The GAO Distribution as the True Model for SAR Images
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Abstract. For many SAR sensors, urban areas, forests and pasture areas have a growing degree of
homogeneity, and for each one of these region types there is a distribution class that fits the data best.
In this work, the feasibility of using the g% distribution as a general model is studied, and the practical
usefulness of this proposal is shown. The g% distribution will be adopted as the true model, and its
locally estimated parameters will be used for classification of synthetic and real SAR images.

1 Introduction

Data from a coherent illumination system like a Syn-
thetic Aperture Radar (SAR) can be modelled by the
multiplicative model. This model states that, under
certain conditions, the constructive and destructive in-
terference of the incident and reflected signals produce
a return that varies, in a random manner, with the
mean value of the backscatter corresponding to the il-
luminated target.

This type of data suffers from the presence of a
noise called speckle, typical of all images generated
with coherent illumination, like ultrasound and laser
images. In SAR images, the value of each pixel is a
complex number, but in many applications, only the
modulus of these complex numbers (amplitude images)
or their squared value (intensity images) are used. In
this work linear detection (amplitude) data will be
used.

The observed value (return) in amplitude format
is modelled as a random variable resulting from the
product of two independent random variables, which
correspond to the backscatter and to the speckle noise.
The statistical model for the speckle noise is the Square
Root of Gamma, and the model for the backscatter
will depend on several parameters that relate to the
roughness and texture of the target. The parametric
modelling of the backscatter will be treated here, since
the estimation of these parameters plays a central role
in image analysis.

For regions where the backscatter can be consid-
ered constant, like crops and pastures, the I'/? dis-
tribution is a good model for the returned data. The
K 4 distribution models the return from homogeneous
zones (with certain restrictions due to numerical prob-
lems) as well as heterogeneous ones, like forest on flat

relief. The I'V/2 distribution, however, does not fit het-
erogeneous data appropriately.

When the area under study is extremely hetero-
geneous, as is the case for urban areas or forest over
undulated relief, both the I''/2 distribution and the
K 4 distribution do not model the data adequately. In
this case the g% distribution behaves remarkably well.
Taking into account that this distribution models very
well data from heterogeneous and homogeneous areas
too, and that it is more computationally and theoreti-
cally tractable, the substitution of the g% distribution
for the K 4 distribution is proposed, and the feasibility
of this substitution is studied. To this end, a corre-
spondence between the parameters of both distribu-
tions will be considered in order to approximate, in
some sense, the g% distribution to the KA distribu-
tion. This study consists of two parts:

1. Minimisation L2 in of the distance between the
respective densities, in order to obtain a corre-
spondence between distributions.

2. The goodness of fit of the g% distribution to K 4
distributed data using the test in a Monte Carlo
experiment.

A new approach to classification, based on fea-
tures extraction, for simulated and real SAR images
using as true model the g% distribution, will be shown.

2 Main properties

The G9(a,v,n) and the K4(a, \,n) distributions we
will use are characterised by the following densities
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where ag,\,n,2 > 0 and K, is the modiffied Bessel

function of the third kind and order v, respectively.

There are not many computational implementa-
tions of this Bessel function (see [3], for a recent algo-
rithm). On the other hand, the only special function in
the gg distribution is the I' function, for which there
are many reliable implementations.

This is the first computational argument in favour
of the gg distribution and against the K 4 distribution.
The second computational argument aims in the same
direction and requires the definition of the cumulative
distribution functions for both distributions.
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Let the random variable V be G4 (o, v, n) distributed.

Its cumulative distribution function is given by
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nfll" _
MU?’LH(TL,TL —ag,n+1; —202),
Y (n)l(—aq)

where H is is the hypergeometric function. This cu-
mulative distribution function is easy to evaluate using
the Snedecor’s F' distribution, since it can be seen that
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where T4 ¢ is the cumulative distribution function of a
Snedecor’s F' distributed random variable with ¢ and
¢ degrees of freedom.

