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Abstract. This paper presents a new scheme for subdivision surfaces that is based on four-directional meshes. It
combines geometry-sensitive refinement with convolution smoothing. The scheme has a simple, efficient imple-
mentation and generates well-shaped meshes which converge to smooth surfaces.
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1 Introduction

In recent years subdivision surfaces have become one of
the most important mathematical tools for shape model-
ing. Subdivision surfaces provide a natural generalization
of spline surfaces with several advantages: they can handle
control meshes of arbitrary topology; they guarantee global
surface smoothness while making possible the control of lo-
cal features; they effectively bridge the gap between contin-
uous models and discrete representations; and, lastly, they
are associated with efficient algorithms that are simple to
implement. Another important point is that subdivision is
intimately related with multiresolution and wavelets. This
is the key to scalability and adaptation, two fundamental
properties for dealing with complex shapes in a modeling
system.

The power of a subdivision surface model lies in the
quality of the underlying limit surface, as well as, in the
applicability of the associated computational scheme. The
various types of subdivision surfaces offer different com-
promises between these two aspects. In this paper, we
present a new type of subdivision surface that achieves a
good balance of features. It is another addition to the exist-
ing repertoire of shape design tools.

1.1 Basic Concepts

A subdivision surfaceis defined as the limit surface when a
subdivision schemeis applied to acontrol polyhedron. Re-
peated subdivision refines the polyhedral shape, which con-
verges to a piecewise continuous smooth surface.

A subdivision scheme is composed of two basic oper-
ations:

� refinement: changes the topology of the polygonal
mesh by introducing new vertices, edges and faces. As
a consequence, mesh density increases.

� smoothing: changes the geometry of the polygonal
surface by modifying the coordinate values of its ver-
tices. The end effect is an improvement of local shape
regularity.

In the 1-dimensional setting (i.e. curves), these two
operations are relatively simple to define, but in the 2-
dimensional setting (i.e. surfaces), their definition is a lot
more complex. This is because, while in 1D a discrete local
neighborhood is always an interval, in 2D discrete neigh-
borhoods depend on the topological structure of the under-
lying polygonal mesh.

Before going into more details, let’s give some defini-
tions:

The first order neighborhood N1(v), (or 1-
neighborhood) of a vertexv in a mesh, consists of
the set of verticesvi that share a face withv. Higher order
neighborhoods (or k-neighborhoods) are obtained from
N1(v), by adding all 1-neighborhoods of the neighbors
vi 2 N1(v), and so on.

In a triangular mesh, the 1-neighborhood of a vertex
v consists of the verticesvi linked to v by an edge. The
set of edges incident to a vertexv is calledstar of v. In
a triangular mesh, there is a correspondence between the
1-neighborhood and the star of a vertex.

The valence(or degree) of a vertex is the number of
edges in its star (which in a triangular mesh is the number
of 1-neighbors).

Subdivision schemes can be classified according to
the mesh structure, as well as, the type of refinement and
smoothing operators employed.

The mesh structure can beregularor irregular. A reg-
ular mesh is isomorphic to some uniform tiling of the plane
by regular polygons. The possible cases are: equilateral
triangles; squares; and hexagons. In a regular mesh, all ver-
tices have the same valence (6 for triangular meshes and
4 for rectangular meshes). A irregular mesh is an affine
cell complex. A vertex whose valence adheres to the cor-
responding regular case is calledordinary, otherwise it is
calledextraordinary. Note that regular meshes cannot rep-
resent shapes of arbitrary topology.

The refinement operator can apply aprimal or dual
decomposition method. In the primal decomposition a face
is subdivided by splitting its edges and reconnecting them.
The old mesh is contained in the new one. In the dual de-



composition new vertices are created inside the faces and
connected across the edges to construct a dual mesh. The
old mesh is discarded. The connectivity graph for mesh re-
finement can be described by asubdivision template.

