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Abstract. Texture analysis and synthesis is very important for computer graphics, vision, and image processing.
This paper describes an algorithm which can produce new textures with a matching visual appearance from a given
example image. Our algorithm is based on a model that characterizes textures using a nonlinear deterministic func-
tion. During analysis, an example texture is summarized into this function using tree structure vector quantization.
An output texture, initially random noise, is then synthesized from this estimated function. Compared to existing
approaches, our algorithm can efficiently generate a wide variety of textures. The effectiveness of our approach is
demonstrated using standard test images from the Brodatz texture album.
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1 Introduction

Many applications in computer graphics, vision, and im-
age processing can benefit from a texture analysis and syn-
thesis algorithm. For example, textures have long been
used to decorate object surfaces in computer rendered im-
ages. However, natural textures are often difficult to gener-
ate manually; therefore an algorithm to synthesize a large
texture from a small scanned patch will be desirable. In ma-
chine vision, the ability to discriminate, segment, or clas-
sify textures is essential for tasks such as automatic inspec-
tion. Natural texture images are also notoriously hard to
compress due to their high frequency contents, and compact
representation may be achieved via a good texture analysis
algorithm. Despite these wide applicability, however, an al-
gorithm that is both efficient and capable of representing all
the texture properties has yet to come.

In this paper, a new texture analysis and synthesis al-
gorithm is proposed (Figure 1). We base this algorithm on a
model that represents textures using a nonlinear determin-
istic characteristic function ([25]). In a two-phase process,
the parameters of this function are first analyzed from an
example texture using tree structure vector quantization. In
the second phase, a new texture is synthesized based on the
estimated parameters. The key advantage of this approach
is that it can efficiently generate high quality textures. In
addition, it can be easily implemented; the most complex
component is tree structure VQ.

The paper is organized as follows. We introduce our
texture model in Section 2 . Section 3 presents the tex-
ture generation algorithm built upon this model. Section 4
shows some example textures generated by our algorithm.
We compare our algorithm with previous techniques in Sec-
tion 5, and conclude this paper in Section 6.

2 Texture Model

Texture is a common visual experience. However, a precise
definition of texture is difficult to formulate ([22]). Tradi-
tionally, textures have been categorized as either structural
or stochastic. A structural texture is characterized by a set
of primitives (texons) and placement rules. For example,
a brick wall texture is generated by tiling up bricks (primi-
tives) in a layered fashion (the placement rule). A stochastic
texture, on the other hand, do not contain explicit primi-
tives (such as grass and sand). Since most natural textures
are neither complete stochastic nor structural, we attempt to
characterize both kinds of textures with a single model.

Our texture model is based on the Markov Random
Field (MRF, [3]). That is, the probability distribution of the
intensity value for a single pixel is completely determined
by the intensity values of pixels in its spatial neighborhood.
More formally, letN(x, y) be the collection of pixel values
in the neighborhood of a pixel located at(x, y). Then the
value of pixel(x, y), I(x, y), can be represented as follows:

I(x, y) = F (N(x, y)) (1)

whereF is a probability distribution that determines
the pixel value ofI(x, y) from its neighborhoodsN(x, y).
The size of the neighborhood determines the “randomness”
of the texture. Textures with regular patterns such as tiled
floor require large neighborhoods, while small neighbor-
hoods are sufficient for stochastic textures as such sand beach.

Given such a model, the goal of a texture analysis and
synthesis algorithm is to estimate the parameters ofF , and
generate new textures by sampling from it. However, be-
cause sampling from a MRF is usually computationally de-
manding, we restrict ourF to be a deterministic function,



Original Texture

Analysis

Model

SynthesisTexture
Analysis/Synthesis

Algorithm

Synthesized Texture

Figure 1: Given an example texture image, our algorithm first analyzes its parameters based on a prior model. A new texture
is then synthesized, based on this model along with the estimated parameters.

hereafter referred to as theTexture Characteristic Function.
As will be demonstrated, restrictingF to be deterministic
can speed up the computations without sacrificing the qual-
ity of the synthesis results.

