
A New Paradigm for the Architecture of Morphological Machines:

Binary Decision Diagrams

Heraldo M. F. Madeira1,

J. Barrera2,

R. Hirata Jr.2 and

N. S. T. Hirata2

1 Departamento de Inform�atica - UFPR
PO Box 19081

81531-990 Curitiba - PR - Brazil
heraldo@inf.ufpr.br

2 Instituto de Matem�atica e Estat��stica - USP
PO Box 66.281

05315-970 S~ao Paulo - SP - Brazil
<jb,hirata,nina>@ime.usp.br

Abstract. A central paradigm in Mathematical Morphology (MM) is the representation of set operators
in terms of erosions, intersection, union, complementation and composition. A hardware or software that
implements this decomposition structure is called a morphological machine (MMach). The architecture
of all known MMachs has as central characteristic a small kernel with very fast procedures. Another
well known decomposition result in MM is the representation of W-operators (i.e., translation invariant
and locally de�ned) as an union of sup-generating (i.e., hit-or-miss) operators. In particular, erosion
is a sup-generating operator. A remarkable property of this decomposition structure is that it can be
represented eÆciently by a graph called Binary Decision Diagram (BDD). In this paper, we propose a new
architecture for an MMach that is based on BDDs and we compare it with the conventional architecture.

1 Introduction

Mathematical Morphology (MM) is a theory that stud-
ies images and signals based on transformations of their
shapes. The simplest class of useful images are the bi-
nary images. In MM, binary images and their trans-
formations are modeled, respectively, by subsets of the
integer plane and by mappings on the powerset of the
integer plane, called set operators.

A central paradigm in MM is the representation of
set operators in terms of erosions, intersection, union,
complementation and composition of set operators.
This decomposition structure can be described by a
formal language, called morphological language. An
implementation of the morphological language in hard-
ware or software is called a morphological machine
(MMach). A phrase of the morphological language or,
equivalently, a program of a morphological machine is
called a morphological operator.

The �rst known MMach was the Texture Ana-
lyzer, created in the late sixties in Fontainebleau by
Jean Serra and Jean Claude Klein. Nowadays, a large

number of these machines are available: from software
for conventional architectures to implementations in
silicon or optical technologies. This family of compu-
tational systems has spread out so powerfully thanks
to its adequacy to extract image information. This ca-
pacity is largely evidenced by the solution of hundreds
of image processing problems in domains so diverse
as cytology, automation, cartography, remote sensing,
etc.

The architecture of all known MMachs have ex-
actly the same structure: very fast dedicated proces-
sors or algorithms for erosion, intersection, and com-
plementation; several image planes and facilities for
programming (i.e., scheduling long sequences of calls
of operators and operations). The most complex and
critical part of these architectures are the processors
and algorithms for erosion.

In this paper, we propose a new architecture for
MMachs implemented as software for sequential ma-
chines. This new architecture is based on the repre-
sentation of Boolean functions by Binary Decision Di-
agrams (BDD). The inspiration for this new concept

comes from the original work of Luc Robert[1], that
presented a fast BDD implementation for a particular
morphological operator.

A classical result in Mathematical Morphology is
that any W -operator (i.e., translation invariant and
locally de�ned in a �nite window W) can be repre-
sented by a �nite union of sup-generating operators
(i.e., intersection of an erosion and an erosion com-
posed with complement { also called hit-or-miss opera-
tor). This representation is called standard representa-
tion. A property of the standard representation is that
it can be trivially converted in an equivalent Boolean
function, represented in the disjunctive form. There
are well known algorithms to convert Boolean formulas
into BDDs. Furthermore, there are well known proce-
dures for converting any morphological operator in the
standard representation form.

Therefore, we have a systematic way to convert
any morphological operator in a BDD: compute the
standard representation; transform the standard rep-
resentation into a canonical form Boolean function;
transform the canonical form into a BDD.

This procedure permits the construction of an
MMach, whose elementary processor is a BDD inter-
preter. Thus, instead of �xing erosion as the elemen-
tary operator, this new architecture permits that any
W -operator in the standard form plays this role. In
this context, morphological operators are concatena-
tions of operators in the standard form by the opera-
tions of composition, intersection, union and comple-
mentation.

We give some examples of applications of this new
architecture to represent useful set operators and we
do comparisons with other implementations of archi-
tectures.

