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Abstract. A �nite subset of ZZ2 is called a structuring element. This paper presents a new and
simple algorithm for decomposing a convex structuring element as sequence of Minkowski additions of a
minimum number of subsets of the elementary square (i.e., the 3�3 square centered at the origin). Besides
its simplicity, the advantage of this algorithm over some known algorithms is that it generates a sequence
of non necessarily convex subsets, what means subsets with smaller cardinality and, consequently, faster
implementation of the corresponding dilations and erosions. The algorithm is based on algebraic and
geometrical properties of Minkowski additions. Theoretical analysis of correctness and computational
time complexity are also presented.
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1 Introduction

A �nite subset ZZ2 is called a structuring element (SE).
In this paper, we consider just non empty SE's. The
problem of decomposing a SE as a sequence of Min-
kowski additions of smaller subsets has been studied
by several researchers [15, 11, 13, 7, 9, 10, 14, 2, 3, 1]
and many di�erent algorithms have arisen to generate
decompositions. In fact, this problem is very hard,
since not all SE's have sequential decompositions by
Minkowski additions [13]. In addition, it is not known
an eÆcient algorithm for determining the existence of
such decompositions for an arbitrary SE.

However, it is well known that all convex SE has
sequential decompositions [13, 9]. Xu [13] developed
a complex algorithm for the decomposition of convex
SE's in terms of a minimum number of small convex
subsets In fact, Xu's algorithm can be divided into two
steps: (i) compute a decomposition of a convex SE by
solving a system of linear equalities with a �xed num-
ber of variables; (ii) apply an intricate optimization
process, subdivided in many complex cases, to join,
by Minkowski addition, the subsets found in (i). Park
and Chin [9] developed an extension of step (i) of Xu's
algorithm and provided an algorithm for �nding an op-
timum decomposition of convex SE's for 4-connected
parallel array processors. In both algorithms, all ele-
ments of the decomposition are convex subsets of the
elementary square (i.e., the 3 � 3 square centered at
the origin).

Here, we present a very simple algorithm for the
generation of decompositions of a convex SE as a se-
quence of Minkowski additions of a minimum number

of subsets (non necessarily convex) of the elementary
square. The computational time complexity of algo-
rithms that implement erosion and dilation depend on
the number of points of the SE, thus, our algorithm
has an advantage over Xu's and Park and Chin's algo-
rithms, since all elements in the output of their algo-
rithms contain subsets generated in our decomposition.
Another advantage is that our algorithm can be easily
understood and implemented.

Following this introduction, Section 2 presents the
mathematical foundations necessary for presenting the
algorithm. Section 3 gives the proposed algorithm.
Sections 4 and 5 present, respectively, the proof of
correctness and the time complexity analysis. Finally,
Section 6 gives some conclusions and future steps of
this research.

2 Mathematical Foundations

This section gives the mathematical foundations nec-
essary for presenting the proposed decomposition algo-
rithm. Subsection 2.1 states the problem of decomposi-
tion of SE's in terms of a sequence of Minkowski ad-
ditions. Subsection 2.2 presents de�nitions and prop-
erties used in the decomposition algorithm.

2.1 Problem Statement

For any SE X and y 2 ZZ2, Xy denotes the translation
of X by y, that is, Xy = fx 2 ZZ2 : x� y 2 Xg.

Let X and Y be SE's. The Minkowski addition

and subtraction of X and Y are the SE's given, respec-
tively, by X � Y = [fXy : y 2 Y g and X 	 Y =
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(b)(a)

A =

Figure 1: (a) A SE A. (b) The convex hull of A.

\fX
�y : y 2 Y g.
We take the point o = (0; 0) as the origin of ZZ2.

We call the 3 � 3 square centered at the origin the
elementary square.

The dilation and the erosion by the SE A are the
mappings given, respectively, by, for any X � ZZ2,
ÆA(X) = X �A and �A(X) = X 	A.

A property of dilations and erosions is their se-
quential decomposability [12, p. 47].

