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Abstract. We study the performance of affine arithmetic as a replacement for interval arithmetic in interval
methods for ray casting implicit surfaces. Affine arithmetic is a variant of interval arithmetic designed to handle
the dependency problem, and which has improved several interval algorithms in computer graphics.
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1 Introduction

Given a functionh:R3 ! R, the set

S = fp 2 R3 : h(p) = 0g

is in general a surface, which is called theimplicit surface
defined byh. In other words, an implicit surface is the set
of all solutionsp = (x; y; z) of a single equation in three
variables:h(x; y; z) = 0. Implicit surfaces are important
primitives in CSG modeling systems [2].

An important task in the study of implicit surfaces is
rendering, that is, the computation of an image of the setS
as seen from a given point of view inR3. One natural tech-
nique for rendering implicit surfaces isray casting: rays
are cast from the viewpoint, through an image plane, until
they first hit the surfaceS; at the intersection point, the nor-
mal toS is computed and a color is selected for the corre-
sponding pixel in the image according to some illumination
model. Ray casting is a basic step inray tracing, a more
sophisticated technique that can handle reflections and re-
fractions [9].

A ray from the viewpointE (where theeyeis located)
in the directionv is parametrized byr(t) = E+ t �v; where
t 2 [0;1). Hence, the points where this ray intersects the
surfaceS are found by solving the equation

f(t) = h(r(t)) = 0:

We are interested only in the first intersection, that is, in the
smallestzero off in [0;1). Thus, to find the color of each
pixel in the image, we must solve one nonlinear equation.

If h is a polynomial, thenf is also a polynomial of
the same degree. Thus, when the degree ofh is at most 4,
we can use the classical formulas [13] for computing all the
roots off(t) = 0. For polynomials of higher degree, there
are no closed formulas, but there are robust approximation
methods for finding all zeros off based on Descartes’ rule
of signs [10].

There are many classical methods for solving gen-
eral nonlinear equations [19], but none of those are robust
enough for ray casting. We need to find the first zero reli-
ably. Otherwise, if a different zero is found, then the normal
to the surface at the corresponding point is likely to be dif-
ferent, the computed color will be wrong, and so will be the
final image.

Therefore, successful image synthesis by ray casting
depends crucially on being able to find reliably the smallest
positive root of arbitrary nonlinear equations.

Reliable solution methods can be obtained by using
range analysis andinterval arithmetic[18], as described in
Sections 2 and 3. Interval methods have been used success-
fully in ray casting [1, 16, 23] and in several other graphics
problems [8,17,20,22].

Interval arithmetic [18] was originally proposed for
controlling error propagation in numeric computations, but
of special importance to computer graphics is its ability
to probe the behavior of arbitrary functions reliably over
whole intervals — this is much more powerful and robust
than point sampling. However, as we shall see briefly in
Section 3, interval arithmetic suffers from a overestimation
problem that can negatively impact the performance of in-
terval algorithms.

Affine arithmetic, introduced in SIBGRAPI’93 [3] and
briefly described in Section 4, is a variant of interval arith-
metic that is more resistant to overestimation — this has
led to faster algorithms for several problems in computer
graphics [6,7,11,12].

In this paper, we continue this research and study the
performance of affine arithmetic in interval methods for ray
casting implicit surfaces. As we argue in Section 5, affine
arithmetic promises to be useful in ray casting. Section 6
describes our experimental results, which are discussed in
Section 7 along with our conclusions.



2 Range analysis and ray casting

As mentioned in Section 1, the key to solving arbitrary non-
linear equations reliably is to use range analysis instead of
point sampling.

Range analysisis the study of the behavior of real
functions based on estimates for their set of values. Given a
functionf : 
 � Rn ! R, range analysis methods provide
an inclusion functionfor f , that is, a functionF defined on
the subsetsX of 
 such that

F (X) � f(X) = ff(x) : x 2 Xg:

Thus,F (X) is an estimate for thecompleteset of values
taken byf onX . In particular, if0 62 F (X), then there are
nosolutions off(t) = 0 in X .

