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Abstract. We present in this work a comparison among four algorithms for transmission tomography. The 
algorithms are based on the formalism of POCS (Projection onto Convex Sets): ART (Algebraic 
Reconstruction Technique), SIRT (Simultaneous Iterative Reconstruction Technique), sequential POCS and 
parallel POCS.  We found that the use of  adequate a priori knowledge about the solutions, expressed by 
convex sets restrictions, particularly in the case of the last algorithm, is an efficient way to reduce the 
variations on the solutions due to the ill-conditioning of  the reconstruction  problem, not only due to the noise 
in the projections, but also due to limited view reconstruction. 

 

1. Introduction 

Several problems in image processing, as tomographic 
reconstruction or image restoration, can be efficiently 
solved if restrictions are imposed over the set of possible 
solutions. Under certain conditions, the restrictions can 
also be considered as sets. 

One way to impose these restrictions is to use the 
method of projections. If the sets that represent the 
restrictions are convex, it is possible to find the solution 
of the problem, which is represented by the intersection of 
the sets (if it exists). 

2. Transmission Tomography 

Transmission tomography consists basically in irradiating 
the object in several  directions and storing for each 
direction the transmitted and received intensities. To 
accomplish that, a collimated beam of radiation is used, 
which defines vertical planes as thin as the beam itself. 
The emitted and received intensities are stored and in this 
way we obtain a longitudinal view of the object. By  using 
several collimated parallel beans, we obtain several 
vertical planes, which define profiles in several angular 
positions. These stored values can be processed to create a 
matrix,, called image, where each entry represents the 
linear attenuation coefficient at a certain position. 

From the mathematical point of view, the solution 
for the problem of reconstruction of a function from line 
integrals was solved by Radon in 1917 [1]. However, the 
first transmission scanner was only built in the seventies 

by G. N. Hounsfield [2], who divided the 1979 Nobel 
Prize with A. M. Cormack who, in 1963, gave 
fundamental contributions for the development of 
reconstruction algorithms [3]. 

2.1     Algebraic Reconstruction Algorithms 

A solution for the problem of image reconstruction 
consists of assuming that the transversal section is an 
unknown matrix and then to generate algebraic equations 
in terms of the projection data. The linear model for the 
image reconstruction can be written by Eq. (1), where g 
represents the vector of projection data, of size Mx1, f  is 
the vector of the original image of size N2x1, H is the 
projection matrix of size MxN2  and n is the noise vector 
of size Mx1. 

g=Hf+n                         (1) 

The Algebraic Reconstruction Technique (ART) 
searches for the solution through the sequential 
projection, from an initial estimation, onto the set of 
hyperplanes that are represented by the successive rows of 
Eq. (1). The Simultaneous Iterative Reconstruction 
Technique (SIRT) searches for the solution through the 
mean of the simultaneous projections onto the 
hyperplanes and tends to give better results in the case of 
noisy measurements (inconsistent system of linear 
equations). Although not initially proposed as such, these 
methods belong to the class of POCS (Projection onto 
Convex Sets) algorithms, Stark and Yang [4]. The 
sequential projection method, in terms of closed and 
convex sets of restrictions (sequential POCS) was 
proposed for image recovery by Youla and  Webb [5] and 



  

implemented for tomographic image reconstruction 
without noise by Sezan and Stark [6].  The fundamentals 
of set theoretic estimation are discussed in detail in 
Combettes [8], where the method of sequential 
projections is referred as MOSP (Method of Sequential 
Projections) and the method of parallel projections as 
MOPP (Method of Parallel Projections). 

In the sequential projections method, an initially 
chosen vector is projected on a restriction set, then the 
projections onto all the restriction sets is sequentially 
performed, in a cyclic way. On the other hand, in the 
parallel projection method, the projections onto all the 
restriction sets are made in a single iteration and a 
weighted average of these projections is obtained. If the 
intersection of the restriction sets is empty, the sequential 
method does not converge, but oscillates cyclically 
between the sets. In this case, the parallel projection 
method converges to a point that minimizes the sum of 
the squared distances to all sets, according to Combettes 
and Puh  [7]. 

3. Projection onto Convex Sets  (POCS) 

Several problems can be described in the form of convex 
sets restrictions. The solution to these problems should 
satisfy all the imposed restrictions. Therefore, the search 
for the desired solution consists of finding a vector that 
belongs to the intersection of all the restriction sets. If we 
suppose that there exist n restriction sets, represented by 
Ci (i=1,2,...,n),  the solution to the problem is in  the 
intersection of the sets, represented by Eq. (2): 
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3.1      POCS Algorithms 

If the sets Ci (i=1,2,...,n) are closed and convex and their 
intersection C0 is non-empty, the successive projections 
on the sets will converge to a vector which belongs to C0. 
Eq. (3) represents the sequential POCS algorithm, under 
the hypothesis that x0  is any initial vector that represents 
the initial estimate: 
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The  POCS algorithm can also be implemented in 
parallel. In this implementation, the vector is projected in 
all sets simultaneously and to each projection on a set a 
weight is assigned. Eq. (4) describes the  parallel POCS 
algorithm. Observe that the summation of all weights is 
equal to one, according to Eq. (5): 
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It is possible to control the sequence of sets onto 
which the projections are made in POCS methods. 
Censor and Zenios [9] presented six methods to control 
this sequence: the cyclic control, the quasi-cyclic control, 
the repetitive control, the most distant sets control, the 
approximately most distant sets control and the most 
violated restrictions control. 