Proposition 1 Let A;B1; B2; � � � ; Bn be SE's. ÆA =
ÆB1ÆB2 � � � ÆBn

and �A = �B1�B2 � � � �Bn
if and only if

A = B1 �B2 � � � � � Bn.

The speed up achieved by representing erosions
and dilations by a SE decomposed as a sequence of
Minkowski additions in terms of subsets of the elemen-
tary square, in conventional machines, was quantita-
tively studied by Maragos [8, p. 77], who showed exam-
ples where the time complexity of the algorithms that
implement erosions and dilations went from quadratic,
in the direct implementation, to linear, in the decom-
position of the SE by Minkowski additions.

Given a SE A, a sequence of subsets of A is the
succession of subsets of A in a �xed order. For example,
if B1; B2; B3; B4; B5; B6; B7 are distinct subsets of A,
then [B7; B1; B1; B1; B2; B2; B3; B1; B4; B5; B2; B6] is
a sequence of subsets of A. In this paper, we consider
just �nite sequences.

Given a SE A and two sequences of subsets of
A, say S and R, the concatenation of the sequences

S and R, denoted by S � R, is the sequence formed
by the elements of S followed by the elements of R.
For example, if S = [B1; B2] and R = [B1; B3] are
two sequences of subsets of A, then the concatenation
T = S � R is the sequence T = [B1; B2; B1; B3].

A SE A is said to have a sequential decomposi-

tion (or A is decomposable) if there exists a sequence
[B1; � � � ; Bn] of subsets of the elementary square such
that A = B1 � B2 � � � � � Bn. The sequence [B1; B2;
� � � ; Bn] is called a decomposition sequence of A.

A decomposition sequence of a SE can be decom-
posed in two subsequences: shape and translation. The
shape subsequence represents the shape of the SE and
it is formed by the subsets in the sequence that have
at least two points. The translation subsequence de-
�nes the position of the SE in the integer plane and it

A =

(a)

B1 = B2 = B3 =

B4 = B5 =

(b)

[B1; B2; B2; B3; B3; B3; B4; B4; B4; B4; B5; B5; B5; B5]

(c)

Figure 2: (a) A SE A. (b) The subsets of the elementary square
that are in B(A). (c) The invariant sequence of A.

is formed by the unitary subsets in the sequence. The
shape subsequence [B1; � � � ; Bk] is called, respectively,
the shape decomposition (or simply, decomposition) of
A and the number k is the length of the decomposition
of A.

The convex hull C(A) of a SE A is the intersection
of all half planes that contain A. We suppose that sub-
sets are represented in a square grid and consider just
the half planes with slopes 0, 45, 90 and 135 degrees
to build the convex hull (see Figure 1 for an example).
A SE A is said convex if and only if A = C(A).

In this paper, we are interested in solving the fol-
lowing problem.

Problem 1 Given a convex SE A, �nd a shape de-

composition of A with minimum length.

Xu [13] presented an intricate algorithm for solv-
ing this problem and stated the following proposition.

Proposition 2 If A is a convex SE, then A has a se-

quential decomposition.

In this paper, we view the problem with a dif-
ferent optics and present a very simple algorithm for
decomposing convex SE's.

2.2 De�nitions and Properties for the Algo-

rithm

Let A and B be SE's. We say that B is an invariant

SE (or simply, an invariant) of A if and only if A =
(A	B)�B.

Example 1 The SE's B1, B2, B3, B4 and B5, pre-

sented in Figure 2b, are invariants of the SE A, pre-
sented in Figure 2a.

Propositions 3 and 4 give some properties of in-
variants of a given SE. The �rst one was stated by
Serra [12, p. 53] and the second one by Zhuang and
Haralick [15, Proposition 5].
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Figure 3: Axis ~u0 and ~u1.

Proposition 3 Let A and X be SE's. X is invariant

of A if and only if there exists a SE Y such that A =
Y �X.