Therefore, inclusion functions can be used to discard
intervals that cannot contain solutions. We only need to
consider intervals for which0 2 F (X), because thesemay
contain solutions. (Range estimates are not required to
be tight, that is,F (X) may be strictly larger thanf(X).
Hence,F (X) may contain0 even iff(X) does not.)

Thus, given an inclusion functionF for f , the sim-
ple bisection algorithm below will find the first zero off ,
within a user-specified tolerance".

interval-bisection([a; b]):
if 0 2 F ([a; b]) then

c (a+ b)=2
if (b� a) < " then

return c
else

interval-bisection([a; c])
interval-bisection([c; b])

For ray casting, we start the solution off(t) = 0
by calling interval-bisection([0; T ]), whereT is some large
value (obtained for instance from the far clipping plane).

As mentioned above, this algorithm does not miss any
zeros off , because it only discards intervals that cannot
contain zeros. Moreover, because the left half[a; c] is al-
ways tested before the right half[c; b], the algorithm finds
thefirst zero, if any.

If we do not stop the algorithm after finding the first
zero, then it will findall zeros off , in the order they oc-
cur from left to right. Finding all zeros is required for ray
casting CSG models [8].

The interval-bisection algorithm is an interval version
of the classical bisection algorithm [19]. However, classical
bisection only converges to a zero off when started with a
bracketing interval, that is,f(a) andf(b) must have dif-
ferent signs. Even then, there is no guarantee that it will
converge to thefirst root [4].

3 Interval arithmetic

Interval arithmetic (IA) is the classical technique for range
analysis. IA was invented by Moore [18] with the explicit
goal of improving the reliability of numerical computation,
by automatically keeping track of rounding errors. How-
ever, its ability to probe the behavior of functions reliably
over whole intervals seems to us to be its more important
asset, because it is a powerful tool for solving difficult prob-
lems that cannot be solved robustly by point sampling.

IA provides robust estimates for the results of numeri-
cal computations by representing numbers as intervals and
extending the basic arithmetic operations and elementary
functions to intervals. For example, we have

[a; b] + [c; d] = [a+ c; b+ d]

[a; b]� [c; d] = [minfac; ad; bc; bdg;maxfac; ad; bc; bdg]

[a; b]2 = [0;max(a2; b2)]

exp [a; b] = [exp(a); exp(b)]:

Moore [18] showed that every computable functionf
has a natural interval extensionF , which is an inclusion
function forf . Any algorithm for computingf can auto-
matically be interpreted as an algorithm for computingF
simply by composing interval formulas for the primitive op-
erations in the same way they are composed to compute the
function itself.

Interval extensions are specially elegant to implement
with programming languages that support operator over-
loading, such as C++, but they can be easily implemented
in any programming language, either manually or with the
aid of a precompiler [5]. There are several IA packages
available in the internet [15].

A limitation of IA is that its range estimates tend to be
much wider than the exact ranges, sometimes to the point
of uselessness. This over-conservatism is mainly due to the
implicit assumption that operands in primitive operations
are mutually independent. If this assumption is false, then
not all combinations of values in the operand intervals will
be attained, and the result interval computed by IA may be
much wider than the exact range of the result quantity.

For a simple example of thisdependency problem,
consider the interval computation ofy = x(4 � x), for
x 2 [1; 3]. The IA rules given above yield

x = [1; 3]

4� x = [4� 3; 4� 1] = [1; 3]

y = x(4� x) = [1; 9];

which is 8 times larger than[3; 4], the exact range ofy.
More generally, ifx 2 [2� u; 2 + u] with 0 � u � 1,

then the exact range ofy = x(4� x) is [4� u2; 4], and the
IA rules givey 2 [(2� u)2; (2 + u)2]. Thus, the IA result
has diameter8u, whereas the exact range has diameteru2.



