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Abstract.. In automatic fractal image compression, most of the encoding time is spent on finding the best
match between each range block and the domain blocks. We propose the use of the local complexity of the
image domain blocks to reduce the number of pairs to be tested on this search. Indexing the contracted domain
pools according to their local fractal dimension and using multiple contraction factors we can confine all
potential matches to a relatively small number of possibilities. By selecting an appropriate criterion for close
match, the compression time can be shortened without image quality degradation. The performance of the
proposed algorithm, evaluated by means of fidelity versus encoding time and compression ratio, is compared
with five approaches. Future developments can also improve the compression ratio by using fractal dimension
in the definition of the size of range blocks.

Keywords: Fractal dimension, fractal compression, partitioned iterated function system-PIFS, image
compression

1. Introduction
Image compression techniques are used for storing and
transmitting images with as few bits as possible by
removing redundant data [Weeks Jr. (1996)]. The number
of applications using these techniques have increased due
to requirements of rapid transmissions and reduced image
storage space [Nappi et al., (1998)]. A lot of recent papers
have addressed this topic [Rila (1998)], [Boulgouris--
Strintzis (1998)], [Franssens et al. (1998)]. The
compression algorithms can be divided into two
categories: the lossless compression algorithms, and the
lossy compression algorithms. The lossless compression
algorithms guarantee the highest image quality at the
expense of a low compression gain [Yun et al. (1997)].
The lossy compression algorithms give a high
compression gain but the compressed image can differ
from the original. The fractal technique belongs to the
lossy compression algorithms.

Automatic fractal compression presents high
compression ratio but the encoding time to generate the
Partitioned Iterated Function System (PIFS) is high
[Bansley (1993)]. This is due to the need of computing a
large number of best matches among the two sets of image
blocks, called range blocks and domain blocks [Fisher
(1995)]. The most basic form of the encoder examines
exhaustively every possible domain block for each range
block [Jacquin (1992)]. As a consequence, the encoding
time is a serious problem when the image is large due to
the large number of blocks to be mapped [Hart (1996)].
Morgan and Bouridane (1996) addressed this problem by
first classifying the image pieces (in four or sixteen
classes) according to their high frequency components by

using the Sobel operator, and thereafter compute the PIFS
by searching the appropriate class. The local searching
idea, used by Lu (1997) is related to the experiences that
the best match is close when the position of the domain
block is either chosen directly above, below, to the left, to
the right of the range block. Lee and Lee (1998) present a
method to reduce the search space based on the
relationship between the local mean and variance of the
range and domain blocks. Other methods require complex
analyses on contours and textures of image blocks.

Our work is based on the fact that two blocks with
very different complexities cannot be matched. Fractal
dimension (FD) of surfaces could be used to obtain shape
information and distinguish between smooth and rough
regions. The image local FD (LFD) can be used for
characterization of the block complexity. This implies that
domain blocks whose FD differ greatly from the range
blocks FD may be eliminated from the domain pool as
candidates for matching. For each range block, only the
domain blocks within the corresponding class of FD are
considered. A major disadvantage is that the LFD of a
photographic image is hard to estimate by usual
computational methods. Moreover, many algorithms
saturate before covering the range of possible values for
such images, which is between 2 and 3 [Conci and
Proença (1998)]. Sarkar and Chaudhuri (1994) described
an efficient box-counting approach using the ε-blanket
idea [Peleg et.al. (1994)], named Differential Box-
Counting (DBC), which uses differences for computing
the FD, and gives satisfactory results for the whole range.
With some modifications, this algorithm can be used for
efficient identification of the FD of images [Conci and



Campos (1995)] and with some improvements it becomes
adequate for local block complexity computation [Aquino
(1998)]. The complexity of each block is also related to
the arduousness to well cover it using larger partitions.
Moreover, the DF can be used to control the size of the
image blocks, which is related to the number of pixels
considered in each range block and the contraction factor
of the maps. In fractal compression each range block is
represented by an affine transformation of the encoded
image that must be found by the encoder. Therefore LFD
can improve the fractal encoding in many aspects.

In this paper we propose a new algorithm for
compression using the above-mentioned idea. The
organization of the paper is as follows. A concise review
of fractal based coding followed by the presentation of the
proposed algorithm is given in Section 2. Experimental
results are detailed in Section 3 followed by the
conclusions in Section 4.

2. Bases and Development

In general, image compression can be separated into two
processes: the encoder or compressor and the decoder or
decompressor. A grayscale image f (N×N pixels) can be
seen as an element in the space E of functions

f : X → G

where the set X is taken as the set of spatial coordinates of
the image and G represents the set of intensity values of
the image. A metric is used such that (E, d) is a complete
metric space. The fractal coding of f can be seen as the
problem to find the contraction operator Tf on (E, d)
whose fixed point f = Tf (f) exist and is unique (Banach
Fixed Point Theorem) [Kubrusly (1997)]. This is known
as Iterated Function System (IFS) [Barnsley (1993)].