Following this Introduction, Section 2 recalls the
standard representation of W -operators and formulas
for computing the standard representation for any mor-
phological operator. Section 3 presents the technique
for the conversion of a standard formmorphological op-
erator into an equivalent canonical form Boolean func-
tion. Section 4 recalls the main concepts on BDDs and
the technique for converting a generic Boolean func-
tion into a BDD. Section 5 gives several illustrative
examples of morphological operators implemented in
an MMach with the proposed architecture. Section
6 gives some conclusions and future steps of this re-
search.

2 Decomposition of binary image operators

Let IE be the discrete plane, that is, IE = ZZ � ZZ,
and P(IE) be the powerset of IE. The translation of a
subset X 2 P(IE) by a vector h 2 IE is denoted X +h,

or Xh, and de�ned as X +h = fx+h : x 2 Xg, where
+ denotes the usual vector addition.

A binary image operator 	 can be de�ned as a
transformation between subsets of IE, i.e., 	 : P(IE)!
P(IE). We say that 	 : P(IE) ! P(IE) is translation
invariant (t.i.) if and only if (i�) 8X 2 P(IE) and
h 2 IE, 	(X + h) = 	(X) + h.

Let W � IE be a non empty and �nite subset of
IE, called window. We say that 	 is locally de�ned
(l.d.) in W i�, 8X 2 P(IE) and 8h 2 IE, h 2 	(X),
h 2 	(X \ (W +h)). The family of operators that are
t.i. and l.d. in a window W is denoted by 	W and
their elements are called W -operators.

If 	 is aW -operator, z 2 	(X)(z) i� (X \ (W +
z)) = 1, where : P(W) ! f0; 1g. Hence, 	 2 	W

can be characterized by a unique Boolean function
on P(W). This Boolean function so de�ned is called
the characteristic function of 	 [2].

The set KW (), 	 2 	W , de�ned by KW () =
fX 2 P(W) : (X) = 1g is the kernel of 	.

Let A;B 2 P(W), the subset [A;B] � P(W) de-
�ned by [A;B] = fX 2 P(W) : A � X � Bg is an
interval with extremities A and B.

Let A;B 2 P(W), A � B, the operator de�ned
by, �W[A;B](X) = fx 2 IE : A � (X � x) \W � Bg,

for X 2 P(IE), is called sup-generating operator [3].
Note that �W[A;B] is locally de�ned within W and can

be decomposed in terms of erosions [3].
Let X be a collection of intervals [A;B] � P(W).

An element [A;B] 2 X is said to be maximal in X if no
other element of X properly contains it, i.e., 8[A;B] 2
X, [A;B] is maximal in X i�, 8[A0; B0] 2 X, [A;B] �
[A0; B0]) [A;B] = [A0; B0]. We denote by Max(X)
the collection of all maximal intervals in X.

Let X be a subcollection of P(W). The collec-
tion of all maximal intervals contained in X , M(X), is
de�ned by M(X) = Max(f[A;B] � P(W) : [A;B] �
Xg).

The set BW () of all maximal intervals contained
in KW () is called the basis of 	, i.e., BW () =
M(KW ()).

The following theorem shows how a W -operator
can be represented in terms of its basis [3].

Theorem 2.1 Let 	 be a W -operator. For any X 2
P(IE),

	(X) = [f�W[A;B](X) : [A;B] 2 BW ()g (1)

The above representation of 	 2 	W is known
as the standard representation and it shows how 	 is
uniquely de�ned by its basis [3].

Theorem 2.1 does not show, however, a direct way
to �nd the basis of a given operator 	. In the remain-

ing of this section, we recall some constructive results
for �nding the basis of any morphological operator.

Let IIW denote the set fM(X) : X � P(W)g. It
can be proved[2] that IIW is a complete Boolean lattice
[4], where the in�mum, supremum and negation are
given, respectively, by: 8X;Y 2 IIW ,

X uY = M(X \ Y) (2)

X tY = M(X [Y) (3)

X = M(X c) (4)

where X =M(X) and Y =M(Y).
We �rst recall how to compute the basis of the

negation of a W -operator. Let 	 be a W -operator
with basis BW () then

BW (�) = BW () (5)

i.e., the basis of the negation of 	 is the negation of
the basis of 	.

