we proposed in
[1] a gaussian mixture approach to model the data. In that
work, we analyse the behaviour of the single and double-
gaussian models. Here, we improve on that previous work



Figure 3: Estimated GMM’s for the skin colour distribution described in section 2. From top to bottom and left to right,
N = 2, 4, 6 and8.

by generating several GMM’s and by developing a strategy
to compare their performances with respect to the SGM.

In this approach, we assume that the entire data set can
be modelled by anN -gaussian mixturepdf given by [13]

p(x|Θ) =
N∑

l=1

p (x|l,Θl) P (l), (6)

whereN is the number of gaussians,p (x|l,Θ) is the spe-
cific density function for gaussianl, P (l) is the prior prob-
ability for gaussianl andΘ is the parameter vector con-
taining theN mean vectors and theN covariance matri-
ces. Following the maximum likelihood criterion [12], the
goal here is to find the parameter vectorΘ that maximizes
the likelihood function. It is important to notice that, for a
GMM, there isnoanalytic solution for the maximisation of
the likelihood function [15]. It means that the optimalΘ
must be estimated numerically.

The standard algorithm used to find maximum likeli-
hood estimates for gaussian mixture models is the expecta-
tion maximisation (EM) procedure [14, 15]. The EM algo-
rithm, when applied to this optimisation problem, results in
a few simple updating rules for the parameters of the mix-

ture. Executed as an iterative procedure, these rules guar-
antee that a local maximum of the likelihood function is
reached and that the corresponding parameter vectorΘ is
found. The rules can be stated as [15]

Pl =
1
n

n∑
i=1

p(l|xi, µ old
l ,Σold

l ) (7)

µ l =
∑n

i=1 xip(l|xi, µ old
l ,Σold

l )∑n
i=1 p(l|xi, µ old

l ,Σold
l )

(8)

Σl =
∑n

i=1 p(l|xi, µ old
l ,Σold

l ) (xi − µ l) (xi − µ l)
t∑n

i=1 p(l|xi, µ old
l ,Σold

l )
(9)

wheren, µ old
l , Σold

l , µ l, Σl andPl are, respectively,
the sample size, the mean and covariance of the last iter-
ation, the mean and covariance estimated for the present
iteration and the prior probability estimated in the present
iteration, all for a given gaussianl; p(l|xi, µ old

l ,Σold
l ) is

the probability that observationxi belongs to gaussianl.
The above equations are used iteratively to update the

parametersPl, µ old
l andΣold

l for each gaussianl, until a



steady state or a maximum number of iterations is reached.
Although the stopping criterion for the EM algorithm is a
known problem [13, 15], for low dimensionalities (e.g.d =
2) convergence is usually fast. In our experiments we have
not found problems concerning this issue.

An important issue is that, while there is only one max-
imum in the likelihood function for the SGM [12], the num-
ber of maxima in the likelihood function for a GMM seems
to be unknown [13, 15]. Once the EM algorithm finds alo-
cal maximum, it is not guaranteed that, for a GMM, this is
the best one. A possible technique to circumvent this diffi-
culty is to initialise the algorithm multiple times with ran-
dom initial parameters, measuring after each run the like-
lihood function. The chosen parameter vectorΘ will be
associated with the maximum value among all the maxima
obtained. This exhaustive search increases the chances of
finding the global maximum.

Figure 3 shows the estimated GMM’s forN = 2, 4, 6
and 8. The GMM parameters for eachN were obtained
by selecting the result with highest likelihood among 1000
runs of the EM algorithm with random initialisation.

5 Experimental Setup

In this section we present the experimental setup for per-
formance evaluation and comparison of the several GMM’s
with respect to each other and with respect to the SGM.

5.1 The Testing Sample Set

We have applied the eight models to a data set of 800 im-
ages containing equal amounts of people from each differ-
ent ethnic group. In order to specify which pixels corre-
spond to skin and which do not, we manually cropped the
skin regions in those images. The resulting binary images
constitute ourground truth– see an example in fig. 4.

5.2 The Skin Likelihood Image

The first step for measuring que performance of a given
model with respect to the test set is to obtain theskin likeli-
hood images(SLI) for all the images. The SLI is a greyscale
representation of a given test image where the grey-level in-
tensity of each pixel is proportional to the probability of this
pixel belonging to skin, according to a given skin modelm.
The procedure for obtaining the skin likelihood images can
be summarized as follows. Initially, for each image in the
test set, theRGB vector for each pixel(x, y) in the image
is obtained; then, the conversion fromRGB into therg rep-
resentation is done. The resultingrg coordinates are then
used to look up the specified model in order to obtain the
respective probability. This procedure results in a greyscale
image, where pixel brightness indicates how likely the pixel
is to a skin one. Figure 5 shows an example of a test im-

Figure 4: A sample image from the test set (top - original
coloured) and its ground truth (bottom - binary).

age and its respective SLI for the SGM and for the double-
gaussian model (GMM with 2 gaussians).