To find this operator Tf we define two sets on f : Ri

and Dj (Figure 1). The set Dj , called domain, is formed
from partitioning X into possibly overlapping regions. The
set Ri , called range, is also formed from X but from
partitioning X into non-overlapping regions with n×n
pixels. For each Ri a contraction ti: Dj → Rj is chosen such
that the distance d(Ri, ti(Dj)) is as small as possible,
considering all Dj. Each ti is an affine transformation:
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Then the operator Tf , or PIFS, is given by [LU (1997)]:

�
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where i = 1, 2, .. , m=(N/n)2. A more detailed description
of the encoding method, the notation used and

descriptions of basic implementations can be found in
(www.caa.uff.br/~aconci/compressao/fractal.html).

The fractal encoding process consists of the Tf

construction, which is defined by matching the best couple
of self-similar sets (Ri, Dj). This represents a compression
of information when compared with the size of the set
containing all pixel values from the image. Specially, if R
can be composed by a large number of pixels from the
original image (large range block). The disadvantage of
the encoding process is that the number of pairs to be
tested for each best couple is large, and each one has 8
possible space symmetries plus the change on contrast and
brightness (elements o and s of ti).

Fig. 1- Few domain image blocks, range image
blocks and two transformations t1:Dj→ R1;  t2:Dk→ R2.

Fractal decoding consists of iterating the mapping Tf

from any initial image until the iterations converge to a
fixed image, its atractor A (an approximation of the
original image). Given the set of transformations,
reproduction of the original image (decompression) is
computationally simple and fast [Barnsley and Hurd
(1993)].

The motivation for minimizing d(Ri, ti(Dj)) is
provided by the Generalized Collage Theorem [Fisher
(1995)]: Let Tf = Ui=1 ti be a contraction on the complete
(E, d) metric space with contraction factor s and fixed
point A. Then 

d (  f , A ) ≤ ( (1 - s).(1 - σ ) ) -1 (1 - σ n ) d (  f,  Ui=1 ti( f ) ),

where i = 1, 2, ..., m=(N/n)2, σ is the Lipshitz factor of f
and n is the exponent of eventual contractility.

The Collage Theorem gives an upper bound for the
distance between, the original image, f and its attractor, A,
as a function of the contraction factor s of T. Several
works use an approach where a digital image is partitioned
into square range blocks and square domain blocks of
twice the size of the range blocks [Jacobs et al.(1992),
Kominek (1995), Saupe and Hamzaoui (1994), Sze et al
(1996)]. The consequence of using such approach is that

t1

t2



any contraction factor of T is 1/2. So by the Collage
Theorem:
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If the contractility of the associated PIFS is reduced
to s = 1/4, 1/5 or 1/6, then by this theorem the distance, d,
between the original image, f , and the attractor , A , of the
PIFS will decrease to
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with these new set of contractions.

Our work utilizes the above described variable
contraction factor, based on fractal complexity of image
parts. For the complexity evaluation we compute the FD
of 2×2 groups of range blocks, local fractal dimension-
LFD, using a scheme developed in [Aquino (1998)] based
on the algorithm described in [Conci and Campos (1995)].
We use three levels of complexity: 2≤LFD<2.33,
2.33≤LFD<2.66 and 2.66≤LFD≤3. We choose here to use
only three ranges of LFD, others threshold values and
numbers of division can be seen in [Aquino (1998)] and
[Conci and Aquino (1999)].

The mapping ti is specified by the better domain Dj

chosen from a set of potential candidates called the
domain pool. The number of elements in a domain pool
determine the number of computations required for the
encoder to find ti(Dj) for each Ri.. Choosing the size of the
domain block as 4n×4n, 5n×5n or 6n×6n for each n×n
range block, significantly reduces the computation of the
search for the best self-similar matching, since the size of
the domain pool to be searched for each range block is
inversely proportional to the square of its scale factor. The
number of pixels in each block is related to its local fractal
dimension. The use of this approach will not have a
significant effect on the image quality, as can be seen in
the next section. Of course, other scales (1/2, 1/3, 1/8,...)
can be used, which has been analyzed in [Aquino (1998)].