Consider now W ~ K (o, A,n) In order to write
the cumulative distribution function of this random
variable it is necessary to impose restrictions on the
variation domain of its parameters. Originally, the
parametric space of the K 4 (a, A, n) distribution is (R7)3
but, to be able to write its cumulative distribution
function in a recursive form, it is necessary to restrict
the variation of either n or ax to the integers. For the
former, this function is given by

22704K7n

PriW<w)=14+ ———g(v,k, 2), 4
OV Sw) =14 gk, ()
where 2 = 2wy/an, k =2n — 1, v = axg — n and the
function g(v, k,2) = is given by the recursive relation
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More details about this recursive solution for the
cumulative distribution function of K 4 distributed vari-
ables can be found in [6].

From these considerations we can deduce the fol-
lowing advantages of the G4 distribution over the K 4:
it is easier to implement, it uses reliable and imme-
diately obtainable implementations, and it does not
impose restrictions on the original parameter space.

The importance of the availability of reliable im-
plementations of the cumulative distribution function
arises from the need of carrying out goodness of fit
tests and from the use of these functions in estimators
based on order statistics.

To the stated advantages, additional advantages
in the fields of inference favour even more the use of
the g% distribution instead of the IC4 distribution.

For the estimation of the homogeneity parame-
ter of both distributions using maximum likelihood,
the estimator of is o difficult to calculate due to the
presence of the derivative of the Bessel function with
respect to the order parameter. The maximum likeli-
hood estimator of ag entails the use of the digamma
function (W), which has been widely studied and im-
plemented.

Consider the sample 21, ..., 2 of independent ob-
servations. The maximum likelihood estimator of g,
knowing n and A is
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Analogously, the maximum likelihood estimator of
ag, knowing n and v, is

k

W(n-ag)—(ac) = —logy+1 Y log(r-+n2?). (5)

3 Minimisation of the distance between distri-
butions

In this section, a method by which a g% distribution
approximates a IC4 distribution, under the constraint
that both must have a mean value equal to one, is
described. In other words, given the sets of g% and K4
distributions with unitary mean, a correspondence of
elements of the first one to elements of the second one,
trough a numerical minimisation of an also numerical
integration, will be sought. This correspondence will
then be established by parameter pairs.

These distributions have only one free parameter:
the homogeneity parameter ax (ag resp.), because the



scale parameter A (+y resp.) must be chosen as a func-
tion of the number of looks n and the homogeneity
parameter, in order to guarantee the constraint.

In order to approximate the K4 distribution by
the g% distribution it is necessary to previously define
the approximation criterion. Consider D, the set of
all the distributions that admit a density and establish
the notion of proximity between distributions in D with
the distance d : D x D — [0,00] given by the relation

a0 = [ O; 1(2) — fol2)]

where f1 and fo are the densities that characterise the
distributions Dy and Da, respectively. This metric has
been already used in a similar context in [4].

We the want to find the value of o that minimises
the distance d(G%(ag,7,n),Kalak,\,n)), using the
densities presented in eq. (1) and in eq. (2), where the
values A = Alag,n) and v = v(ag,n) are the ones
that make the mean value equal to one. Then, the
value of o that minimises that integral will be sought
numerically.

Although a i varies over all the positive real num-
bers, for the purposes of this study the search will be
done within the interval [4,12]. Very small values of
ag (0 < ax < 4 for instance) correspond to data
from extremely heterogeneous areas, which are not well
modelled by the IC4 but by the g% distribution, as can
be seen in [2]; then, for these data, it is not necessary to
have an approximation. For values of aj larger than
15, the observed data can be modelled by the I''/2 dis-
tribution [2, 6, 7], which is also a particular case of
the gg distribution. So, the only region in which the
approximation is necessary is in the interval [4,12].

For these values of ag, the corresponding values
of ag obtained as a result of the minimisation of the
integral, are shown in Table 1.