The smoothing operator computes the new position of
a vertex as a function of its neighbors. This function is a
low-pass filter, and is usually linear (but can be non-linear).
Also, it can beuniform or non-uniform1. In the uniform
setting, a fixed rule for each type of neighborhood is ap-
plied throughout the mesh. The filter coefficients relative
to different neighborhood types are usually indicated by a
stencil(or mask). In a non-uniform setting, the rule mini-
mizes some measure of the curvature subject to additional
constraints. The function is determined by an energy func-
tional defined over the entire mesh. Thus, this method is
calledvariational.

Depending on the constraints imposed on the smooth-
ing operator, the subdivision scheme can beapproximating
or interpolating.

An important issue concerning subdivision surfaces is
the analysis of convergence of a given subdivision scheme.
This is paramount to characterize the smoothness of the
limit surface.

For schemes on regular meshes, is often possible to ob-
tain an expression of the continuous surface in closed form.

For schemes on irregular meshes using fixed templates
and stencils, it is possible to employ the notion of stationary
subdivision. A subdivision scheme is calledstationary[3]
when the refinement operator does not change the neigh-
borhood structure of a vertex and the smoothing operator is
a linear function uniform over the mesh.

Under stationary subdivision, for every vertexv, it is
possible to find a matrixS, calledsubdivision matrix, that
maps the coordinate valuespij = pi(vj) of a neighbor-
hoodN i

k(v) of v at leveli into an isomorphic neighborhood
N i+1
k (v) at leveli+ 1, i.e.,pi+1 = Spi, i > 0.

The action of the subdivision scheme is encoded in the
subdivision matrices, and the eigenvalues ofS reveal the
surface regularity atv. In short, if the eigenvectors ofS
form a basis, and its eigenvalues satisfy�0 = 1 > �1 �
�2 > j�mj, with m > 2, then the limit surface is of class
C1, provided that thecharacteristic mapinduced byS is
regular and injective [17].

For irregular meshes using variable templates or sten-
cils (e.g. non-stationary subdivision), convergence analy-
sis is still an open question. The characterization of such
schemes is difficult because it strongly depends on the
topology of the mesh at every level of refinement.

1The termuniform here means that the smoothing function depends
only on the local neighborhood structure, but not on the coordinate values
of a vertex.

1.2 Previous Work

Subdivision surfaces started as a generalization of uniform
splines. The very idea of a subdivision scheme draws upon
knot insertiontechniques [13], and have its roots on the “De
Boor” algorithm [1]. Therefore, tensor product b-splines
and box splines can be viewed as a special case of subdivi-
sion surfaces on regular meshes [4].

Nonetheless, the beginning of the field is identified
with the development of the first subdivision surfaces for ir-
regular meshes. Catmull and Clark [2], and Doo and Sabin
[5], generalized bicubic and biquadratic B-splines, respec-
tively, to rectangular meshes with irregularities. Later,
Loop [15], created a generalization of quartic 3-direction
Box splines to arbitrary triangular meshes. Hoppe, De
Rose, et al. [9], proposed an extension of the Loop scheme
for piecewiseC1 surfaces. Peters and Reif [16] intro-
duced schemes that generalize quadratic 4-direction Box
splines on irregular rectangular meshes. Taubin [19] pro-
posed a non-shrinking filtering method for arbitrary trian-
gular meshes.

All the schemes mentioned so far result in surfaces that
approximate a control net. Dyn, Gregory and Levin [6],
designed the “Butterfly” scheme for interpolatingC1 sur-
faces based on triangular meshes. Kobbelt [10] described a
C1 interpolating scheme for quadrilateral meshes with ar-
bitrary topology.

A rigorous study of the convergence of subdivision
schemes based on the characteristic map was proposed by
Reif [17].

The stationary subdivision methods cited above still
have a number of shortcomings. Variational subdivision
schemes attempt to overcome such limitations. This issue
have been addressed by Kobbelt [11] and by Warren [20].

1.3 Contribution

We remark that, although the refinement and smoothing op-
erators of a subdivision scheme have been considered sep-
arately in our discussion, there is a strong interdependency
between these two operators. This is due to the fact that
the refinement operator constructs the neighborhood struc-
ture where the smoothing operator is applied. For regu-
lar meshes, this interdependency is not so relevant because
the neighborhood structure is the same everywhere, as in
the 1-dimensional setting. On the other hand, for irregular
meshes this interdependency must be taken into account in
the design of a subdivision scheme, so that convergence to
a smooth surface is guaranteed.