3 Texture Generation

Our texture generation process starts with an example tex-
ture and analyzes the parameters of the corresponding char-
acteristic function (Section 3.1). An output texture, ini-
tially random, is then synthesized from this function (Sec-
tion 3.2). The representation ofF is carefully chosen so
that both the analysis and synthesis phases can be efficiently
executed. For clarity, we summarize the algorithm in Sec-
tion 3.5.

3.1 Texture Analysis

In the analysis phase, the parameters ofF for the input tex-
ture are estimated. However, a general representation of
F must first be determined. One option is the multilayer
neural network, often used to represent complex high di-
mensional functions. However, because general neural net-
works may require excessive training time, we use the ra-
dial basis function, which can be trained noniteratively.

Radial Basis Function. Given a functionf(x), the goal
of the radial basis function is to approximate it as a linear
combination of some elementary functions{φi(x)}:

f(x) =
K∑
i=1

wiφi(x) (2)

where{φi} are certain simple functions (e.g., the Gaussian
function); {wi} are the weight factors for these functions
andK is the number of basis functions. Many methods
can be used to esimate these parameters. A common way
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Figure 2: Example of the radial basis function. An arbitrary
1D function,f(x), is approximated as a linear combination
of several simple functions,{φi}. These functions{φi} are
translated version of a simple 1D Gaussian function.

is to use a clustering algorithm (e.g., vector quantization)
to determine the{φi} first, and then to use linear equations
to solve{wi}. The advantage of this approach is that the
training is non-iterative and fast, but the parameters may be
suboptimal. Better results can be achieved via more rigor-
ous techniques, such as EM (expectation-maxization), with
the disadvantage of longer computation time. More infor-
mation about radial basis functions and the relevant opti-
mization algorithms can be found in [1].

Based on this radial basis function representation, we
express our texture characteristic functionF as follows:

I(x, y) = F (Nx,y) =
K∑
i=1

wiφi(Nx,y) (3)

whereNx,y is the concatenation of the set of neighborhood
pixelsN(x, y) of (x, y) into a single vector;{φi} are cho-



sen to be Gaussian functions with diagonal covariance ma-
trices; and{wi} are weight factors.

The free parameters of the equation, which include the
mean and covariance matrices of the Gaussian functions
{φi} and the weight factors{wi}, are trained from the in-
put texture image. Before the training, the number of basis
functionsK is decided by the user, and the training neigh-
borhood vectors are gathered from the input texture image.
Given these training vectors,K codewords are calculated
using standard tree structure VQ (TSVQ, [11]), and these
codewords are used as the means of the functions{φi}. The
covariance matrix of thejth basis function,φj , is then de-
termined from the componentwise variances of the set of
vectors mapped to codewordj, andwj is the average of
I(x, y) from the same set of vectors.

Using TSVQ as the training algorithm presents several
advantages. First, the training can be efficiently executed.
If the number of training vectors isT and the number of
basis functions isK, then the average case time complexity
for TSVQ isO(T ∗ log(K)), which is very fast compared
to other algorithms such as EM. Second,F (Nx,y) can be
efficiently evaluated using the tree data structure built dur-
ing the training process. This is crucial for the synthesis
phase, sinceF needs to be calculated for each output pixel,
as shown in the next section.

3.2 Texture Synthesis

In the synthesis process, the output texture will be trans-
formed from a random noise to a new image based on the
estimatedF . The synthesis process can be described by the
following pseudo code:

1. Loop through all pixels(x, y) in the output texture in
raster scan order.

2. Collect the neighborhood vector,Nx,y, of pixel (x, y).

3. AssignF (Nx,y) to be the synthesized color of pixel
(x, y).

Most of the computation during synthesis is devoted
to the evaluation ofF (Nx,y). Normally, this evaluation has
time complexityO(K), since there areK terms in Equa-
tion 3 and eachφi needs to be computed. However, because
these Gaussian functions{φi} are localized, only a few of
them contribute significantly toF . For further acceleration,
we only compute oneφk with close mean to the query vec-
tor Nx,y, and usewkφk as the value ofF (Nx,y). Thisφk
can be determined quickly using the tree data structure built
for F . In other words, evaluatingF (Nx,y) is equivalent
to encodingNx,y using tree structure VQ. Because of this
structure, the search can be executed with time complexity
O(log(K)) instead ofO(K).