4 Goodness of fit of simulated data

To measure the goodness of the fit of K 4 distributed
data using the g% distribution, we will use the x? ad-
herence test in a Monte Carlo experiment. To test if
the simulated KC 4 distributed data can be fitted by the
gg distribution, the Pearson “s y? statistic will be used:
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where m is the total number of K 4 distributed data, h;
is the number of data in each interval, & is the number
of intervals, p; = F(2;) — F(2—;), where F' is the cu-
mulative distribution funtion and the interval 7 is given
by [2-1, 2]

10774 | oG | A | 0%
n=1
—4.3 | 2.95 4.15
—5.3 | 3.73 5.42
—6.3 | 4.52 6.09
—7.3 1 5.30 7.96
—8.3 | 6.09 9.23
—9.3 | 6.87 | 10.50
10 | —10.3 | 7.66 | 11.78
n=2
—4.4 | 3.32 3.68
—5.4 | 4.20 4.81
—6.4 | 5.08 5.94
—7.4 ] 5.96 7.07
—8.3 | 6.85 8.21
—9.3 | 7.73 9.34
10 | —10.3 | 8.61 | 10.47
n=4
—2.9| 3.53 3.45
—5.5 | 4.46 4.53
—6.4 | 5.40 5.59
—7.4] 6.34 6.65
—8.4 | 7.28 7.72
—-9.4 | 8.22 8.78
10 | —10.4 | 9.16 9.84
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Table 1: Correspondence between parameters for dif-
ferent numbers of looks.

Let za be asample of size m of K4 (o, N(ax,n),n)
distributed data with A(ag,n) as previously defined.
From this sample o, the homogeneity parameter of
the G4 (ag,v(ag,n),n) distribution is estimated using
the maximum likelihood estimator presented in eq. (5).
If the random variable 7 is g% distributed then its cu-
mulative distribution function can be evaluated using

eq. (3).

5 Monte Carlo experience

A Monte Carlo experience was carried out generating
K 4 distributed data which were fitted with a gg distri-
bution. The values of the parameters ax and ag were
estimated by the maximum likelihood method and by
the %order moment estimator method. The goodness
of fit was evaluated using the p-value of the x? test.
For a number R of replications, the following steps

were performed:

1. For each ag € [4,12] K4 distributed samples were
generated.

2. For each of these IC 4 distributed samples the rough-
ness parameter o and the parameter v of the g%



distribution were estimated.

3. The goodness of fit was evaluated using the p-
value of the test.

The K4 distributed samples were generated for
values of ag € [4,12] with R = 100, 1000 and 10000
replications, sample sizes T = 1000 and 10000 and sig-
nificance level 0.01. As a particular case, the figures
for oy = 4 are shown in Table 2: for each number of
replications (R) and each sample size (1) the mean
of the estimated parameters Qi is presented, along
with the mean square error of the estimation (mse)
and with the mean significance level of the cross-fit
(7“0_01). This shows that there is no reason to suppose
that the IC4 and g% distributions are different at the
proposed significance level. Table 3 shows the values
corresponding to the mean value of the estimated agq
with ax € [5,10] and n = 1.

R T oG mse | 7o.01
100 | 10000 | —4.50 | 0.13 | 11.0
1000 1000 | —4.78 | 1.80 1.5
1000 | 10000 | —4.53 | 0.14 | 10.0
10000 1000 | —4.79 | 2.08 1.3
10000 | 10000 | —4.52 | 0.13 | 12.0

Table 2: Correspondence between ax =4 and n = 1.

Qg ag mse | r0.01
5| —5.53 ] 025 | 34

6| —6.55] 050 | 2.2

71 —7.61] 095 | 1.0

8 —873 | 1.93| 1.1

9| —969|244]| 13
10 | —10.83 | 461 | 0.7
11| —11.98] 680 | 0.7

Table 3: Correspondence for B = 1000, 7" = 10000 and
n=1.

