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Abstract. Recent research topics deal with the problem how to reconstruct real-world objects from a set of
multiple range images showing only portions of the object. Here we present an approach how to generate
and adapt a geometrical deformable model (GDM) to a set of already registered range images in order to
reconstruct the complete object. From the range images we derive a signed distance function which implicitly
defines the surface of the object. Then, an intermediate volume is carved out and a sparse triangle mesh is
generated. The proposed GDM scheme refines the initial roughly approximated mesh by deformation and
adaptive subtriangulation. Due to the adaptive improvement of the mesh up to the desired degree of accuracy,
our method describes an efficient way how to reconstruct the object in user-definable accuracy.
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1 Introduction

The reconstruction of complete object geometries with a
3D scanner device is generally not possible withinone scan.
Instead, the object has to be scanned from several direc-
tions in order to capture its complete geometry. The re-
sulting range images must be registered and can subse-
quently be integrated into a model of the object surface.

Due to some amount of noise in the original data and
due to partially incomplete captured surface portions, there
is a need for interpolating the object surface at falsified or
undefined gaps. A uniform approach solving this problem
is the geometrical deformable model (GDM). The GDM
was first described by Miller et al. [3] for the segmenta-
tion of volumetric data sets. Basically, a GDM is a trian-
gle mesh that dynamically deforms by moving each mesh
vertex in the direction of steepest descent along the sur-
face of a cost function. The cost function integrates all
constraints on the shape and position of the mesh into a
consistent mathematical model. By minimizing the total
costs the best solution is achieved.

However, a crucial drawback of this approach is the
smoothing of fine details of the surface even in regions
where it is defined properly, e.g., sharp edges. It is caused
by improper weighting of internal cost terms which are
intended to preserve the mesh smoothness and topology.
We propose a deformation scheme that moves the vertices
under constraint to minimize the external cost term ex-
clusively. The presented optimization procedure achieves
high quality of the mesh by moving the vertices along two
types of forces, a spring force and an expansion force. The
spring force maintains the mesh regularly whereas the ex-
pansion force drives the mesh towards the surface.

Figure 1: (a) plaster bust of composer Richard Wagner (b)
3D model reconstructed from 27 scanned range images

The remainder of this paper is organized as follows.
Section 2 gives an overview of the processing steps. Sec-
tion 3 discusses the definition of the implicit surface from
multiple registered range images. Section 4 deals with the
generation of the template mesh. Section 5 discusses topo-
logical improvements of the mesh applied during the de-
formation process. Section 6 presents two approaches to
improve the vertex positions of a given mesh: a fast one
and the proposed GDM approach. In section 7 results are
shown and discussed.

2 Overview

The processing steps and intermediate representations that
yield an accurate, sparse triangulated surface starting from
a set of range images is shown in Fig. 2. The first step
is the registration of range images [5] and results in the
model cluster. The cluster holds the information needed
to define an implicit surface, i.e., the range images and
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Figure 2: Pipeline for adapting the GDM

their attached transformation matrices. For the calcula-
tion of Euclidean distances to the surface and for higher
performance it also contains a distance transformed vol-
ume that assigns every voxel its distance to the nearest
surface point. In a subsequent step, a binary volume is
sculptured. By using an octree representation during sculp-
turing we are able to generate a volume of arbitrary res-
olution. By application of the marching cube algorithm
a template triangle mesh is generated from the volume.
This template is then adapted to the surface by deforma-
tion and subtriangulation.

3 Definition of the Implicit Surface

3.1 Distance Function

Initially, the surface of the object to be reconstructed is
given by a number of range images that are already regis-
tered. The parameter grid of the range images is defined
by the coordinate system of the scanner, e.g., a cylindri-
cal or a perspective system. By interpolating between the
grid points the surface can be continuously completed.

Now, we convert the range images to a signed dis-
tance function. For the definition of the distance we de-
fine for each range image a function gi(x) that measures
the signed projection distance between a point in space
and the interpolated surface in the range image. The cor-
responding point in the range image is found by project-
ing the point x onto the parameter grid of the range im-
age. Thus, a positive distance indicates that the point lies
between the scanner and the surface and consequently is
visible whereas a negative distance indicates that the point
lies below the surface and is invisible.

The synthesis of multiple range images is achieved
by combining the functions gi(x) as shown in eq. (1).

f(x)=max
i

f gi(x) g (1)

The implicitly defined surface is given by the zero
crossings of f(x). It is now possible to calculate the in-
tersection between an arbitrary ray and the surface of the
object.

3.2 Distance Transformation

The distance function discussed in the previous subsec-
tion calculates the projection distance, which has the same
zero crossings as the Euclidean distance. The functioncon-
sequently is suitable for the definition of the implicit sur-
face and for the definitionof the visibilityof a point. How-
ever, in order to approximate the Euclidean distance from
a point to the nearest surface point, we propagate distances
into space by calculating a distance transformed volume.
This has the positive side effect that it also reduces the ef-
fort of calculating the distance, which otherwise depends
linearly on the number of range images. In order to pre-
vent loss of information the projection distance within the
voxels that contain portions of the surface can be calcu-
lated additionally.