Proposition 4 Let A;X and Y be SE's. If A = X �
Y , then X and Y are both invariants of A.

The following corollary is an immediate conse-
quence of the Proposition 4 and was stated in [5].

Corollary 5 Let A be a SE. If [B1; B2; � � � ; Bk] is a

shape decomposition of A, then each Bi is an invariant

of A.

Let X be a SE and let n be a positive integer. The
succession of n�1 Minkowski additions of X is the SE
denoted by nX , that is, nX = ((X�X)�� � ��X). This
notation is extrapolated for n = 0 by stating 0B =
f(0; 0)g.

Let A and X be SE's such that X is an invariant
of A. The multiplicity of X with respect to A is the
greatest positive integer n such that nX is an invariant
of A.

Example 2 The multiplicity of the SE's B1, B2, B3,

B4 and B5, presented in Figure 2b, with respect to A,
presented in Figure 2a, are, respectively, n1 = 1, n2 =
2, n3 = 3. n4 = 4 and n5 = 4, since, for any i 2
f1; 2; 3; 4; 5g, (ni + 1)Bi is not an invariant of A.

Let us state an equivalence relation on a generic
collection C of subsets of ZZ2. Let X and Y be two
elements of C. We say X and Y are equivalent under

translation if and only if one can be built by a trans-
lation of the other, that is, X � Y if and only if there
exists h 2 ZZ2 such that Xh = Y .

Since the equivalence under translation is an equiv-
alence relation (i.e., reexive, symmetric and transi-
tive), the set of their equivalence classes (i.e., the sets
composed exactly by all the equivalent elements in C)
constitutes a partition of C.

We denote by P(C) the set of all the equivalence
classes (under translation) on C. We denote by E(C)
a set composed by exactly one element of each equiv-
alence class in P(C), that is, E(C) is a set such that
jE(C)j = jP(C)j.

~u1

MAX0(A) = 3MIN0(A) = �1

~u0

MAX1(A) = 1

MIN1(A) = �2

A

Figure 4: A SE A with the axis ~u0 and ~u1.

The set of all subsets of the elementary square
that have at least two points is denoted Q, that is,
Q = fB � f�1; 0; 1g2 : jBj � 2g.

Given a SE A, the set of all elements of E(Q) that
are invariant of A is denoted B(A), that is, B(A) =
fB 2 E(Q) : B is an invariant of Ag.

Example 3 The set B(A) for the SE A presented in

Figure 2a is B(A) = fB1; B2; B3; B4; B5g, where B1,

B2, B3, B4 and B5 are the SE's presented in Figure 2b.

The next proposition was stated in [5] and it gives
an important property of multiplicity of a SE.

Proposition 6 Let A be a SE and X 2 B(A). If n is

the multiplicity of X with respect to A, then any de-

composition sequence of A contains at most n elements

equal to X.

Let X be a SE and n be a non-negative integer. If
n 6= 0, then the sequence formed by the succession of n
subsets X is denoted by Seq[X;n], that is, Seq[X;n] =
[X;X; � � � ; X ]. If n = 0, Seq[X; 0] denotes the empty
sequence.

Let A be a SE. Let B1; B2; � � � ; Bk be all elements
of B(A) in a �xed order and ni be the multiplicity of
Bi with respect to A (i = 1; � � � ; k). The invariant

sequence of A is the sequence SeqInv[A] = Seq[B1; n1] �
Seq[B2; n2] � � � � � Seq[Bk; nk].

Example 4 The sequence [B1; B2; B2; B3; B3; B3; B3;
B4; B4; B4; B4; B5; B5; B5; B5] (presented in Figure 2c)
is the invariant sequence of the SE A presented in Fig-

ure 2a.

Now, we will state a lower bound for shape de-
compositions of a given SE. For that, we analyze some
measures taken over the SE's.

Let ~u0 and ~u1 be the Cartesian axis that inter-
sect the origin and have slopes, respectively, 0 and 90
degrees (see Figure 3). For a given point x 2 ZZ2, let
x0 and x1 be the orthogonal projections of x at the
Cartesian axis ~u0 and ~u1, respectively.