Convolution schemes that generalize Box splines em-
ploy carefully designed smoothing rules which depend
on the local neighborhood structure of a vertex. Varia-
tional schemes on irregular meshes employ a smoothing en-
ergy functional which depends on the global neighborhood
structure and its geometry.



It is interesting to note that, in all existing schemes,
most of the effort was concentrated on the design of the
smoothing operator. In fact, almost all of them adopt the
same standard refinement operators. One characteristic of
these refinement operators is that they do not depend on the
geometry of the net.

In this paper we describe a new subdivision scheme
that uses a geometry-sensitive refinement operator in con-
junction with a linear smoothing operator. Our scheme in-
duces a quasi-stationary subdivision. It has a simple imple-
mentation and generates smooth surfaces that approximate
the initial control mesh.

2 Background

Before going into the details of our subdivision scheme and
its operators, we provide some background on the mesh
structure adopted for surface representation.

2.1 4–8 Meshes

A 4–8 meshis a triangular mesh which has only vertices
of valence 4 and 8. More formally, a 4–8 mesh is a 2D
simplicial complexK = (V;E; F ), whereV , E andF
are respectively the sets of vertices, edges and faces ofK.
Moreover,V is divided into two classesV = V4[V8, where
V4 = fv; deg(v) = 4g, andV8 = fv; deg(v) = 8g.

A regular 4–8 meshis a homogeneous simplicial com-
plex in which the 1-neighborhood of every internal vertex
of valence 4 has only neighbors of valence 8, and the 1-
neighborhood of every internal vertex of valence 8 consists
of a ring of vertices with alternating valences 4 and 8. (See
Figure 1)

Figure 1: Regular 4–8 mesh:� - valence 4;� - valence 8.

Note that in a regular 4–8 mesh, every internal face
is formed by linking two vertices of valence 8 with one of
vertex valence 4.

2.2 Refinement of 4–8 Meshes

A refinement operatorfor a regular 4–8 meshK =
(V;E; F ) is defined by the following procedure:

1. Split all edgese = (v; w) 2 E by inserting asplit
vertexsvw 2 V 0, and connecting it to the endpoints
v; w 2 V of e. That is,e 7! fev; ewg, whereev =
(v; svw), ew = (svw; w), andev; ew 2 E0.

2. Subdivide all facesf 2 F into four new faces
by linking the vertex of degree 4,u 2 V4, to the
split point svw of the opposite edge, and linkingsvw
to the split pointssuw and suv of the remaining
edges. That is,f 7! ffw; fuw; fuv; fvg, wheref =
(u; v; w), fw = (w; swu; svw), fuw = (u; svw; swu),
fuv = (u; suv; svw), fv = (v; svw ; suv), and
fw; fuw; fuv; fv 2 F 0.

(The regularity property ensures that is possible to
chooseu 2 V4, andv; w 2 V8.)

3. Update the complex:K 0 7! K,
whereK 0 = (V [ V 0; E0; F 0).

The subdivision template corresponding to this proce-
dure is illustrated in Figure 2.
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Figure 2: Subdivision template for 4–8 mesh.

It is easy to see that the above refinement operator pre-
serves the 4–8 mesh regularity. After one refinement step,
new vertices of valence 4 are inserted, old vertices of va-
lence 4 change to valence 8, and old vertices of valence 8
remain unchanged. Therefore, the 1-neighborhood struc-
ture of valence 8 vertices is invariant under this operator.

An important property of this refinement operator is
that it can be decomposed into two interleaved refinement
sequences. This will be useful for the development of our
quasi 4–8 refinement algorithm. The operator decomposi-
tion is as follows: the quaternary subdivision performed in
one refinement step is replaced by nested binary subdivi-
sions performed in two subsequent steps.

The interleaved refinement procedure is very similar
to the normal one. The difference is that step 1 splits only
edges connecting valence 8 vertices, and step 2 subdivides
faces in two, accordingly. The regularity of the mesh guar-
antees that just one edge bisects in each face. Figure 3 com-
pares the normal and interleaved refinement procedures.