3.2      Convex Restrictions Sets 

By using the projection methods, it is possible to 
incorporate restrictions into the reconstruction algorithm. 
Such restrictions are represented by convex and closed 
sets, which guarantee the convergence of the algorithm. 
In the following, we present the sets that were used in our 
work. 

Eq. (6) describes the finite support set, where H is a 
Hibert Space, h is the obtained image and Ω is the region 
that describes the support. 

{ }Ω∉=∈= ),(0),(: yxforyxhandHhhCSF
  (6) 

Eq. (7) describes the limited amplitude set. 

{ }Ω∈∀≤≤∈= iihandHhhCAL βα )(:  (7) 

Eq. (8) describes the set of vectors (images) in H that 
are at a distance less than or equal to εR from a reference 
image fR. 

{ }RRR fhandHhhC ε≤−∈= :    (8) 

The set given by Eq. (9) describes all vectors which 
have energy less than or equal to E. 

{ }22
: ρ=≤∈= EhandHhhCE

  (9) 

4. Algorithms 

We compared four reconstruction methods: a) ART; b) 
SIRT; c) sequential POCS and d) parallel POCS. For the 
ART method, the algorithm was described by Eq. (3), 
while for the SIRT method, the algorithm was given by 
Eq. (4), where all the sets have the same value for wi. In 
these two algorithms the vectors are only projected onto 
the  M  hyperplanes that are described by Eq. (1). 

For the sequential and parallel POCS methods, the 
sets of restrictions are given by Eqs. (1), (6), (7), (8) and 
(9). Eq. (10) describes the sequential POCS algorithm. 

Eq. (11) describes the parallel POCS 
implementation. The first three methods used cyclic 
control, while the parallel POCS used repetitive control. 
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5. Experimental Data 

Three experimental phantoms were used: homogeneous, 
asymmetrical and symmetrical. The homogeneous 
phantom is a cylinder of nylon with water inside it. The 
asymmetrical phantom is a cylindrical object of nylon, 
with wholes of different sizes. The symmetrical phantom 
is a cylindrical object of plexiglass, with two wholes and 
two cylinders of aluminum inside. The data was obtained 
with a minitomograph scannner for soil science described 
by Cruvinel  et al [10] with a 231 Am radioactive source. 

6. Results 

The reconstruction of the three phantoms previously 
described was performed. The images obtained with a low 
exposure time (three seconds per ray) were  considered 
the noisy reference image. The images reconstructed with 
the highest exposure (twenty seconds per ray) were 
considered the ideal image and the images reconstructed 
from ten seconds up per ray are the noisy images that we 
want to reconstruct. The reconstructions with limited 
view were made considering only projections angles 
between 0o and 90o and 0o and 135º. 

The ideal reconstructed images are shown in Figure 
1. In this case the reconstruction was performed with the 
SIRT algorithm, by also adding the restrictions of non-
negativity and finite support. 

 (a)                 (b)                  (c) 

   
Figure 1:  Ideal Phantom Images: (a)  

homogeneous; (b) asymmetrical; (c) symmetrical 

For the reconstruction of the reference images, the 
same method of the previous paragraph was used. Figure  
2 shows the images that were used as reference. 

The criterion suggested by Oskouid-Fard and Stark 
[11] and given by Eq. (12) was used to measure the 
reconstruction error. In this equation δn  is the percentual 
error at the nth iteration, fn is the nth  projection and f  is 
the ideal image. 

 (a)                (b)                (c) 

   
Figure 2: Reference Phantom  Images:                        

(a) homogeneous; (b) asymmetrical; (c) symmetrical 

100×
−

=
f

ff n
nδ                                                       (12) 

6.1      Reconstruction under noisy data 

Figure 3 displays the images of the homogeneous 
phantom reconstructed  with different methods. 

(a)             (b)              (c)               (d) 

    
Figure 3: Reconstructed image of the homogeneous 
phantom with the methods:  (a) ART; (b) SIRT;                 

(c) sequential POCS; (d) parallel POCS 

Figure 4 and 5 show respectively the asymmetrical 
and symmetrical phantom reconstructed with the same 
methods. 