6 Comparison of classifications

Image processing and analysis requires the use of fil-
tering, segmentation and classification operations. For
this reason, the influence the change of model exerts
on the classification results will be analysed in this sec-
tion.

An image with regions of different degrees of ho-
mogeneity will be classified. Even though data are K 4
distributed, the image will be classified with both the
gg and the X4 model, and the results will be com-
pared. A real SAR image containing areas of several

degrees of homogeneity will be used for the proposed
models.

A 400 x 400 subimage, taken from a 1600 x 2400
JERS-1, L band, HH polarisation image with an es-
timated number of looks equal to 2.95, corresponding
to the Floresta Nacional do Tapajds (State of Pard,
Brazil, shown in Fig. 1), was classified using the , the
K4 and the gg models. It was observed that using
only the g% distribution, the classification results are
statistically as accurate as the ones obtained with the
two other models. This occurs in homogeneous as well
as in heterogeneous areas.

Figure 1: JERS-1 image with training regions cor-
responding to clear-cut (dark), cut with sec-ondary
growth (intermediate), and forest (light).

These classifications were obtained using Maxi-
mum Likelihood followed by the ICM (Iterated Con-
ditional Modes) algorithm. Maximum Likelihood is
a supervised classification method widely used in re-
mote sensing. The ICM method [1], is an iterative,
deterministic local optimisation procedure.

Three classes were used: clear-cut (CC, dark grey),
cut with secondary growth (CSG: medium grey) and
forest (F: light grey). The training regions are shown
in Fig. 1.

The estimated parameter values for the three clas-
ses under the K4 were: CC: ax = 16.6, A = 0.0041,



CSG: @y = 13.76, A = 0.0015 and F: @y = 12.56, \ =
0.00083. The estimated parameter values for the g%
model were: CC: &g = —19.42, ¥ = 74706.26, CSG:
og = —14.17, ¥ = 119671.72 and F: ag = —12.97,
v = 178364.07. It can be observed CC and CSG cor-
respond to relatively homogeneous areas, while F is
more heterogeneous than the former two. Confusion
matrixes were calculated in order to compare the re-
sults.

In the first case, data of the training areas corre-
sponding to the three proposed classes were modelled
with the T'V/2 distribution. Figure 2 shows the classi-
fication result of applying ML; then ICM was applied.
Since both ML and ICM results are visually identi-
cal under the three considered models, only ML under
the I'Y/2 model (Fig. 2) and ICM under the G4 model
(Fig. 3) are shown. Since ICM classification always
represents an improvement over ML, we chose it to
perform the comparison among the three models.

Figure 2: JERS-1 classification by Maximum Likeli-
hood, under the I''/2 distribution model.

Table 4 shows the confusion matrix for the ICM
classification under the model. Here, the percentage
of pixels classified in each class, the overall accuracy of
the classification and the corresponding x coefficient of
agreement are reported.

Table 5 and Table 6 show the confusion matrixes
of the ICM classifications under the K 4 and g% models,
and they lead to the conclusion that the g% distribu-

Figure 3: JERS-1 classification using the ICM method,
under the gg distribution model.

Accuracy 85.8%, k = 0.81
CC 39.054 1.74 | 2755 | 43.549
CSG 0.187 | 40.317 | 1.692 | 42.195
F 1.007 | 6.820 | 6.430 | 14.256
Total | 40.247 | 48.876 | 10.876 | 100.000

Table 4: Confusion matrix (percent) of the T''/2 model.

tion does not deteriorate the classifications.

7 The gg as the true model

As the ground truth can be characterised by the pa-
rameters o and «y, their estimation for each pixel may
lead to estimated parameters maps that, in turn, can
be used as the input for classification methods, among
other applications. These features convey important
information that helps the understanding of the scene.