Example 5 The orthogonal projections of the point

y = (�5; 2) 2 ZZ2 are y0 = �5 and y1 = 2 (see Fig-

ure 3).
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Figure 5: Rectangular projection of A.

Let A be a SE. For i = 0; 1, let MAXi(A) and
MINi(A) be, respectively, the maximum and the mini-
mum orthogonal projections at the Cartesian axis ~ui of
the points in A, that is, MAXi(A) = maxfxi : x 2 Ag
and MINi(A) = minfxi : x 2 Ag.

Example 6 For example, the maximum and the min-

imum orthogonal projections of the SE A presented in

Figure 4 are, respectively, MAX0(A) = 3, MAX1(A) =
1 and MIN0(A) = �1, MIN1(A) = �2.

The next proposition, stated in [5], gives a prop-
erty of maximum and the minimum orthogonal projec-
tions.

Proposition 7 If A and B are SE's, then MAXi(A�
B) = MAXi(A) + MAXi(B) and MINi(A � B) =
MINi(A) +MINi(B).

The rectangular projection of the SE A is the vec-
tor �(A) 2 ZZ2 such that, for i 2 f0; 1g, �i(A) =
MAXi(A)�MINi(A). In other words, the coordinates
of the rectangular projection of a SE A are the lengths
of the edges of the smallest rectangle that contains A.
Note that the rectangular projection is independent of
translation, that is, �(A) = �(Ah), for any h 2 ZZ2.

Example 7 The rectangular projection of the subset

A presented in Figure 5 is �(A) = (7; 7).

One interesting property of this measure is given
in the following proposition and was stated in [5].

Proposition 8 Let A;X; Y be SE's. If A = X � Y ,
then �(A) = �(X) + �(Y ).

The next proposition, stated in [5], gives a lower
bound for the length of decompositions of a given SE.

Proposition 9 Let A be a SE. If A has a decomposi-

tion, then a shape decomposition of A contains at least

lower(A) = dmaxf�0(A); �1(A)g=2e elements.

A =

(a) (b)

B1 = B2 = B3 =

B4 = B5 =

[B1; B2; B2; B3; B3; B3; B4; B4; B4; B4; B5; B5; B5; B5]

(c)

[B1; B2; B3; B3; B3; B4]

(d)

[B2; B2; B4; B4; B4; B4]

(e)

Figure 6: (a) A SE A. (b) The subsets of the elementary square
that are in B(A). (c) The invariant sequence of A according
to the order chosen to construct it. (d) Output of algorithm
Decompose. (e) Output of Xu's algorithm.

3 Search of an Optimum Decomposition

This section presents the proposed algorithm for the
decomposition of convex SE's.

Algorithm Decompose:

Input: A convex SE A that is not an unitary set.
Output: Optimum shape decomposition of A.

01: Let [B1; B2; � � � ; Bn] be the invariant se-
quence of A.

02: Y0  f(0; 0)g
03: i j  0
04: S0(A) [ ] /* empty sequence */
05: while (�(Yj) 6= �(A)) do
06: begin

07: i i+ 1
08: if (Yj �Bi is an invariant of A) then
09: begin

10: j  j + 1
11: Sj(A) Sj�1(A) � [Bi]
12: Yj  Yj�1 �Bi

13: end

14: end

15: output the sequence Sj(A).