3.3 Neighborhood

Because the output texture is synthesized in a raster scan
ordering, we restrict our neighborhood system,N(x, y), to
a causal neighborhood, which means thatN(x, y) depends
only on the previous pixels in the raster scan ordering. A
noncausal neighborhoodN(x, y) will lead to an iterative
synthesis algorithm, which will take longer computation
time.

Though we model texture images based on local char-
acteristic functions, the required size of the neighborhood,
N(x, y), can vary over different kinds of textures. Small
neighborhoodsare sufficient for random or micro-structured
textures, but textures with extended patterns require larger
neighborhoods. Although one may attempt to make the
neighborhood as large as possible, two problems can occur:
the computation will be slower, andF will be estimated
less accurately due to the limited amount of training data.
These problems can be alleviated using the multiresolution
pyramid.

3.4 Multiresolution Pyramid

The texture analysis and synthesis algorithm introduced above
is based on single resolution. To capture extended texture
structures while avoiding large neighborhoods, the Gaus-
sian pyramid is used. In a Gaussian pyramid, each suc-
cessive level is a low pass filtered image of the higher res-
olution level, so large scale texture structures, which may
span several pixels in the highest resolution, will be close
together within a small neighborhood in some low resolu-
tion level. In this setting, the neighborhood of a pixel(x, y)
at resolution levelL, N(x, y, L), can contain pixels in the
same level L, as well as pixels in lower resolution levels.

Based on the Gaussian pyramid, the texture genera-
tion process is modified as follows. In the analysis process,
a pyramid is first built from the example texture. Because
different levels can have different texture characteristics, we
estimateFL separately for each level L. During the synthe-
sis process, the Gaussian pyramid of the output texture is
generated, from lower to higher frequency levels, using the
correspondingFL. The highest resolution will contain the
final synthesized texture. Figure 3 shows an example of
texture generation using a Gaussian pyramid with6 levels.

Because the Gaussian pyramid contains at most1/3
more pixels of the original image, the time complexity of
the analysis phase and synthesis phase areO(A ∗ log(K))
andO(S ∗ log(K)), respectively, whereA is the number of
pixels of the original image;S the number of pixels of the
output image; andK the number of basis functions.

3.5 Summary

Our texture generation algorithm can be summarized as fol-
lows:



Figure 3: The top row shows the Gaussian pyramid of the input texture, with successive lower resolution images toward the
right side. During the synthesis process, the output texture, shown in the bottom row, is sampled from the estimated texture
characteristic function, from lower to higher resolutions.

Input:

Ia The example texture image

Is The output texture image of desired size and shape, ini-
tialized to be a white random noise

K The number of basis functions used to approximate the
characteristic functions

N The neighborhood system

Analysis:

Step 1 Build a Gaussian pyramidGa with L levels from
the input imageIa.

Step 2 Use TSVQ to train the texture characteristic func-
tions,Fi, for each leveli ofGa, using the training data
gathered from the neighborhood vectors,N(x, y, i), of
all pixels (x, y, i) at theith level ofGa. This set of
functionsFi will be used during the synthesis phase.

Synthesis:

Step 1 Build a Gaussian pyramidGs with L levels from
the output imageIs.

Step 2 Loop through all pixels(x, y, i) inGs in raster scan
ordering, from the lowest resolution to the highest res-
olution. Collect the neighborhood vector,N(x, y, i),
of pixel (x, y, i). Then assign the value ofFi(N(x, y, i))
toGs(x, y, i).

Step 3 The final synthesized texture will be level 1 ofGs.

4 Results and Discussion

Our algorithm is able to synthesize a broad range of tex-
tures. Examples using images from the Brodatz texture al-
bum ([2]) are shown in Figure 4. Structured textures (D101,
D103), textures with dominating orientations (D11, D15),
random textures with microscopic structures (D57, D84)
or large scale structures (D86, D71) are all successfully
synthesized. Our algorithm is also efficient: each texture
shown in Figure 4 can be generated in minutes. In compar-
ison, many existing techniques will take hours to generate
textures of similar sizes ([28], [18], [19]).