Figure 3: Normal and interleaved 4–8 refinement.

2.3 Planar 4–8 Meshes

The quincunxlattice is the set of pointsQ = fMx;x 2
Z�Zg, where

M =

�
1 1
1 �1

�

is thequincunx matrix.
A uniform 4–8 mesh is a planar embedding of a 4–

8 mesh in which the vertices of valence 4 and 8 belong,
respectively, to two interleaved quincunx lattices. That is,
v 2 V8 ) p(v) 2 Q, andv 2 V4 ) p(v) 2 Q1 =
f(1; 0) +Mx;x 2 Z�Zg.

Note that a uniform 4–8 mesh is regular, the main dif-
ference is that a regular 4–8 mesh is a topological complex,
while the uniform 4–8 mesh has also a geometric realiza-
tion on the plane.

Uniform 4–8 meshes are also known as four-direction
meshes. These meshes are closely related with the 4 di-
rection Box splines [21], that are generated from the set
of four direction vectorsfe1; e2; e1 + e2; e1 � e2g, where
e1 = (1; 0) ande2 = (0; 1).

Since a uniform 4–8 mesh is regular, it can be refined
using the same procedures described in subsection 2.2. On
the other hand, the fact that a uniform mesh is embedded in
R
2 , makes it possible to exploit a geometric component in

the design of the refinement operator. Note that the topo-
logical criteria for edge bisection can be replaced by a ge-
ometric criteria. A uniform 4–8 mesh has edges of length
1 (horizontal and vertical), and

p
2 (diagonals). Thus, in

the case of uniform 4–8 meshes, it is easy to verify that an
interleaved refinement procedure which splits thelongest
edges would produce the same results as the one using the
topological criteria (i.e. edges with vertices of valence 8).
This observation will be crucial in the design of our quasi
4–8 refinement operator.

The geometry based refinement of four direction
meshes gives a very powerful multiresolution structure
which has been exploited in many application areas. It has

been used for rendering terrain models with variable level
of detail by Lindstron et al. [14] and Kirkpatrick et al.[7].
The sequence of refined meshes is known in the GIS com-
munity ashierarchy of right triangles.

3 The Scheme

In this section we describe the basic operation of our sub-
division scheme and sketch an analysis of its convergence
properties.

3.1 Refinement

As we have seen 4–8 meshes posses very nice properties
but, unfortunately they cannot represent surfaces of arbi-
trary topology. This motivates us to look for a generaliza-
tion of 4–8 meshes.

A quasi 4–8 mesh is a simplicial complex which has
mostly vertices of valence 4 and 8, except for isolated ver-
tices with some other valence. These vertices areextraor-
dinary.

Obviously, the above characterization is only applica-
ble to dense meshes. In fact, the real interest is to find
a method to generate dense meshes with these properties
from coarse meshes. This is our first goal.

A quasi 4–8 refinement operatoris a transformation on
simplicial complexes embedded inRn , such that its iterated
application to an initial arbitrary (coarse) mesh will produce
a quasi 4–8 mesh.

We now present an algorithm that implements this op-
erator.

Algorithm 1 : quasi 4–8 refinement (K)
sort edges (E)
storee 2 E in priority queueQ
while Q 6= ; do

gete fromQ

if e not markedthen
split (e)
mark cluster (e)

for all f 2 F do
subdiv (f )

The routinesort edges, sorts edges by decreasing
length and radially around each vertex. The routine
mark cluster of edgee, markse and the edges sharing a
face with e. This is illustrated in Figure 4. The routine
subdiv, performs a binary decomposition of a face by link-
ing the split point of its longest edge to the opposite vertex.
(See Figure 4.)

Note that, the longest side bisection gives the best as-
pect ratio of the triangles in a binary subdivision [18]. Also,
edge cluster marking ensures that, at most, one edge in each
faces splits.
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Figure 4: Cluster marking and subdivision.