Let 	1 be aW1-operator and 	2 be aW2-operator
with bases BW1

(1) and BW2
(2), respectively. The

bases of the in�mum and supremum of 	1 and 	2 are
given, respectively, by:

� BW1[W2
(1 ^	2) = BW1[W2

(1) u BW1[W2
(2)

� BW1[W2
(1 _	2) = BW1[W2

(1) t BW1[W2
(2)

Note that the resulting operator is aW1[W2-operator.
Let 	 be a W -operator with basis BW (). The

basis of 	 composed with the dilation by B, ÆB , or
with the erosion by B, "B , are given, respectively by:

BW�Bt(ÆB) = tb2BBW�Bt(+ b) (6)

BW�B("B) = ub2BtBW�B(+ b) (7)

Since any W -operator can be expressed in terms
of erosions, dilations, unions, intersections and comple-
ments, Eq. 5 to 7 are suÆcient to generate the basis
of any W -operator from the identity operator.

In Section 5, we give an example of application of
these properties.

3 Conversion of Representations

The characteristic function : P(W)! f0; 1g of aW -
operator 	 : P(IE)! P(IE) is equivalent to a Boolean
function f : f0; 1gjW j ! f0; 1g, with jW j variables.
This function f is unique, and it takes the value 1
whenever the input variables combination corresponds
to an input set X 2 P(IE) satisfying the condition
0 2 	(X), and takes 0 otherwise.

Since the operator is a member of 	W , only the
elements of (X�x\W) are needed to evaluate . Thus,

for the position x on the output set, the value of input
variables, given by the vectorw = (w1; w2; : : : ; wjW j) 2

f0; 1gjW j, is determined by the indicator function taken
in the set X�x \W , that is,

w = 1l(X�x \W):

In the canonical form representation of f by a sum
of minterms, each minterm corresponds to an element
of the kernel of 	. The usual simpli�cation techniques
for Boolean functions of the switching theory [5] can be
applied to simplify the representation of 	 to the form
of Theorem 2.1. In fact, the set of all prime implicants
of the Boolean function determined by the �rst stage
of the Quine-McCluskey method matches exactly the
basis of 	 [3].

Barrera and Salas [2] introduce a method to incre-
mentally compute B(), given the description of the
operator in the morphological language. Now, given
B(), represented by a set of intervals [A;B], with
A � B � W , the function f is straightforwardly ob-
tained.

The function of f will be represented by the fol-
lowing disjunction of its prime implicants:

f =

jB()j_
i=1

�w
ai;bi

(8)

where (ai;bi) = (1l(Ai); 1l(Bi)), and each prime impli-
cant is evaluated by the expression

�wa;b =

jW jY
j=1

(aj � wj _ bj � wj) (9)

Note the similarity between Eq. 8 and Theo-
rem 2.1. In Eq. 9 we observe that, if some element
(aj ; bj) appears as (0; 1), the corresponding variable
does not inuence the product. If they appear both as
0 or as 1, then the variable appears complemented or
non-complemented in the product, respectively. Note
that the combination (1; 0) is not possible because
A � B. Hence, directly looking at the extremities of
the intervals of the operator's basis, we get the exact
expression of f , which is commonly the input for the
algorithm that computes the decision diagram for the
operator.

4 Binary Decision Diagrams

Given a Boolean function f , its cofactors with respect
to xi and xi are fxi = f(x1; : : : ; xi�1; 1; xi+1; : : : ; xn)
and fxi = f(x1; : : : ; xi�1; 0; xi+1; : : : ; xn). The Shan-
non expansion of f around a variable xi is given by

f = xi � fxi + xi � fxi (10)

A Boolean function can be represented by a
rooted, directed acyclic graph with two type of nodes:
terminal and nonterminal. Each terminal node v has
as attribute a value value(v) 2 f0; 1g. Each non-
terminal node v is assigned to a variable var(v) 2
fx1; x2; : : : ; xng and has two children nodes, low(v)
and high(v). For a given assignment to the variables
x1; x2; : : : ; xn, the value of the function is determined
by traversing the graph from the root to a terminal
node: at each nonterminal node v, var(v) = xi, if
xi = 0, then the arc to low(v) must be followed and
if xi = 1, then the arc to high(v) must be followed.
The value of the function is given by the value of the
terminal node. These graphs are called binary decision
diagrams (BDD) [6].

Let ord : fx1; x2; : : : ; xng ! f1; 2; : : : ; ng be a bi-
jective function which de�nes an ordering of the vari-
ables.