Based on the locality and stationarity assumptions, our
algorithm is less effective in modeling textures which vi-
olate these conditions. For example, the brick structure
in D95 (Figure 5) extends over a wide range of the im-
age area and violates the locality assumption, while D87
(Figure 5), which contains a tree branching structure, can
not be described with a stationary process; rather a larger
neighborhood or a model capable of representing inhomo-
geneous structures will be required. Also, a formal theoret-
ical treatment should be justified for several aspects of our
algorithm. For example, when starting from an arbitrary
white noise, it is not known if the output image will always
converge to look like the input texture. Though no failures
have been observed, we have no formal proof yet. Finally,
parameters such asK andN are currently decided manu-
ally, and algorithms that can automatically determine them
will be beneficial.

5 Previous Work

Numerous approaches have been proposed for the analysis
and synthesis of visual textures. Because an exhaustive sur-
vey is out of the scope of this paper, we only compare our
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Figure 4: The smaller patches are the original textures with size 128x128 pixels, and to their right are synthesized ones
which are 4 times larger. Each original texture patch is labeled with the index in the Brodatz album. The number of basis
functions used is 4096. The neighborhood contains the current level and one lower resolution level, with sizes 7x7 and 3x3,
respectively.
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Figure 5: Some synthesis failures.

algorithm with several recent works. The reader is referred
to [12], [16], [24], [20], and [22] for more complete surveys
of previous texture analysis/synthesis algorithms.

One way to synthesize natural textures is to develop
specialized procedures that simulate the underlying physi-
cal texture generation process. For example, reaction dif-
fusion ([23], [26]) and cellular texturing ([7], [27]) have
been used to generate biological patterns. The advantage
of those approaches is that the textures can be developed
directly onto the 3D surfaces; thus the distortion problem
during texture mapping is avoided. Nevertheless, these al-
gorithms are usually slow, hard to use (require hand-crafted
parameters), and only suitable for specific textures (such
as wood, marble, or animal skin). In comparison, our al-
gorithm is easy to use and can efficiently generate a broad
range of textures.

Instead of adopting directly simulation, statistical al-
gorithms treat textures as realizations of probability distri-
butions, and generate new textures by sampling from such
distributions. For example, Markov random field and Gibbs
sampling are widely employeed to model textures ([3], [5],
[13], [10], [28], [19], [18]). These techniques are either
very time consuming, or incapable of generating high qual-
ity textures due to the restrictions of the employeed mod-
els. To reduce the amount of computation, other algorithms
model textures by a set of features, and generate new im-
ages by matching these features with an example texture
([14], [4], [21], [9]). The success of these algorithms de-
pends primarily on the kind of features chosen. For exam-
ple, Heeger and Bergen ([14]) model textures by marginal
histograms of the image pyramids. Their technique is ca-
pable of generating highly stochastic patterns but fails on
more structured textures. De Bonet ([4]) synthesizes new
images by randomizing an input texture sample while pre-
serving the cross-scale dependencies (the “parent structure”
in his paper). This method works better on structured tex-
tures, but can produce visible artifacts if the input texture is
not tileable. Simoncelli and Portilla ([21]) generate textures
by matching the joint statistics of the image pyramids. It

can successfully capture global textural structures but fails
to preserve local patterns. Compared with these techniques,
our algorithm performs well on both random and structured
textures. In addition, it can produce smooth and tileable re-
sults even if the input is not tileable (Note that none of the
original patches in Figure 4 are tileable).

6 Conclusion

We present a new method for generating high quality tex-
ture images from examples. The key advantage of our ap-
proach is that it can efficiently synthesize a wide variety of
textures. At the same time, it is simple to implement since
the most complex component is tree structure VQ. Our al-
gorithm is also easy to use: only an example image along
with a few parameters are required to generate a new texture
of any size and shape.
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