The above remarks indicate that algorithm 1 produces
a simplicial complex with compatible geometry. Now, it
remains to be shown that the algorithm defines a quasi 4–8
refinement operator. Because the refinement procedure is
geometry sensitive, the analysis also depends on the action
of the smoothing operator. Consequently, we will postpone
the discussion to the end of this section.

3.2 Smoothing

After the application of the refinement operator to the com-
plexK, the set of verticesV ofK, can be naturally divided
into two classes: newly inserted vertices,v0 2 V 0, which
we will call new vertices, and previously existing vertices,
v 2 V , which we will call old vertices

The smoothing operator is a convolution filter. It uses
a different smoothing rule for each class of vertices.

The stencil for new vertices is depicted in Figure 5.
Recall that the 1-neighborhood of internal new vertices,
by construction, consists of exactly 4 vertices. The filter
function is an average of the coordinate values of these 1-
neighbors.
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Figure 5: Filter mask for new vertex.

The stencil for ordinary old vertices of valence 8 is
depicted in Figure 6. Observe that the filter kernel extends
beyond the first neighbors of the vertex. Actually, the end
effect is like using the 1-neighborhoodstructure of a quadri-
lateral mesh. Note also that this smoothing filter produces
less shrinking than a gaussian filter, because more weight is
put on the central vertex [19].
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Figure 6: Filter mask for regular old vertex of valence 8.

The stencil for an ordinary old vertex of valencen is
a direct generalization of the above filter, and it is depicted
in Figure 7.
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Figure 7: Filter mask for old vertex of valence n.

The smoothing operator can be implemented very ef-
ficiently using a cascade convolution technique.
First, filtering is applied to new vertices:

for v0i 2 V 0 do

pl+1(v0i) =
1

4

X
vj2N1(v0

i
)

pl(vj)

Then, filtering is applied to old vertices using new ver-
tices:

for vi 2 V do

pl+1(vi) =
1

2
pl(vi) +

1

2n

X
v0

j
2N1(vi)\V 0

pl+1(v0j)

wheren is the number of new vertices inN1(vi).
This scheduling makes it possible to execute all the

computations “in-place”. Figure 8 illustrates the process.



Figure 8: Computation flow of cascade convolution.

3.3 Quasi-Stationary Subdivision

The combination of refinement and smoothing described in
this section leads to a subdivision scheme in which these
two aspects are well integrated. The refinement operator is
sensitive to geometry and produces a neighborhood struc-
ture suitable for filtering. The smoothing operator relaxes
the mesh making it better for subdivision. We conjecture
that this subdivision scheme isquasi-stationary. We also
have strong indications that the scheme generates limit sur-
faces of classC1.

In order to prove quasi-stationarity andC1 continuity
there are, essentially, three conditions to verify: First, that
algorithm 1 is indeed a refinement operator; Second, that
the refinement is quasi-stationary; and finally, its conver-
gence properties.

We will not give a complete proof in this paper. In-
stead, we will elaborate on some of the arguments that
could lead to a formal demonstration.

The main condition imposed on a refinement opera-
tor is that its action increases the mesh density everywhere.
This means that, for primal subdivision, all edges of the
mesh at any given level must split in a small number of iter-
ations. It is not difficult to verify that algorithm 1 satisfies
such condition, since it splits edges based on their length.

Quasi-stationarity is more delicate to verify. We have
to show that the refinement operator obey the following re-
strictions:

1. newly inserted vertices have valence 4.

2. old vertices of valence 4 change to valence 8.

3. old vertices of valence 8 do not change.

4. vertices of any other valence change little.

Restrictions 1 to 3 guarantee that vertices created during
refinement are ordinary. Restriction 4 is admittedly vague,
but it captures the idea that extraordinary vertices of the
input mesh have a predictable neighborhood structure.

In order to continue the discussion, we will concen-
trate on planar subdivision. This is justified since, under
smoothing, the geometry of the refined net becomes locally
flat.

Consider a regularn-sided polygonB 2 R2 , inscribed
in the unit circle. TriangulateB by connecting its vertices
bi; i = 1; : : : ; n, to the center. Let’s analyze the behavior
of the subdivision algorithm on this triangulation.