The IA result is always more than 8 times larger than the
exact range. In fact, the relative diameter is8u=u2 = 8=u,
which actuallyincreasesasu decreases.

The over-conservatism of IA is particularly severe in
long computation chains, where one often observes an “er-
ror explosion”: as the evaluation advances down the chain,
the relative accuracy of the computed intervals decreases
exponentially, and they soon become too wide to be useful,
by many orders of magnitude. Unfortunately, long compu-
tation chains are not uncommon in computer graphics ap-
plications.

4 Affine arithmetic

Affine arithmetic (AA), introduced by Comba and
Stolfi [3], is a technique for range analysis that was de-
signed with the explicit goal of handling the dependency
problem of IA. Like standard interval arithmetic, AA can
provide guaranteed bounds for the computed results, taking
into account input, truncation, and rounding errors. Unlike
IA, however, AA automatically keeps track ofcorrelations
between computed and input quantities, and is therefore
more resistant to the catastrophic loss of precision often ob-
served in long interval computations.

In AA, a quantityx is represented as anaffine form,

x̂ = x0 + x1 "1 + � � �+ xn "n;

which is a polynomial of degree 1 innoise symbols"i,
whose values are unknown but assumed to lie in the in-
terval [�1;+1]. Thus, the quantityx lies in the interval
[x0 � r; x0 + r], wherer = jx1j+ � � �+ jxnj.

As done in IA, the basic arithmetic operations and el-
ementary functions can be extended to handle affine forms.
Affine operations (translation, scale, addition, and subtrac-
tion) are straightforward. Non-affine operations, such as
multiplication and square root, use a good affine approxi-
mation plus an error term (which creates a new noise sym-
bol). For details of how AA (and IA) operations can be
implemented, see reference [21].

The key feature of AA is that the same noise symbol
may contribute to the uncertainty of two or more quanti-
ties (inputs, outputs, or intermediate results) arising in the
evaluation of an expression. The sharing of a noise sym-
bol "i by two affine formsx̂ and ŷ indicates some partial
dependency between the underlying quantitiesx andy. The
magnitude and sign of the dependency is determined by the
corresponding coefficientsxi andyi.

Consider again the example given in Section 3, but
now computed with AA instead of IA:

x̂ = 2 + u "1

4� x̂ = 2� u "1

y = x̂(4� x̂) = 4 + 0 "1 + u2 "2;

which implies thaty 2 [4 � u2; 4 + u2]. This interval has
diameter2u2 — only twice as large as the exact range. So,
the relative diameter now remains constant at2. Note also
that the influence of the shared symbol"1 happened to can-
cel out (to first order) iny.

The improved results given by AA come at a cost: the
evaluation of a function using affine forms is more expen-
sive than the evaluation of the same function using inter-
vals (which is more expensive than floating-point evalua-
tion). Nevertheless, better range estimates usually imply
overall faster algorithms, because fewer range estimates
have to be computed, even if each individual estimate is
expensive. This phenomenon has been observed in sev-
eral interval methods based on AA: enumeration of implicit
surfaces [7], intersection of parametric surfaces [6], sam-
pling [12] and ray-tracing [11] procedural shaders.

5 Affine arithmetic and ray casting

There are two main reasons for expecting AA to give
good results in ray casting an implicit surface given by
h(x; y; z) = 0.

First, AA automatically notices the linear correlations
betweenx, y, andz when the point(x; y; z) lies on a ray,
and exploits them when computing the value ofh(x; y; z).
IA, on the other hand, sees the point(x; y; z) merely inside
an axis-aligned box, and has to evaluateh on all points of
this (usually large) box, even those far away from the ray.
Thus, IA may conclude that the ray intersects the surface
merely because its bounding box does.

Second, we can exploit the additional information pro-
vided by AA to reduce the interval where a root could be
located, at almost no extra cost: While IA approximates a
functionf in an interval[a; b] by a rectangle (Figure 1), AA
approximatesf by a parallelogram (Figure 2). (We shall
presently see why.)