Several parameter estimation techniques are avail-
able, being the most remarkable ones those based on
maximum likelihood, on sample moments or substitu-
tion method (MO for short), on order statistics and on
data transformations (see [5]). In this work MO esti-
mation is used. To estimate o and -y it is necessary to
estimate two moments. In this work moments of order
1/2 and 1, denoted as mq/o and m; respectively, will



Accuracy 88.0%, k = 0.84

CC 38.907 1.232 | 2460 | 42.599
CSG 0.234 | 45.25 | 2408 | 45.761
F 1.006 | 6.820 | 6.009 11.640
Total | 40.247 | 48.876 | 10.876 [ 100.000

Table 5: Confusion matrix (percent) of the K4 model.

Accuracy 85.1%, k = 0.81

CC 39.054 1.740 | 2755 | 43.549
CSG 0.187 | 40.317 1.692 | 42.195
F 1.007 | 6.820 | 6.430 | 14.256
Total | 40.247 | 48.876 | 10.876 [ 100.000

Table 6: Confusion matrix (percent) of the g% model.

be used. These moments are given by

_ 174 F(—a— 1/4)F(n+1/4)
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Using these relations & can be determined as the
solution of the equation

g9(a) = ¢ =0, (6)

where
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and then replacing the value of & in one of the expres-
sions of the moments to find 4.

It can be seen that, since g(&) converges asymp-
totically to 1 and since as ( is a random variable that
can take values greater than one, there are cases for
which eq. (6) does not have a solution. The lower the
value of &, the higher the chances of not being a so-
lution for eq. (6). For our application, a technique to
overcome this problem is presented.

One of the most important available manners to
assess the adequacy of a theory to reality is the use of
stochastic simulation. In the following, an experiment
involving simulation and estimation will be shown, aim-
ing at illustrating the model and tools presented. This
simulated image will also be used to test the perfor-
mance of the forthcoming classification procedure.

It is immediate to obtain outcomes from g% dis-
tributed random variables, since algorithms for sam-
pling from I' distributions are available. In order to

obtain outcomes of the random variable G4 (a,~,n)
it is enough to return the outcome of /U/V, where
U ~T(n,n) is independent of V ~ T'(—a, ).

An idealised scene with four regions will be used
here. The regions represent heterogeneous (o = —5)
and extremely heterogeneous (o« = —1.5) areas. Two
values of y, namely v € {2.10°,4.10°}, were used for
each . The result of this simulation is shown in Fig. 4.
The n = 1 case is chosen for this study since it corre-
sponds to the noisiest (and hardest to classify) class of
amplitude images: single look data.

Figure 4: Synthetic image with four areas (top to

bottom and left to right): (o« = —5,y = 2.105),
(0 = =5,y = 4.105), (@« = —1.5,y = 2.105) and
(o = —1.5,7 = 4.105).

The image presented in Fig. 4 was then analysed
within the context of Gaussian maximum likelihood,
i.e., representative samples from each region were taken
in order to estimate the mean and variance of normal
distributions. The results of this training step were the
estimated parameters i = 193.10 and 6 = 115.42 for
the upper left class (C1 originally o = —5, v = 2.105),
[t = 272.16 and 6 = 163.15 for the upper right class
(C2 originally a = —5, vy = 4.105), ji = 444.91 and & =
405.11 for the lower left class (C3 originally o = —1.5,
v = 2.105), and i = 634.72 and & = 606.84 for the
lower right class (C4 originally « = —1.5, v = 4.105).
The densities of these distributions are used to deter-
mine the classification rule that, in turn, yielded the



map presented in Fig. 5. This map is clearly domi-
nated by the upper left class, and it is unacceptable
for any practical application.

e

P

o

Figure 5: Gaussian maximum likelihood classification
of the simulated image (Fig. 4).

Fig. 6 shows the result of applying the estimators
for @ and v to the image shown in Fig. 4. The image on
the left was obtained by locally estimating a and the
image on the right is the result of locally estimating .
In both cases, a 7 x 7 sliding window was used.