When n < 6, the length of the boundary edges is
greater than the length of the internal edges. Thus, the al-
gorithm splits all boundary edges and the valencen of the
central vertex becomes2n.

Whenn > 6, the length of the internal edges is greater
than the length of the boundary edges. Thus, it is possible
to pick a sequence of internal edges such thatn

2 alternating
edges split. Ifn is even, these will be the only vertices that
split and the valence of the central vertex remains the same.
(See Figure 12(a).) Ifn is odd, one boundary edge also
splits and the valence of the central vertex increases by 1.
(See Figure 12(c).)

After the first subdivision step,n � 6, and is even.
Therefore, we only need to investigate this case in the rest
of the analysis. But, since subdivision is based on geometry,
we also have to take into account the effect of smoothing.
We will focus on two adjacent triangles,(o; b0i ; b

0
i�1) and

(o; b0i+1; b
0
i ), whose common edge(o; b0i ) splits. (See Fig-

ure 9.) The first subdivision step inserts vertexb1i , which
after smoothing will be the average of its four neighbors,
b1i = 1

4 (o + b0i�1 + b0i + b0i+1). In the second subdivision
step, edges(o; b0i�1) and(o; b0i+1) are longer and will split.

As the process continues, by the very nature of the
geometric criteria, subdivision occurs radially around the
central vertexo. The verticesbji introduced at subdivision
steps,j = 0; : : : ;1, approacho in geometric progression,
as shown in Figure 9.

o b0
ii

b
i

b1

b0
i−1

b0
i+1

3

b

b2
i−1

2
i+1

Figure 9: Convergence of a vertex under 4–8 subdivision.

The arguments just presented suggest that our subdivi-
sion scheme is quasi 4–8 stationary. We are currently study-
ing the convergence properties of the method and hope to
show that it producesC1 surfaces.

4 Examples

In this section, we give some examples of surfaces gener-
ated with our subdivision scheme.



4.1 N-Regular Neighborhoods

The following examples illustrate more concretely the dis-
cussion in the previous section.

Figure 10 show the subdivision of regular planar poly-
gons with 3 to 6 sides. This is the first case in subsec-
tion 3.3. Note that forn = 2; 3; and4, the central ver-
tex has valence2n, as predicted by our analysis. Note also
that, except for boundary vertices, all other vertices are or-
dinary and structured according to a regular 4–8 pattern.
For the regular hexagon, which is the limit case, a small
perturbation was added to the initial vertices of the poly-
gon in Figure 10(d). As a consequence, the valence of the
central vertex remained unchanged. Observe that the algo-
rithm constructed the same subdivision as in the triangle of
Figure 10(a).

Figure 11 reveals how the algorithm behaves in the
case of a non-regular initial triangulation. The input mesh,
shown in Figure 11(a) is the 6-regular triangulation of Fig-
ure 10(d), but warped such that the horizontal internal edges
have a 1:2 length ratio. Note that, because the subdivision
is based on geometry, the final triangulation adapts nicely
to the polygonal domain. Since one of the horizontal edges
is longer than the rest, it has split in the first subdivision
step. The end result is that the final mesh in Figure 11(b),
gradually transitions from a 4-regular structure (on the left
hand side) to a 5-regular structure (on the right hand side).

Figure 12 exemplifies the subdivision ofn-regular pla-
nar polygons for whichn > 6. It contrasts the behavior of
the algorithm when the valencen is even and odd. Fig-
ure 12(a) shows the mesh for a 12-sided polygon after the
first subdivision step. Note the radial decomposition struc-
ture around the central vertex. The final mesh, shown in
Figure 12(b), has a quasi 4–8 symmetric structure. Fig-
ure 12(c) shows the mesh for a 9-sided polygon after the
first subdivision. The decomposition cannot be completely
radial, becausen is odd. The final mesh, shown in Fig-
ure 12(d), has a quasi 4–8 structure, but exhibits a slight
asymmetry.

Observe that in both cases, the triangulations of Fig-
ures 12(b) and (d) are somewhat distorted near the bound-
aries. They contain a few extraordinary vertices in that re-
gion, as well. This is, in part, due to the fact that boundary
vertices are not allowed to move.