(a)              (b)              (c)               (d) 

    
Figure 4: Reconstructed image of the asymmetrical 
phantom with the methods: (a) ART; (b) SIRT;                  

(c) sequential POCS; (d) parallel POCS 

Table 1 shows the percentual error at the 500th  
iteration. 

Phantoms Homogeneous Asymmetric
al 

Symmetri
cal 

ART 301.3 367.4 274.2 

SIRT 35.3 59.2 31.3 

Sequential 
POCS 

29.0 45.2 19.8 

Parallel 
POCS 

10.3 29.0 10.9 

Table 1: Percentual error under noisy data at the 
500th iteration 



  

 (a)              (b)                 (c)              (d) 

    
Figure 5: Reconstructed image of the symmetrical 

phantom with the methods:  (a) ART; (b) SIRT;                 
(c) sequential POCS; (d) parallel POCS 

6.2      Reconstruction with limited view (0o and 135o) 

Figure 6 shows the reconstruction of homogeneous 
phantom obtained with high exposures but with limited 
view between angles of 0o and 135º. 

 (a)             (b)              (c)               (d) 

    
Figure 6: Reconstructed image of the homogeneous 
phantom with the methods:  (a) ART; (b) SIRT;                 

(c) sequential POCS; (d) parallel POCS 

Figure 7 shows the reconstruction of asymmetrical 
phantom with limited view between angles of 0o and 
135º. Figure 8 displays the images of the symmetrical 
phantom. 

(a)              (b)              (c)               (d) 

    
Figure 7: Reconstructed image of the asymmetrical 
phantom with the methods: (a) ART; (b) SIRT;                  

(c) sequential POCS; (d) parallel POCS 

Table 2 shows the percentual error with limited view 
between angles of  0o and 135º at the 500th  iteration. 

Phantoms Homogeneous Asymmetric
al 

Symmetri
cal 

ART 410.9 468.0 384.2 

SIRT 45.7 42.7 41.1 

Sequential 
POCS 

43.0 38.2 18.0 

Parallel 
POCS 

7.4 7.6 6.3 

Table 2: Percentual error under limited view (0o and 
135o) at the 500th iteration 

(a)              (b)                 (c)              (d) 

    
Figure 8: Reconstructed image of the symmetrical 

phantom with the methods:  (a) ART; (b) SIRT;                 
(c) sequential POCS; (d) parallel POCS 

6.3      Reconstruction with limited view (0o and 90o) 

Figure 9 shows the image of the homogeneous phantom 
reconstructed with limited view (between 0o and 90º) 
using different methods. 

(a)             (b)              (c)               (d) 

    
Figure 6: Reconstructed image of the homogeneous 
phantom with the methods:  (a) ART; (b) SIRT;                 

(c) sequential POCS; (d) parallel POCS 

Figures 10 and 11 show the reconstruction of 
asymmetrical and symmetrical phantoms with limited 
view (between 0o and 90º). 

(a)              (b)              (c)               (d) 

    
Figure 7: Reconstructed image of the asymmetrical 
phantom with the methods: (a) ART; (b) SIRT;                  

(c) sequential POCS; (d) parallel POCS 

Table 3 shows the percentual error with limited view  
for angles between  0o and 90º. at the 500th  iteration. 

Phantoms Homogeneous Asymmetric
al 

Symmetri
cal 

ART 462.5 437.2 339.9 

SIRT 68.5 66.1 57.1 

Sequential 
POCS 

26.7 45.6 35.7 

Parallel 
POCS 

9.2 17.5 7.4 

Table 3: Percentual error under limited view  
(between0o and 90o) at the 500th iteration 



  

(a)              (b)                 (c)              (d) 

    
Figure 8: Reconstructed image of the symmetrical 

phantom with the methods:  (a) ART; (b) SIRT;                 
(c) sequential POCS; (d) parallel POCS 

7. Conclusions 

By analysing the data that was obtained with the 
comparative study, it is possible to note that,  the parallel 
POCS method obtained the best visual and numerical 
results not only in the presence of noise but also under 
limited view. The sequential POCS  displays somewhat 
better numerical results than the SIRT , but substantially 
better visual results. Note in Figure 4, for example, the 
superior resolution of the sequential POCS on the small 
holes, or the visual results for angles between  0o and 90º.   
The worst visual and numerical results were obtained 
with the ART. This is a consequence of the use of 
adequate a priori information by the sequential and 
parallel POCS methods to overcome the ill-conditioning  
of the noisy and limited view reconstruction problems.   

In the presence of noise, there is no intersection of 
the restriction sets. It was observed that the sequential 
methods do not converge, but oscillate among the 
different restriction sets, on the same iteration. This does 
not happen with the parallel methods. 

It should  be observed that the imposed restrictions 
on the POCS (sequential and parallel) assure convergence 
of the results. With the ART and the SIRT methods (that 
rely only on the projected data, with no a priori 
information), however, there is a tendency for divergence  
of  δn as the number of iterations increases. 
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