Figure 6: Estimators of the roughness (o, left) and
scale (v, right) on 7 X 7 windows over the simulated
image (Fig. 4).

As previously stated, there are cases where no es-
timated value is available (i.e. where eq. (6) has no
solution). The co-ordinates of such pixels are marked,

and their corresponding estimated values are derived
calculating the median of the observed estimations in
a 11 x 11 window around it. This rarely happens in
extremely heterogeneous areas, and the number of pix-
els where this phenomenon is observed depends on the
number of observations used in the estimation (the big-
ger the window size, the less pixels without estima-
tion).

From Fig. 6 left, it is possible to conclude that the
estimator &, based on the m; and m; ;5 moments, dis-
tinguishes between heterogeneous and extremely het-
erogeneous areas, since the upper half of the image
(where original observations were generated with o =
—1.5) is darker than the lower half (where o« = —5
was used in the simulation). It is also noticeable that
& does not discriminate between right and left halves
of Fig. 4, where the roughness parameter a was kept
constant.

Fig. 6 right leads to the conclusion that the es-
timator 4 is able to separate both regions where the
scale changes (right and left halves) and areas where
different roughness are observed (upper and lower hal-
ves). This last discrimination is performed to a lesser
extent than the estimator & does (notice that the con-
trast of the right image is smaller than the left one).
Then the parameter v can be successfully used as a
tool for the discrimination among different types of
targets, particularly in those regions where the param-
eter a cannot perform it. This can be very useful in
cases of areas with the same roughness but different
brightness.

The joint behaviour of & and 4 suggests that they
may form a good bi-level feature for the classification of
SAR data. The image shown in Fig. 4 will be classified,
using the features shown in Fig. 6.

Fig. 7 shows the result of applying Gaussian maxi-
mum likelihood classification to the bi-level image shown
in Fig. 6. The confusion matrix of this classification
is shown in Table 7, where the training samples were
used as ground truth. This confusion matrix allows us
to say that the classification is excellent.

Result\ True o Cy Cs Cy
o 96.81 1.22 3.57 0.00
Cy 0.00 | 93.28 0.00 0.43
Cs 2.15 0.00 | 96.11 0.00
Cy 1.04 5.50 0.32 | 99.57

Table 7: Confusion matrix from the classification of
the simulated four classes image.

Fig. 8 shows an E-SAR image, obtained in HH
polarisation and L-band, slant range and calibrated
without elevation slope correction. This is an airborne



Figure 7: Gaussian maximum likelihood classification
of the estimated parameters images.

sensor belonging to the German Aerospace Institute
(DLR, Oberpfaffenhofen). The area shown here shows
a homogeneous region (pasture), surrounded by ex-
tremely heterogeneous return corresponding to an ur-
ban area. A Gaussian maximum likelihood classifica-
tion was tried in this image using the two aforemen-
tioned classes. The result was the complete dominion
of the urban class over the other, i.e., almost all the
pixels were classified as belonging to the urban type.

Fig. 9 shows the extracted features from the orig-
inal image, the roughness parameters to the left and
the scale parameters to the right. It is noticeable that
the homogeneous areas appear as dark spots in the
former, and a as light region in the latter. This dis-
crimination is inverted for the scale image. This pair
of images was then used as a bi-level feature image
for a Gaussian maximum likelihood classification, and
the result is presented in Fig. 10. The confusion ma-
trix (in percentages) of this classification is presented
in Table 8, where the training samples were used as
ground truth. This confusion matrix allow us to say
that this classification is excellent.

The interpretability of the parameters, as already
commented, allow the verification of the labels used
for the classes observed in Fig. 8. The data from
these classes that were used as training samples pro-
duced & = —12.5 in the area labelled as “pasture” and

Figure 8: E-SAR image over Gilching.

& = —1.6 for the one called “urban”. Pasture areas
are often seen as homogeneous whilst the return from
urban ones is extremely heterogeneous.