De�nition 4.1 An ordered BDD (OBDD) is a BDD
such that any path in the graph from the root to a
terminal node visits the variables in ascending or-
der (i.e., ord(var(v)) < ord(var(low(v))) whenever
v and low(v) are nonterminal, and ord(var(v)) <

ord(var(high(v))) whenever v and high(v) are non-
terminal).

Proposition 4.1 A node v in an OBDD denotes a
Boolean function fv such that

� If v is a terminal node with value(v) = 0, then
fv = 0

� If v is a terminal node with value(v) = 1, then
fv = 1

� if v is a nonterminal node and var(v) = xi, then
fv = xi � f

low(v) + xi � f
high(v)

De�nition 4.2 If an OBDD contains no node v such
that low(v) = high(v), nor any pair of nodes fu; vg
representing the same Boolean function, it is called a
reduced OBDD (ROBDD).

Bryant [6] showed that ROBDD is a canonical
form for logic functions. The size (number of nodes)
of an ROBDD depends on the variable ordering cho-
sen. Choosing the ordering that results in the smallest
ROBDD is a diÆcult problem, and will not be dis-
cussed here. An exact solution exists that doesn't test
all possible orderings, but is still impractical (O(n23n))
[5]. It is reported that, in practice, many useful func-
tions can be represented by an ROBDD of tractable
size.

The �rst implementations for the building of
ROBDDs consisted of two steps: building of the graph

Operation Equivalent ITE form
0 0

f � g ite(f; g; 0)
f � g ite(f; g; 0)
f f

f � g ite(f; 0; g)
g g

f � g ite(f; g; g)
f + g ite(f; 1; g)

f + g ite(f; 0; g)

f � g ite(f; g; g)
g ite(g; 0; 1)

f + g ite(f; 1; g)

f ite(f; 0; 1)

f + g ite(f; g; 1)

f � g ite(f; g; 1)
1 1

Table 1: The operations implemented by ITE.

followed by reduction of the graph size. The reduction
of an OBDD consists of eliminating duplicate termi-
nals, duplicate nonterminals and redundant tests. This
top-down building followed by a bottom-up reduction
approach has a drawback that the size of non reduced
graphs are usually very large. Most recent and eÆ-
cient implementations are based on a operator called
ITE (if-then-else operator). ITE is an operator which
takes three Boolean functions f; g; h as the input, and
returns the result corresponding to the operation : If
f then g else h. More formally,

ITE(f; g; h) = f � g + f � h :

ITE operator can be used to implement any operation
between two Boolean functions, as shown in Table 1.

A hash table, called unique-table, is used to as-
sure that each node in the ROBDD represents a unique
logical function. Each entry in this table is a triple
(var(v); low(v); high(v)) and is mapped to the node v.
Before a new node is inserted to the ROBDD, this ta-
ble is searched to determine if a node representing the
same function already exists in the table. If it exists,
then the existing node is used. Otherwise a new node
is created and inserted into the table.

Let f , g, and h be three functions represented in
ROBDD form respectively by the nodes u, v and w,
and let x be the variable with smaller order among the
top variables, var(u), var(v) and var(w). The function
z = ITE(f; g; h) can be computed by the following

recursive formula:

z = x � zx + x � zx

= x � (f � g + f � h)x + x � (f � g + f � h)x

= x � (fx � gx + fx � hx) + x � (fx � gx + fx � hx)

= x � ite(fx; gx; hx) + x � (fx; gx; hx)

= ite(x; ite(fx; gx; hx); ite(fx; gx; hx))

The stop conditions for this recursion are:
ite(1; g; h) = g, ite(0; g; h) = h and ite(f; 1; 0) = f .

Next we show an example on how to build the
ROBDD for the function f = x1 �x3+x2 �x3, consider-
ing the variable order ord(x1) < ord(x2) < ord(x3).
First, the ROBBD for the variables are build. It
results in three nodes v(x1), v(x2) and v(x3). The
ROBDD for the term x1 � x3 can be build by call-
ing v(x1 � x3) = ite(x1; x3; 0) = ite(x1; ite(1; x3; 0);
ite(0; x3; 0)) = (x1; v(x3); v(0)). The ROBDD for the
term x2 � x3 can be constructed in a similar way, i.e.,
v(x2 � x3) = (x2; v(x3); v(0)). Finally, the ROBDD for
f can be constructed calling v(f) = ite(x1 � x3; 1; x2 �
x3) = ite(x1; ite(x3; 1; x2 � x3); ite(0; 1; x2 � x3)) =
(x1; v(x3); v(x2 � x3)) .