The compressor of the proposed algorithm has the
following stages:

1. generate the domain pools considering the scale
factors (Figure 2);

2. compute LFD of a group of 2×2 range blocks;

3. select the domain pool based on the LFD of the
corresponding group of range blocks;

4. search the best reduced domain block for each
range block inside the group of 2×2 range blocks,
considering only the domain pool related with the LFD of
the group;

5. store the information of the transformation for
the best match;

6. return to stages 2 until the codification of all
range blocks.

Fig. 2 - Each pixel on the reduced domain block is formed
averaging the intensity of 4x4, 5x5 or 6x6 pixels on the
domain block.

The number of pixels in the range blocks is
important. In the original image each pixels is represented
by 8 bits (256 gray level image) or 8 bpp (bits per pixel).
In the compressed image each range block is represented
by a fixed number of bits, which is related to the number
of pixels used in the implementation to represent the
affine transformation ti. Therefore the compression ratio is
related to the number of range blocks. However, the
number of pixels in the range blocks is dependent of the
number of pixels of the image, because it will affect the
quality of the decompressed image. Large images may
have range blocks bigger than the ones of small images.
Range blocks with large number of pixels tend to produce
images with increased aliasing. Probably a good approach
for improving the compression is to use LFD to define the
number of pixels on the range block. This is beyond the
scope of this paper and will be treated in future works.

3. Comparing Performances

 Four images of different levels of complexities are used to
evaluate the proposed algorithm (Table 1). Figure 3 shows
original Milk, Lena, Goldhill and Peppers images. Figure
4 shows the reconstruction after compression by using our
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new algorithm and other approaches. To choose these
images as samples we observed the main motive, its type

(fine details, edges, lines), the number of elements, the
richness of self-similarities, and the background.

 

 

 

 

 

 

 

 

 

 

algorithm image Time (s) erms SNR rms Compression ratio(bpp)
Milk 43.54 10.49 7.83 1.5625
Lena 44.52 10.01 10.23 1.5625

Goldhill 45.02 8.82 10.57 1.5625
Peppers 44.74 10.22 8.78 1.5625

proposed

average 44.45 9.88 9.35 1.5625
Milk 469.35 9.67 8.48 3.5020
Lena 469.40 7.61 13.34 3.5020

Goldhill 469.37 6.79 13.43 3.5020
Peppers 469.43 7.55 11.95 3.5020

exhaustive
search

average 469.39 7.90 11.80 3.5020
Milk 0.19 28.85 3.03 0.6875
Lena 0.21 26.35 3.86 0.6875

Goldhill 0.27 27.66 3.63 0.6875
Peppers 0.21 29.02 3.26 0.6875

look at same
place

average 0.22 27.97 3.45 0.6875
Milk 9.58 13.78 5.90 1.4375
Lena 9.14 10.50 9.55 1.4375

Goldhill 9.60 10.35 8.87 1.4375
Peppers 9.61 12.21 7.65 1.4375

local search

average 9.48 11.71 7.99 1.4375
Milk 106.61 10.52 7.73 1.4375
Lena 106.65 8.62 11.71 1.4375

Goldhill 106.65 8.30 11.08 1.4375
Peppers 106.65 9.01 10.06 1.4375

restricted
area search

average 106.64 9.11 10.15 1.4375
Milk 8.70 13.90 5.94 1.4375
Lena 8.65 11.24 9.14 1.4375

Goldhill 8.65 10.24 9.02 1.4375
Peppers 8.23 11.95 7.61 1.4375

scanning steps
of 8 pixels

range of 4x4
pixels

average 8.56 11.83 7.92 1.4375

 Table 1- Comparing features using the proposed and other implemented algorithms

 

Fig. 3- Original images used on the proposed and other implemented algorithm



reconstruction with proposed algorithm

reconstruction with exhaustive search algorithm

reconstruction with local search algorithm

reconstruction with look at same place algorithm

reconstruction with restricted area search algorithm

reconstruction scanning with steps of 8 pixels and using range blocks of 4x4 pixels

Fig. 4- Recontructed images using the proposed and other implemented algorithm.



reconstruction scanning with steps of 8 pixels and using range blocks of 4x4 pixels
Fig. 5- Error image using the proposed and other implemented algorithm. Each image is obtained by

( 5 e(x,y) + 255 ) / 2  , where   e(x,y)  = (  f(x,y) - A(x,y) )

reconstruction with restricted area search

reconstruction with local search algorithm

reconstruction with exhaustive search algorithm

reconstruction with proposed algorithm

reconstruction with look at same place search algorithm



 The fidelity of an image after compression is an
important aspect of lossy compression methods (lossless
methods produce images that are an exact replica of the
original). However, quality is not an easy issue to
measure. Comparisons can be performed considering
visual quality of the decompressed image in Figure 4.
Figure 5 shows the error associated with the image
generated by subtracting the differences between the
original image given in Figure 3 and the decompressed
images of Figure 4 and then scaling these differences
between 0 and 255 so that they can be displayed as an
image. Comparing the performance using these error
images make it easier to see where the decompressed
image has been slightly blurred, the extension of regions
in which the high spatial frequencies have been removed,
and the position where the fine detail of the image have
been seriously lost.