Depending on the order chosen to construct the
invariant sequence at Step 01 in Algorithm Decom-

pose, di�erent outputs (shape decompositions) arise.
We have sorted the elements of the invariant sequence
in decreasing order, according to the sum of the coor-
dinates of the rectangular projections of each subset
in the invariant sequence, and, at the same time, in
increasing order, according to the number of points
of each subset in the invariant sequence. For exam-
ple, Figure 6c presents the invariant sequence of the
SE A (presented in Figure 6a) according to the or-
der chosen to construct it. In this �gure, observe that



A =

(a) (b)

B1 = B2 = B3 =

B4 = B5 =

[B1; B2; B2; B3; B3; B3; B4; B4; B4; B4; B5; B5; B5; B5]

�(A) = (8; 12)

lower(A) = 6

(c)

Y0 =

�(Y0) = (0; 0)

S0(A) = []

(d)

Y1 =

�(Y1) = (2; 2)

S1(A) = [B1]

(e)

Y2 =

�(Y2) = (4; 4)

S2(A) = [B1; B2]

(f)

Y3 =

�(Y3) = (5; 6)

S3(A) = [B1; B2; B3]

(g)

Y4 =

�(Y4) = (6; 8)

S4(A) = [B1; B2; B3; B3]

(h)

Y5 =

�(Y5) = (7; 10)

S5(A) = [B1; B2; B3; B3; B3]

(i)

Y6 =

�(Y6) = (8; 12)

S6(A) = [B1; B2; B3; B3; B3; B4]

(j)

Figure 7: An example showing the algorithm running.

�0(B1)+ �1(B1) = �0(B2)+ �1(B2) > �0(B3)+ �1(B3)
and B1 contains less points than B2.

According to this sorting, the algorithm Decom-

pose prefers to choose non-convex SE's rather than
convex ones for the shape decomposition. Thus, as the
time complexity of algorithms that implement erosions
and dilations depends on the number of points in
the SE, the algorithm Decompose has an advantage
over Xu's algorithm, since all elements in the output
of Xu's algorithm are convex subsets of the elementary
square [13]. For an example, in Figures 6d and 6e are
presented, respectively, the output of our and Xu's al-
gorithm. In this particular example, the di�erence is
just four points, but for bigger SE's the di�erence can
be considerable.

In Figure 7, we show a simple example of the algo-
rithm Decompose running for �nding a shape decom-
position of the convex SE A, presented in Figure 7a.
The invariant sequence, the rectangular projection and
the lower bound of A are presented in Figure 7c. Fig-
ure 7d presents the unitary set Y0 that contains the
origin and the empty sequence S0(A) that are com-

puted, respectively, at steps 02 and 04. Figure 7e
presents the set Y1 = Y0 � B1 (computed at step 12)
and the sequence S1(A) = [B1] (computed at step
11), since Y0 � B1 is an invariant of A (checked at
step 08). In a similar way, in Figure 7f , we show the
set Y2 = Y1 � B2 (computed at step 12) and the se-
quence S2(A) = [B1; B2] (computed at step 11), since
Y1 �B2 is an invariant of A (veri�ed at step 08). The
next subset B3 is not selected to be concatenated with
S2(A), since Y2 �B3 is not an invariant of A (checked
at step 08). Figures 7g, 7h and 7i present the sets
Y3 = Y2 � B3, Y4 = Y3 � B3 and Y5 = Y4 � B3 (com-
puted at step 12) and the sequences S3(A), S4(A) and
S5(A) (computed at step 11), since Y2 � B3, Y3 � B3

and Y4 � B3 are invariant of A (veri�ed at step 08).
In Figure 7j, the set Y6 = Y5 � B4 and the sequence
S6(A) are computed (at steps, respectively, 12 and 11),
since Y5 � B4 is an invariant of A. In addition, since
�(Y6) = �(A), then the algorithm stops. Observe that
Y6 � A and lower(A) = 6. So, S6(A) is an optimum
decomposition for the convex SE A.

4 Correctness of the Algorithm

In this section, we prove the correctness of the algo-
rithm. Although the algorithm Decompose is simple,
its correctness proof is not intuitive. We divide this
section in two parts. In the �rst, we prove that the
algorithm output is a shape decomposition of a given
convex SE and in the last one, we show that this de-
composition is optimum.