The number of comparisons to evaluate a Boolean
function f represented by an ROBDD for a given input
(x1; x2; : : : ; xn) is, at most, equal to the longest path
from the root to a terminal node, that, of course, is
not greater than n.

5 Examples

In this section we present the implementation of several
morphological operators in an MMach with the new
BDD architecture. We also compare the cost of these
implementations with classical ones.

A morphological operator 	 implemented in a
conventional MMach have a cost that we generically
denote as k(). The same operator on a BDD based
MMach will have a cost denoted by kBDD(). In our
analysis, we consider as cost unit the time spent in ap-
plying a basic operation on it, i.e., logical AND, logical
OR, negation, and test.

For both approaches, we analyze the costs for: the
composition of dilations and of erosions; the median �l-
ter; the 4-homotopic thinning; the supremum of open-
ings; and the extreme point detector.

The cost of the elementary operations and opera-
tors of the morphological language are summarized in
Table 2. N represents the image size in pixels. Table 3
presents the cost for the sup and inf-generator, as well
as other useful cost expressions.

In the BDD architecture, the operator is repre-

Identity k(�) = 0
Complement k(�) = N

Erosion k("B) = N � (jBj � 1)
Dilation k(ÆB) = N � (jBj � 1)
Composition k(1	2) = k(1) + k(2)
Union k(1 _	2) = k(1) + k(2) +N

Intersection k(1 ^	2) = k(1) + k(2) +N

Table 2: Costs of elementary operators and operations

k(�A;B) = k("A) + k(�ÆBct) +N = N � (jAj + jBcj)
k(��A;B) = k(�A;B)
k(�A;B) = k(ÆA) + k(�"Bct) +N = N � (jAj+ jBcj)
k(1	2 : : :	n) =

Pn
i=1 k(i)

k(_ni=1	i) =
Pn

i=1 k(i) +N � (n� 1)
k(^ni=1	i) =

Pn
i=1 k(i) +N � (n� 1)

Table 3: Some useful cost expressions

sented by the corresponding ROBDD which is applied
for each pixel in the image. The cost of this algorithm
is given by

kBDD() = N � jW ()j (11)

where W () is the support of the characteristic func-
tion of 	, also known as the window of 	. The cost
per pixel of the BDD algorithm is the number of tests
made when traversing the diagram from top to bot-
tom, hence, it is the number of Boolean variables that
the function depends on. Note that this is the worst
case cost, since some or all paths in the BDD may have
less variables, meaning that the e�ective cost depends
on the input image.

5.1 Composition of Dilations or Erosions

As shown in Table 2, the cost of either a dilation or an
erosion is equal to N � (jBj � 1). According to Eq. 11,
this is a bit smaller than the cost of ÆB or "B in a
BDD based MMach. BDDs for each case are shown in
Fig. 1, respectively, for the cross and the elementary
square structuring elements.

For the case of a composition of dilations (ÆB =
ÆB1ÆB2 : : : :::ÆBn

), with B = B1�B2�� � ��BN and �
denoting the Minkowski addition, the costs are given
by

k(ÆB) =

nX
i=1

k(ÆBi
) = N �

nX
i=1

jBij

and
kBDD(ÆB) = N � jBj

i

b c

a
d

e

f

a

d

g h

b

e

c

δ

ε

 1 0

 1 0

d

a

b

c

e

f

g

h

i

a

b

e

c

d

Figure 1: BDDs for dilation and erosion

The latter is often much greater than the former. Gen-
erally speaking, when we embed compositions in the
BDD, the performance of the BDD implementation
tends to degrade compared to the conventional one.
Although this degradation is not always the case, it
turns out to be mandatory that the BDD based MMach
also support the composition operation. The analysis
for the composition of erosions is analogous and the
results are the same.

5.2 Median Filter

The median �lter is extensively used in digital image
processing and is de�ned as:

�B(X) =
�
x 2 IE : jX�x \ Bj �

jBj+ 1

2

	

The kernel of �B consists of all the subsets of B

that have jBj+1
2 elements or more, supposing jBj odd.

Its basis consists of all intervals of kind [A;B] such

that A are those subsets of B with just jBj+1
2 elements.