 For numerical comparative relation, one measure of a
compressed image's fidelity is the root mean square error
erms between the decompressed image A(x,y) and the
original image f(x,y), both of size NxN:

 erms = ( Σ x=i 
N

  Σ y=i 
N

  [ e(x,y) ] 2 ) 0.5

 where e(x,y)  = (  f(x,y) - A(x,y) )

 The smaller the erms is, the closer the compressed
image is to the original. The root signal-to-noise ratio of
the compressed image is then given by

 SNRrms=(Σ x=i 
NΣ y=i 

N[A(x,y)]2 /Σ x=i 
NΣ y=i 

N[  e(x,y)]2) 0.5

The closer the compressed image is to the original
image, the higher the signal to noise ratio will be. The
main difficulty in using erms, SNR and others as a measure
of image quality is that in many instances these values do
not match the quality perceived by the human visual
system [Weeks Jr. (1996)]. The values of these features
plus compression time and compression ratio on bits per
pixel of the four image can be compared on Table 1.

The performance comparison uses five approaches.
The first is the basic Barnsley and Hurd (1993), which
performs an exhaustive search on all domain blocks for
each range block.

The second approach, searches for ti at the
corresponding places of the domain and range blocks
(Figure 6) and nowhere else. In this case the affine
transformation is coded, and the vertical and horizontal
position of the mapping are not included leading to a
higher compression ratio [Monro et al. (1993)].

The third approach, named the local search
algorithm, looks for the matching couple in 81 domain
blocks. The search is only made inside an area containing
4 positions above, below, to the left, and to the right to the
position of the range block (Figure 7).

Fig. 6 - Search strategies of look in the same place
approach.

Fig. 7 - Domain blocks near the range block position used
for best match examination on the here compared local

search approach.

In the forth approach, the restricted area search
algorithm, the main idea is to reduce the encoding time
considering only domain blocks in the same quadrant of
the range block (Kominek, 1995). For example, the image
to be compressed may be sectioned into four quadrants.
For a range block in the bottom left quadrant, one only
needs to search for the domain blocks in that same
quadrant (Figure 8). As a result, the search time is reduced
by a factor of four over that of using an exhaustive search.

The fifth approach is the called light brute force,
which restricts the domain blocks to be an integral
multiple of a predefined step (Kominek, 1995). In our
implementation of this approach, the range block under
consideration have 4×4 pixels and a step of 8 pixels
(Figure 9). The image quality of this approach suffers
from the fact that not every domain block is considered,
and the optimal pairing for a given range block may be
missed.

The compression time is reduced using one of these
search strategies, at the expense of some loss of image
quality. The data of Table 1 and in Figures 4 and 5 were
obtained using the same basic implementation running on

9

domain
blocks

9

domain
blocks



the same platform. All images have the resolution
128×128 and 256 gray levels. The average row in Table 1
of each method is visualized in Figure 10 which helps in
comparing different numerical aspects. The proposed
modification to the standard fractal image compression
method shows little loss of image quality. Only 2
approaches present errors smaller than the proposed.
However, their errors are close to the error obtained with
the proposed modification. Moreover, the compression
times of these 2 approaches are at least twice the time of
that of the new modification.

Fig. 8 - Search strategies of restricted area search
algorithm.

Fig. 9 - Search strategies of the called light brute force
search algorithm

4. Conclusions

This work presents an original modification to the
standard fractal image compression method. The approach
uses the Local Fractal Dimension (LFD) of the image
range blocks to select among the possible domain pools
the most adequate to be used in the search for the best
matching (between range and domain blocks). The
domain pools are generated from the image to be
compressed by the use of scale factors. The scale factors
are related to the image LFD. A group of range blocks
with a low LFD represents image regions with low
complexity, where larger scale factor can be applied,

which reduce the number of elements in the domain pool
speeding up the search for the best domain/range pair. On
the other hand, in image regions with large complexity,
high LFD, the scale reduction must be adequate to permit
detailed search in a more complex domain pool.

The efficiency of the proposed method is illustrated
by four image samples. This modification speeds up the
compression without a significant loss in the image
quality or change in the compression ratio. The rms-error
performance of 5 other approaches shows that only
approaches with at least twice the compression time
(restricted area search and exhaustive search) present
slightly better quality results.
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Fig. 10 - Visualization of the average performance of all implementation considering.