4.1 The Output of the Algorithm is a Shape

Decomposition

Given a convex SE A. Let SeqInv[A] = [B1; B2; B3; � � � ;
Bn]. At step 12, the algorithm computes the SE
Yj = Yj�1 � Bi. For each j computed by the algo-
rithm, we call the invariant built sequence of A the se-
quence [Y0; Y1; Y2; � � � ; Yj ] and the invariant remainder

sequence of A the subsequence Remainder[Yj ] = [Bi+1;
Bi+2; � � � ; Bn] of SeqInv[A].

Given a convex SE A, we will denote Sj(A) =
[C1; C2; � � � ; Cj ] the sequence built by the algorithm
when it computes the SE Yj = Yj�1 � Cj . Note that,
if [Y0; Y1; Y2; � � � ; Yj ] is an invariant built sequence of
A, then, Cj is the �rst element in Remainder[Yj�1] such
that Yj�1 � Cj is an invariant of A.

Given a convex SE A, if the invariant sequence
of A is built in the manner described in Section 3,
then the following proposition, stated in [4], gives an
important result in order to prove that the output of
the algorithm is a shape decomposition of A.

Proposition 10 Let A be a convex SE. If the sequence



[Y0; Y1; Y2; � � � ; Yj ] is the maximal invariant built se-

quence of A, then �(Yj) = �(A) and Yj � A.

Given a convex SE A, when a maximal invariant
built sequence [Y0; Y1; Y2; � � � ; Yj ] is found, then, by
Proposition 10, the rectangular projections of A and Yj
are equal and, therefore, the algorithm stops (step 05),
and also by Proposition 10, Yj � A and therefore, the
sequence Sj(A) = [C1; C2; � � � ; Cj ] is a decomposition
of A. It remains to show that the length of Sj(A) is
minimum.

4.2 The Output of the Algorithm is an Opti-

mum Shape Decomposition

The next proposition, stated in [4], is necessary to
prove that the length of Sj(A) is minimum.

Proposition 11 Let A be a convex SE. If the se-

quence [Y0; Y1; Y2; � � � ; Yj ] is an invariant built sequence

of A, then lower(Yj) = j.

Finally, the following theorem gives the proof that
the output of the algorithm is an optimum shape de-
composition of a given convex SE A.

Theorem 12 Let A be a convex SE. If the sequence

[Y0; Y1; Y2; � � � ; Yj ] is the maximal invariant built se-

quence of A, then Sj(A) is the optimum shape decom-

position of A.

Proof: By Proposition 10, Yj � A. So, �(Yj) = �(A),
and, consequently, lower(Yj ) = lower(A). By Propo-
sition 11, lower(Yj ) = j. Since Sj(A) contains exactly
j elements and j = lower(A), then, clearly, Sj(A) is
the optimum shape decomposition of A.

Given a convex SE A, when a maximal invariant
built sequence Sj(A) = [Y0; Y1; � � � ; Yj ] is found, then,
by Proposition 10, Yj � A and therefore, the sequence
Sj(A) = [C1; C2; � � � ; Cj ] is a decomposition of A. By
Theorem 12, Sj(A) is the optimum shape decomposi-
tion of A.

5 Time Complexity of the Algorithm

In this section, we discuss about the time complexity
of the algorithm Decompose. The crucial steps for
the time complexity of the algorithm are the steps 01,
05 and 08. In this section, given a convex SE A, mp

and ms denote, respectively, the number of points of A
and the number of elements in the invariant sequence
of A. Let n = �0(A) + �1(A). Clearly, mp = O(n2).

Subsections 5.1 to 5.3 present the time complexity
analysis of steps 01, 05 and 08. Subsection 5.4 gives
the time complexity of the algorithm.

5.1 Time Complexity of Step 01

In order to construct the invariant sequence of a given
SE A, it is necessary to verify if each element B 2 E(Q)
is an invariant of A and compute the multiplicity of B
with respect to A. The time complexity for verifying
if (A 	 B) � B = A is O(mp), since the number of
points in B is at most 9. The multiplicity of a given
SE with respect to A is at most maxf�0(A); �1(A)g =
O(n). The cardinality of E(Q) is at most 29 subsets of
the elementary square. Thus, the time complexity to
compute the invariant sequence of A is O(mp)�O(n)�2

9,
that is, O(n3), since mp = O(n2).