Thus, any root off in [a; b] must lie in the intersec-
tion of the parallelogram with[a; b], which is sometimes
much smaller than[a; b] (as in Figure 2). Actually, test-
ing whether this intersection is non-empty is equivalent to
testing whether0 2 F ([a; b]), thus simplifying the interval
bisection algorithm given in Section 2.

To see that the AA approximation off for t 2 [a; b]
is a parallelogram, we first writêt = t0 + t1 "1; where
t0 = (b+ a)=2 andt1 = (b� a)=2. Then, AA gives

f̂ = f0 + f1 "1 + � � �+ fn "n:

Note that"1 is the same noise symbol in both forms. The
other terms come from affine approximations to the non-
affine operations required to computef . Since we want to
comparet andf , these terms are not important individually;
we can condense them into a single term and write

f̂ = f0 + f1 "1 + fk "k;
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Figure 1: Geometry of IA approximation.

wherefk = jf2j + � � � + jfnj. When"k is held fixed, the
point (t; f) sweeps a line segment as"1 varies in[�1; 1].
Thus, as"k varies in [�1; 1], this line segment vertically
sweeps a parallelogram of the form depicted in Figure 2.

6 Results

We compared the performance of AA with the performance
of IA for ray casting the implicit surfaces shown in Figure 3,
whose equations are given in Table 1. Some surfaces have
been tested with their expanded equations too (marked+
in Table 1), to see whether increasing the complexity of the
expressions, thus adding correlations, would benefit AA.

Besides the pure interval method described in Sec-
tion 2, we also tested a hybrid method that uses range es-
timates for the derivative to isolate the roots, and classical
methods to refine them, as done by Mitchell [16].

The hybrid algorithm below uses an inclusion func-
tion G for the derivativef 0, obtained with IA or AA. If
0 62 G([a; b]), thenf is monotonic in[a; b] and can have at
most one root in this interval. This root is then refined using
either classical bisection or the more sophisticated Brent’s
method [19].

hybrid-bisection([a; b]):
if 0 2 F ([a; b]) then

c (a+ b)=2
if (b� a) < " then

return c
if 0 62 G([a; b]) then

refine root with classical method
else

hybrid-bisection([a; c])
hybrid-bisection([c; b])

We implemented a ray caster in C using Borland C++
Builder. Libraries for IA and AA were written having the

a b

Figure 2: Geometry of AA approximation.

same API, so that testing each variant was a simple matter
of linking with the right library. We used MapleTM to com-
pute optimized expressions for each function and their par-
tial derivatives, and a small precompiler in Lua [14] to con-
vert these expressions into calls to the arithmetic libraries.

Table 2 shows the time required to generate a64� 64
ray-casting image of each surface in Table 1, using a
166 MHz Pentium running Windows 95. (The images in
Figure 3 are200�200, but the relative times are essentially
independent of image resolution.) The AA variant exploits
the additional information described in Section 5, whereas
the AA0 variant does not. A star? marks the best time; a
diamond�means that AA0 was already faster than pure IA.
Table 3 shows the number of interval evaluations required
in each case. (This number was only recorded for the pure
variants in the case of expanded equations.)

7 Conclusion

The results indicate that AA is indeed useful as a replace-
ment for IA in interval methods for ray casting implicit sur-
faces, specially when the function defining the surface is
complicated. Exploiting the additional information that AA
provides (as described in Section 5) plays an important part
in the performance of the algorithm. Even AA alone can
lead to faster algorithms, when the function is very com-
plicated (e.g., the expanded double torus and the Mitchell
surface).

Table 2 suggests that hybrid methods are not faster
than pure interval methods, probably because the cost of
computing interval estimates for derivatives offsets the
gains of refining roots using fast floating-point arithmetic.