There are
� jBj

jBj+1
2

�
of them.

By Theorem 2.1 the operator may be written in
the morphological language as:

�B = _f"A : [A;B] 2 B(�B)g

Thus, the conventional implementation of �B

0 1

a

b b

c c c

d d d d

e e e e e

f f f f

g g g

h h

i

g

a cb

d e f

h i

Figure 2: BDD for a 3� 3 median �lter.

costs

k(�B) = N � (

�
jBj
jBj+1

2

�
�
jBj+ 1

2
� 1)

The BDD for the median �lter has a very sim-
ple structure, and an example for jBj = 9 is shown
in Fig. 2. For that example, k(�B) = 630N , and
kBDD(�)B = 9N .

The cost of a BDD based median �lter is

kBDD(�B) = N � jBj

which is obviously much better than that of the con-
ventional MMach.

5.3 Four-homotopic Thinning

The thinning operator is de�ned as

�A;B = � ^ (� �A;B)

where A and B are the extremities of an appropriate
interval. An interval family that leads to a 4-homotopic
thinning, denoted here simply by �, is composed by

the eight rotations of the interval I =

2
4 0 0 0
� 1 �
1 1 1

3
5

which has (and all rotations also have): jAj = 4 and
jBcj = 3.

n jW (�n)j kBDD(�n) k(�n)
1 7 7N 8N
2 13 13N 16N
3 23 23N 24N
4 33 33N 32N
5 43 43N 40N
6 55 55N 48N

Table 4: Window sizes and costs for Thinning.

The cost of this operator is:

k(�) = k(� ^ � ("A ^ �ÆBct))

= k(� ^ (�"A _ ÆBct))

= N � (1 + 1 + (jAj � 1) + 1(jBcj � 1)) = 8N:

In practice, for the thinning of an image, we use
the composed operator:

�n = �0
o

�45
o

�90
o

: : : �(n�1)�45o

which, evidently, costs 8 �N � n.
Evaluating the basis of �n according to [2], we get

the data shown in Table 4. We can see that, for the
obtained data, the BDD based implementation beats
the conventional one, with maximum speedup when
n = 2. This means that, if we construct the operator as
a hybrid composition of four BDD based sub-operators
(composition of two consecutive rotation thinnings),
the cost will be

kHY BRID(�8) = N � (13 + 13 + 13 + 13) = 52N

then we get a complete turn (360o) thinning operator
implementation which is 64

52 � 1 = 23% faster than the
conventional one.

5.4 Supremum of Openings

The operator 	 =
Wn
i=1(Bi

) is called supremum of
openings, and is very useful for making \soft" openings
over an image.

The cost of the conventional implementation of an
opening operator is

k(B) = k("B) + k(ÆB) = 2 �N � jBj:

Thus, the cost for the supremum of openings is

k(

n_
i=1

Bi
) =

nX
i=1

k(Bi
) +N � (n� 1)

= N � (2

nX
i=1

jBij � n� 1):

Supposing jBij = b, 8i 2 f1; :::; ng, then,

k(

n_
i=1

Bi
) = N � (2 � n � b� n� 1):

In the following, we calculate the cost kBDD for
the supremum of openings. We know that W (Bi

) =
Bi �Bi. Thus,

W (

n_
i=1

Bi
) =

n[
i=1

(Bi �Bi):

So, the cost of the operator in a BDD based
MMach is given by

kBDD(

n_
i=1

Bi
) = N � j

n[
i=1

(Bi �Bi)j:

Comparing the performance of both algorithms,
we conclude that the BDD based one will surpass the
conventional one if j [(Bi �Bi)j < n+ 2

P
jBij: This

expression says that, the more the structuring elements
Bi overlap each other, the more the BDD based imple-
mentation gets better. Also, for a number of terms
greater than a certain n, the BDD based algorithm
will be better than the classical one. The following
two examples illustrate this.

The �rst example is a union of openings by the 8
structuring elements shown if Fig. 3a. The basis of the
operator is contained in the 9 � 9 square. For it, the
BDD based MMach has the following advantage:

j [(B �B)j = 57 < 71 = 2
X

jBij � n� 1

The other example is a supremum of openings by
the 12 structuring elements shown if Fig. 3b. The basis
of the operator is contained in the 13� 13 square. For
it, the advantage of a BDD implementation is

j [(B �B)j = 129 < 155 = 2
X

jBij � n� 1

That is, the BDD implementations are, respec-
tively, 24% and 20% faster than their correspondent in
a conventional MMach.