5.2 Time Complexity of Step 05

In order to verify if �(Yj) 6= �(A), we have to compute
�(Yj) and �(A).

Let Sj(A) = [C1; C2; � � � ; Cj ] be the sequence con-
structed by the algorithm when it has computed the
SE Yj . The rectangular projections of each B 2 E(Q)
can be computed previously, since all elements in E(Q)
are �xed. So, by Proposition 8, �(Yj) = �(Yj�1) +
�(Cj). We can consider that the rectangular projec-
tion �(Yj�1) has already been computed. So, in this
case, the time complexity for computing �(Yj) is O(1).

We can compute �(A) only once and compare it
with �(Yj), for each j. The time complexity to compute
�(A) is O(n) [5].

Once �(Yj) and �(A) have been computed, the
time complexity for comparing them is O(1).

5.3 Time Complexity of Step 08

In order to verify if Yj � Bi is an invariant of A, we
have to check if A = (� � � ((A	C1)	C2)	 � � � 	Cj)	
Bi)�C1)�C2)�� � ��Cj)�Bi). The time complexity
for computing, for k = 1; 2; � � � ; j, A 	 Ck, A � Ck,
A	Bi or A	Bi is linear with respect to the number
of points in A, that is, O(mp), since each Ck and Bi

contain at most 9 points. Then, the time complexity
for computing A 	 Ck, A � Ck, A 	 Bi or A 	 Bi is
O(n2), since mp = O(n2). So, the overall complexity
for verifying if Yj �Bi is an invariant of A is O(j �n2).

5.4 Overall Time Complexity of the Algorithm

The multiplicity of a given SE with respect to A is at
most maxf�0(A); �1(A)g and the number of all pos-
sible subsets of the elementary square is 29. Thus,
the number of elements ms in SeqInv[A] is at most
29 �maxf�0(A); �1(A)g = O(n), that is, ms = O(n).

By Proposition 11, j = lower(Yj), and, by Propo-
sition 9, lower(Yj) = dmaxf�0(Yj); �1(Yj)g=2e and



lower(A) = dmaxf�0(A); �1(A)g=2e = O(n). Then,
j = lower(Yj) � lower(A) = O(n), since �0(Yj) �
�0(A) and �1(Yj) � �1(A).

As each element of the invariant sequence of A
is checked at most once in the loop, the number of
executions of the comparison at steps 05 and 08 is at
most ms = O(n).

Since each comparison at step 05 takes time O(1),
the overall time complexity of step 05 is ms = O(n).

Since each comparison at step 08 is O(j � n2), for
j = 1; 2; � � � ; lower(A), the overall time complexity of
step 08 is O(1 �n2)+O(2 �n2)+ � � �+O(lower(A) �n2).

Hence, the overall time complexity of the algo-
rithm for �nding an optimum decomposition of a con-
vex SE A is O(lower(A)2 � n2), that is, O(n4), since
lower(A) = O(n).

6 Conclusion

In this paper, we present a new and simple algorithm
for sequential decomposition of a convex SE in terms
of a minimum number of subsets (not necessarily con-
vex) of the elementary square. The time complexity
of this algorithm is O(n4), where n is the sum of the
coordinates of the rectangular projection of the input
convex SE.

Although the time complexity of algorithms of
Xu [13] and Park and Chin [9] is O(n2), the �rst one
is very complicated and the second one is an exten-
sion of Xu's algorithm for 4�connected parallel array
processors.

All elements in the decomposition given by these
algorithms are convex. So, as the computational time
complexity of algorithms that implement erosion and
dilation depends on the number of points in the SE,
our algorithm has an advantage over Xu's and Park
and Chin's algorithms.

Finally, theoretical analysis (proof of correctness
and computational time complexity) of the proposed
algorithm is presented.
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