The other image analysed by means of the extrac-
tion of parameter maps and Gaussian maximum likeli-
hood is the one already shown in Fig. 1. Three regions
are distinguishable: clear cut (seen as homogeneous
data, dark grey), cut with secondary growth (less ho-
mogenous data, intermediate grey) and virgin forest
(heterogeneous data, light grey).

Again, a Gaussian maximum likelihood classifica-
tion of the raw data yielded a completely unacceptable
result, so parameter maps were extracted. These maps
are shown in Fig. 11, the roughness to the left and the

Figure 9: Estimated roughness (left) and scale (right)
parameters data obtained from the E-SAR image.



Figure 10: Gaussian maximum likelihood classification
of the estimated parameters images.

Result\True | Pasture | Urban
Pasture 97.62 1.84
Urban 2.38 98.16

Table 8: Confusion matrix from the classification of
the Gilching image.

scale to the right. The estimated parameters in the
training areas were (& = —19.42, ¥ = 74706.26) in
the clear cut, (& = —14.17, ¥ = 119671.72) in the
secondary growth and (& = —12.97, 4 = 178364.07) in
the virgin forest. It can be observed, thus, that the two
first classes (clear cut and cut with secondary growth)
correspond to relatively homogeneous areas, while the
virgin forest is more heterogeneous than the other two.

The Gaussian maximum likelihood classification
of the data presented in Fig. 11 is shown in Fig. 12,
and the confusion matrix (in percentage) of this clas-
sification, using training data as the truth, is shown
in Table 9. Again, the classification is quantitatively
excellent.

8 Conclusions

In this work, the possibility of substituting the I 4 dis-
tribution by the g% distribution has been presented.
The importance of this substitution resides in the the-
oretical and computational tractability of the second

Figure 11: Gaussian maximum likelihood classification
of the estimated parameters images.

Result\True | Clear Cut | Sec. Growth | Forest
Clear Cut 94.44 6.56 0.01
Sec. Growth 5.56 87.44 3.53
Forest 0.00 6.00 | 96.46

Table 9: Confusion matrix from the classification of
JERS image.

one over the first one.

It has been shown in a Monte Carlo experience
that, for a given value of the roughness parameter oy,
the replications of the estimated values of a are close
to the theoretical value found through the minimisa-
tion of the distance between distributions. Thus, the
hypothesis of K4 distributed data can be substituted
by the hypothesis of g% distributed data. This was
demonstrated for the roughness parameter oy varying
within the interval [4, 12].

In the first practical application presented here the
I''/2 the K4 and the G have been considered as pos-
sible models for SAR data. Maximum likelihood clas-
sifications followed by the ICM algorithm were carried
out for the three models in a JERS-1 image, contain-
ing areas of several degrees of homogeneity: clear-cut
(CQ), cut with secondary growth (CSG) and forest (F).
The obtained results show that the classification per-
formance does not deteriorate when the g% distribu-
tion is adopted as the true model.

In a second practical application, estimation of the
parameters of the g% distribution based on moments
was used to derive features maps that were used as the
input of Gaussian maximum likelihood classification.
This was done on a simulated 1-look SAR image, on
a 1-look, HH polarisation, L-band E-SAR image and
on the same JERS-1 image used in the first practical
application. The results, both using simulated and real
SAR images are excellent. The computational effort to



Figure 12: Gaussian maximum likelihood classification
of estimated maps.

derive the parameter maps is affordable.

We can then say that the g% distribution is quite
a good model for SAR data, that its parameters have
relevant and immediate interpretation and that the es-
timation of these parameters, which is a simple compu-
tational task, allows the derivation of features that can
be used to obtain excellent classifications with Gaus-
sian maximum likelihood.

Given these results and the theoretical as well as
the practical advantages of the gg distribution over
the K4 distribution, we conclude that the former can
be adopted as the true model for SAR data.
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