5.5 Extreme Points Detection

The detection of extreme points in an image is made by
the hit-miss operator, indicating the points in the input
image where it matches one of the eight patterns given
by the rotation of the following structuring element:

I = [A;B] =

2
4 0 0 0

0 1 0
� � �

3
5

✦ ✦ ✦ ✦ ✦ ✦ ✦ ✦

(a)

✦ ✦ ✦ ✦ ✦ ✦

✦ ✦ ✦ ✦ ✦ ✦

(b)

Figure 3: Structuring elements for union of openings

For all rotations Ii of this interval, we have jAj = 1
and jBcj = 5. Therefore, the cost of the corresponding
sup-generator is k(�A;B) = 6N . The extreme point
detector is given by

� =

7_
i=0

�Ai;Bi

and its cost is k(�) = 8� k(�Ai;Bi
) + 7 = 55.

The union of the eight intervals is still restricted to
a 3�3 window, so the cost for the BDD implementation
of the operator is kBDD(�) = 9N , which results in a
much faster algorithm. Figure 4 shows the BDD for
this operator. In this �gure, the missing arcs point to
the 0 node.

6 Conclusion

In this paper, we have proposed a new architecture
for MMachs, where the elementary operator is not just
erosion, but any operator in the standard representa-
tion implemented as a BDD.

We have presented an automatic procedure for
computing the BDD representing any W-operator.
This procedure consists of three steps: compute the
standard representation of the morphological opera-
tor; convert the operator basis into a canonical form
Boolean function; compute the BDD by a generic
Boolean function conversion.

The proposed architecture is the most eÆcient al-
ternative to implement a MMach that uses images rep-
resented in the conventional representation by an ar-

1

i

bb

a

cc c c

d d d d d d

e e e e

f f f

g g

h

h

g

a

e

c

di

f

b

Figure 4: BDD for the extreme points detector

ray of directly addressable pixels (e.g. one pixel per
BYTE.)

The complexity of the erosion implemented as a
BDD is the best possible in this data representation,
that is, proportional to jBj � 1. So the compression of
any other morphological operator in a BDD can be only
bene�cial. MMachs of this kind have the advantage
of not changing the image structure before and after
applying the morphological operator.

Several examples of implementation of morpholog-
ical operators in the new architecture have been pre-
sented. The analysis of these examples shows that, in
general, it is bene�cial to compact parallel operators
(i.e., built by union of several operators) in BBDs, but
not sequential ones (i.e., built by composition of op-
erators). In complex hybrid morphological operators,
usually it may be bene�cial to compact just pieces of
the operator in BDDs. For example, the operator that
extracts a succession of end points from lines can be
eÆciently represented by iterations of a BBD that ex-
tracts just one level of end points.

Between the architectures that change the image
structure, the most interesting is the one that adopts
the pixel BIT array representation. This architecture
may be better or not than the BDD one, depending on
the morphological operator considered. For example,
the median operator (for windows with more than 9
points) is faster in the BDD than in the BIT MMach.

The next step of this research is the study of
other option for converting morphological operators
into BDDs, the implementation of an MMach based
on BDDs and the extension of this study to gray-scale
morphological operators.

Acknowlegement

The authors acknowledge partial support from UFPR,
CAPES, CNPq and FAPESP.

References

[1] L. Robert and G. Malandain. Fast Binary Image
Processing Using Binary Decision Diagrams. Com-
puter Vision and Image Understanding, 72(1):1{9,
October 1996.

[2] J. Barrera and G. P. Salas. Set Operations on
Closed Intervals and Their Applications to the Au-
tomatic Programming of Morphological Machines.
Electronic Imaging, 5(3):335{352, July 1996.

[3] G. J. F. Banon and J. Barrera. Minimal Represen-
tations for Translation-Invariant Set Mappings by
Mathematical Morphology. SIAM J. Appl. Math.,
51(6):1782{1798, December 1991.

[4] G. Birkho�. Lattice Theory. American Mathemat-
ical Society, Providence, Rhode Island, 1967.

[5] R. Jacobi. S��ntese de Circuitos L�ogicos Combina-
cionais. D�ecima Escola de Computa�c~ao, Campinas,
Julho 1996.

[6] R. E. Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on
Computers, C-35(8):677{691, August 1986.