5.3 Thresholding and ROC Curve Generation

Once the SLI for each image in the test set has been ob-
tained, it is initiated the successive thresholding procedure.
We start with a given small threshold, which is used to clas-
sify the SLI. All greyscale values that are above the thresh-
old are considered skin; the others are considered non-skin.
The outcome of this step is a binary classified image, whose
pixels are assigned to one of the two classes (skin or non-
skin). In the following, the segmented image is compared
to the ground truth image. The true positive and false posi-
tive rates(TPR andFPR) of the classification process are
then obtained by

TPR =
TP

S
(10)

FPR =
FP

NS
(11)

whereTP is the number of true positives (pixels correctly
assigned to the skin class),FP is the number of false pos-
itives (non-skin pixels wrongly assigned to the skin class),
S is the total of skin pixels andNS the total of non-skin
pixels. In our specific problem, as the test set is composed
of 800 images, what is in fact done is to collect thetotal
number ofTP , FP , S andNS, covering the whole set of
images. Just after that, eq. (10) and eq. (11) are computed
andTPR andFPR obtained.



Figure 5: A sample test image (top - original coloured)
and SLI’s for the single-gaussian model (center) and for
the double-gaussian model (bottom). The pixel intensity
in each SLI is proportional to the probability of the given
pixel to belong to skin, according to respective model.

As a result of these computations, we obtain, for each
arbitrary threshold between the minimum and the maxi-
mum probability value of a given modelm, a vector of mea-
suresp = (TPR, FPR) that expresses the performance of
the modelm in a specific operating point. For example, if
two different models have the sameFPR, the best will be
the one that has the higherTPR. Conversely, if they have
the sameTPR, the best will be the one which has the lower
FPR.

In this context, the well-known performance analy-
sis technique based on Receiver Operating Characteristics
(ROC) curves can be used. By applyingK different thresh-
olds, a set ofK point vectorspk = (TPRk, FPRk) can
be obtained, which, when plotted, results in a ROC curve
for the specific model with respect to the whole test set.
Repeating the procedure for theM available models gener-

atesM ROC curves, which permits us to compare directly
the relative performance of any two given models.

Figure 6 shows ROC curves for the single-gaussian
model and the double-gaussian model applied to the im-
age of fig. 5. It is possible to notice from the figure that
the GMM with two gaussian components shows better per-
formance for this specific image in practically all points of
operation. For purposes of illustration, we have selected
three of these points to analyse the relative behaviour of the
two models.

Figure 6: ROC curve for the SGM and the 2-gaussian mod-
els applied to the image in fig. 5.

The horizontal dashed arrows in fig. 6 indicate three
major points chosen for illustrating the performance differ-
ences between the two models. In each point, the true pos-
itive rate is fixed and the corresponding difference in the
false positive rate between the models is measured. It can
be seen that there are no major dissimilarities at point (a):
the difference between the false positive rate of the single-
gaussian model (FPR1) and that of the double-gaussian
model (PFR2) is minimal. At point (b), however, it is pos-
sible to see thatFPR1 is almost ten timesFPR2. A more
extreme example takes place at point (c), whereFPR1 ex-
ceedsFPR2 by more than 30 times.

Figure 7 shows a series of binary images obtained by
thresholding at the different points shown in fig. 6.

6 Experiments and Results

The performance evaluation scheme described above was
applied to the entire data set of 800 images containing peo-
ple from a large spectrum of ethnic groups, such as Cau-
casian, African, Asian and Hispanic. Eight models were es-
timated from the data set, starting from the single-gaussian
model until an 8-kernel gaussian mixture model. For each



Figure 7: Thresholded images for the single-gaussian model (top row) and the double-gaussian model (bottom row). First
collumn: segmented images at point(a); second collumn: segmented images at point(b); third collumn: segmented images
at point(c) of fig. 6. It can be seen that, despite the fact that true positive rates are the same in each collumn, the double-
gaussian model has lower false positive rates.

model, a ROC curve was generated following the procedure
outlined in section 5. Figure 8 presents a plot with the ROC
curves for the 8 models.

Figure 8: ROC curves for the SGM and for the several
GMM’s obtained by applying the models to the entire test
set.

Some clear results are obtained from the plots. The
most evident is that the SGM has poorer performance for

medium to high true positive rates. Given that in the major-
ity of practical applications the thresholds are set such that
the true positive rate is kept at least in a medium range, it
becomes clear that in most situations the GMM approach
may outperform the SGM one. Nevertheless, it is impor-
tant to notice that, in the low false positive region, all the
models display a close behaviour.

Although it is clearly adequate to compare any GMM
with the SGM, it is rather difficult to say which GMM is
better. We believe that the differences among them are so
subtle that it is inappropriate to judge their relative qual-
ity just by comparing the ROC curves. More exhaustive
tests should be addressed in order to verify if there are in-
deed significant statistical differences among the different
GMM’s.

7 Conclusions

This work has presented a performance evaluation of single-
gaussian and mixture of gaussians models for representing
the human skin colour. An experimental setup was de-
signed where a data set of skin pixels from several ethnic
groups was used to train a single gaussian model and seven
versions of gaussian mixture models. The eight models ob-
tained were applied to a test set containing images different
from those of the training set, but with people from the same
four main ethnic groups. The problem was approached as a



classification task with two classes: “skin” and “non-skin”.
The true skin regions for the whole data set (the ground
truth) were manually selected. The performance of each
model was measured in a process where true positive and
false positive rates obtained for each classifier generated
by a successive thresholding technique were combined to
form Receiver Operating Characteristics curves. The anal-
ysis of those curves revealed two main conclusions. Firstly,
GMM’s behave similarly over the whole range of the ROC
curve. Secondly, although the performance of the SGM is
similar to those of the GMM’s for low false positive rates, it
is significantly decreased for high true positive rates. This
conclusion suggest that skin color mixture models may be
more appropriate than the single gaussian model when high
correct detection rates are needed.
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