Nevertheless, more examples may be needed to fully
establish the advantages of using AA in this context. We
suspect that the Borland C++ Builder environment is steal-



ing machine cycles for its user interface, and that could be
interfering with our timings. We are currently working on
a different, batch implementation under Linux. Preliminary
results using this implementation are very promising, and
will be reported elsewhere.

AA did not give the best results in all cases. AA suf-
fers from an overestimation problem for some primitive op-
erations, such as the square operation (y  x2) [21]. Ac-
cordingly, IA was faster for the surfaces that contain many
square terms, with no negative correlation.

Range estimates given by AA are not always better
than those given by IA. For the function in Figure 2, the
range estimate computed by AA is actually larger than the
range estimate computed by IA. Nevertheless, AA still pro-
vides better approximations than IA in the sense that the
area of the AA parallelogram is smaller than the area of
the IA rectangle. This leads to better range estimates for
small input intervals: AA estimates converge quadratically,
whereas IA estimates converge linearly. (See the example
in Section 4 and more details in reference [21].)

An important goal of the research with AA is to try to
understand the cases when the use of AA is recommended.
As in previous AA work [6, 7, 11, 12], we have found that
AA gives best results when the functions are very compli-
cated. Thus, a natural next step in this research is the exten-
sion of these algorithms and experiments to CSG models,
specially complex blobby models, which are very popular
in implicit modeling.

Finally, like Mitchell [16], we have found that
rounding-error control was not necessary for generating
correct images. This was good for two reasons: first, we
did not have to implement rounding-error control in our IA
and AA libraries, which is done in a slightly different way
in each platform; second, changing the rounding mode is
costly in some platforms, and this could affect our timings.
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Surface h(x; y; z)

Sphere x2 + y2 + z2 � 1
Drop 4(x2 + y2)� (1 + z)(1� z)3

Drop+ 4x2 + 4y2 � 1 + 2z � 2z3 + z4

Torus (x2 + y2 + z2 � 1� 0:25)2 � 4(x2 + y2)
Double torus (4x2(1� x2)� y2)2 + z2 � 0:25
Double torus+ 16x4 � 32x6 � 8x2y2 + 16x8 + 8x4y2 + y4 + z2 � 0:25
Mitchell [16] 4(x4 + (y2 + z2)2) + 17x2(y2 + z2)� 20(x2 + y2 + z2) + 17
Six-peak (3x2 � y2)2y2 � (x2 + y2)4 � z
Steiner x2y2 + y2z2 + z2x2 + xyz

Table 1: The equations of the implicit surfaces used in the experiments.

IA AA AA 0

pure bisection Brent pure bisection Brent pure bisection Brent
Sphere 115 98 98 77? 83 82 154 116 116
Drop 143? 150 148 226 304 305 297 340 340
Drop+ 269 — — 165? — — 275 — —
Torus 390 247 246 115? 203 203 302 387 385
Double torus 192? 193 193 300 574 572 478 1060 1050
Double torus+ 2885 — — 730? — — 1130� — —
Mitchell 1164 550 542 285? 519 520 642� 1134 1130
Six-peak 340 395 396 260? 705 703 560 1270 1260
Steiner 330? 422 422 460 1052 1040 554 1376 1380

Table 2: Time required to ray cast the example surfaces (in centiseconds).

IA AA AA 0

pure hybrid pure hybrid pure hybrid
Sphere 95 42 28 16 82 33
Drop 89 54 74 68 110 77
Drop+ 130 — 48 — 97 —
Torus 317 89 43 41 148 75
Double torus 123 61 109 104 210 165
Double torus+ 57 — 153 — 244 —
Mitchell 470 157 71 57 187 148
Six-peak 242 131 87 81 203 158
Steiner 176 131 124 118 167 160

Table 3: Number of interval evaluations (in thousands).



(a) Sphere (b) Drop (c) Mitchell

(d) Torus (e) Double Torus

(f) Six-peak (g) Steiner

Figure 3: The surfaces used in the experiments.

These images are available in 24-bit color athttp://www.tecgraf.puc-rio.br/˜lhf/sib99/ .