4.2 Simple Objects

The next examples show subdivision surfaces created from
simple control meshes.

The first example is a closed surface of genus 0. The
control mesh, shown in Figure 13(a), is a triangulated cube.
The polygonal mesh after four subdivision steps is shown
in Figure 13(b). Note that the only extraordinary vertices
are the 8 corners of the original cube. Note also that there
is very little distortion near these extraordinary vertices.

The second example is a genus 1 surface. The control
mesh, shown in Figure 14(a), is a coarse approximation of
a torus. The polygonal mesh after four subdivision steps is
shown in Figure 14(b). Note that the mesh is 4–8 regular
(i.e. it does not have extraordinary vertices). Note also that
the resulting surface gives a good piecewise linear approxi-
mation of the torus.

4.3 Feature Control

The next example demonstrates the result of incorporating
control of shape features in the subdivision scheme. It also
shows the treatment of surfaces with boundary.

Boundary vertices are constrained to move along the
surface normal direction.

As in other schemes we employ a tagged mesh for con-
trolling features. Currently, we have implemented only the
simplest kind of control mechanism, in which a tagged ver-
tex or edge is not affected by smoothing. We plan to further
investigate this issue, and experiment with different types
of context sensitive smoothing filters.

The example in Figure 15 is a surface with boundary.
The control mesh, shown in Figure 15(a), is a triangulated
box shape with two open sides. The surface shown in Fig-
ure 15(b) was constructed by tagging all boundary edges
and vertices. Note the smooth blend between the two open
extremities. To produce the surface shown in Figure 15(c),
boundary edges were untagged and one internal longitudi-
nal edge was tagged. Note that, now, the boundary curves
are smooth, except at the vertex shared with the tagged
edge.

4.4 Complex Objects

The next examples deal with more complex shapes obtained
from sampling real objects.

The first example is the well known “Stanford Bunny”.
The control mesh, shown in Figure 16(a), was created with
the mesh simplification softwareQslim, developed by Gar-
land and Heckbert [8]. Figure 16(b) shows the smoothed
polygonal mesh after a few steps of our subdivision scheme.
It is interesting to compare this mesh with the one in Fig-
ure 1 of [12], that was generated by smoothing the original
dense mesh.

The final example is a cow model used in [8]. The
control mesh shown in Figure 17(a) was also created by
simplification. Figure 17(b) shows the resulting subdivision
surface. Note that the shape is very smooth and, yet the
main features are preserved.

5 Conclusions

In this paper we presented a new scheme for subdivision
surfaces. It is based on quasi 4–8 regular meshes, and com-
bines a geometry sensitive refinement operator with a con-
volution smoothing operator.



Overall, the scheme integrates effectively the two main
operations and exploits the adaptivity of the mesh structure.
The implementation is simple and efficient. It generates
well-shaped meshes which converge to smooth surfaces.
There is strong evidence that the resulting limit surfaces are
piecewiseC1 continuous.

We have demonstrated the capabilities of the scheme
through examples of different surfaces: with and without
boundary; of arbitrary topological type; as well as, from
shapes with variable level of complexity.

This scheme is an addition to the repertoire of mod-
eling tools for subdivision surfaces. In the range of exist-
ing techniques, it lies halfway between stationary and vari-
ational subdivision methods.

The main novel ideas proposed in this paper are the
introduction of the concept of quasi-stationary subdivision
and mesh topology refinement based on geometric criteria.
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(a) (b) (c) (d)

Figure 10: Subdivision ofn-regular planar polygons.

(a) (b)

Figure 11: Subdivision of a warped hexagon.

(a) (b) (c) (d)

Figure 12: Subdivision of regular polygons with even (top row) and odd (bottom row) number of sides.



(a) (b)

Figure 13: Surface generated from cube after 4 steps.

(a) (b)

Figure 14: Surface generated after 4 steps from torus.

(a) (b) (c)

Figure 15: Control of features and boundary treatment

(a) (b)

Figure 16: Bunny: (a) control net; (b) smooth net.

(a)

(b)

Figure 17: Cow: (a) control net; (b) smooth net.