The distance transformed volume is generated by a
floating point number based chamfering distance transfor-
mation. The distance is at first defined only for voxels that
contain parts of the object surface. For initialization of
these voxels the projection distance to the center of grav-
ity of the voxel is calculated and stored to the voxel. By
application of a two pass transformation algorithm [1] the
distances are propagated successively into the neighbor-
hood. After the distance transformation is completed, the
invisible voxels are defined as to be negative.

4 Generating the Template Mesh

In order to achieve a first approximation of the object sur-
face and to derive the topology of the object up to the de-
sired level of detail, we use a sculpturingapproach to build
an intermediate volumetric model. For each voxel x of
the volume the distance function f(x) can be evaluated
and we thus obtain the binary decision whether the point
does belong to the object. In some cases, there remain
some volumetric regions that do not belong to the object
because the associated voxels e.g., lie on the back-face
of the object, far below one of the range images defining
the front side. However, after generating the intermedi-
ate volumetric model, the marching cube algorithm with
a look-up table that resolves ambiguous cases [4] can be
applied to generate a polygonal representation. In order
to delete wrong volumetric regions all connected meshes
are detected and all but the largest mesh are deleted. The
accuracy of this polygonal mesh is improved by moving
the vertices of the mesh onto the surface implicitlydefined
by the registered range images [5].

5 Improving the Mesh Topology

To be able to approximate fine details of the surface our
scheme refines the grid at surface portions with high cur-
vature and removes triangles where the reconstructed sur-
face is nearly flat. This benefits for a compact representa-
tion and accelerates operations performed on the mesh.

X I SIBGRAPI, 1998



ADAPTING GEOMETRICAL DEFORMABLE MODELS TO MULTIPLE RANGE IMAGES 3

By merging those pointsconnected by very short edges
and deleting the corresponding triangles, the number of
triangles can be reduced very easily. In addition, standard
mesh simplification and optimization algorithms such as
edge swapping [6, 7] are applied.

5.1 Subdivision

Triangles are splitted into a number of faces if the distance
of one of the centers of gravity of the three edges or of
the center of gravity of the triangle is larger than a spec-
ified threshold value. The new vertices are found as the
intersection of the mesh normal with the implicit surface.
After determination of the point locations one of the sub-
triangulation schemes of Fig. 3 is chosen and the splitted
triangle is replaced by the new triangles.

1 2 3 4

5 6  87

Figure 3: Subdivision configurations

6 Improving Vertex Positions

6.1 A Fast Approach: Smooth and Reproject

The initial triangulation can be improved by shifting the
vertices of the mesh onto the center of gravity of the sur-
rounding polygon (smoothing). We then define a ray that
runs through the shifted vertex and parallel to the mean
normal of the neighboring triangles. The vertex is now
re-projected onto the surface by finding the nearest sur-
face intersection. Hence we derive triangles of approxi-
mately equal size and inner angles. The visualization of
the object appears to be greatly improved as small noise in
the vertex coordinates only slightly influences the surface
normal of the triangle. On the other hand, vertices may be
delocalized apart from small step edges of the surface.

6.2 GDM

6.2.1 Force Definition

The deformation of the GDM from the initial template is
driven by the simulation of two forces. On one hand the
edges act like springs. According to equation (2) the spring
forces are normalized in order to yield equilateral trian-
gles.

Fspring(xi) =
X

(i;j)2Vertices

xj � xi

jxj � xij
(2)

On the other hand a pressure force defined along the
surface normals causes a smooth deformation of the GDM
as it is done for reprojection.

6.2.2 Optimization Procedure

The deformation of the GDM is performed iteratively by
moving each vertex along the direction of each force. The
step size for this is chosen individually for both forces at
each vertex. Two strategies are sensible.

1) As a first step, move the vertex along the spring
force. The step size has to be smaller than the distance
value of the starting point and shorter than the distance to
the center of gravity of the surrounding polygon. If a de-
fined distance value calculated for all adjacent triangles
increases, this step is not performed. In a second step, move
the vertex along the positive normal direction. The step
size has to be smaller than or equal to the distance value of
the starting point. If the distance value of the adjacent tri-
angles increases, the negative normal direction is tested.

2) Since the second step of the above procedure as-
sures for minimizing the distance of the adjacent triangles
to the surface, the constraint for the movements along the
spring force can be relaxed. This is done by a stochas-
tic approach. We adapt an acceptance criteria from simu-
lated annealing [2] which is shown in equation (3). If the
probability Pij is larger than an equally distributed ran-
dom number in the interval of [0 : : :1) the new state is ac-
cepted, otherwise rejected.

For the results shown in the next section the latter
method has been used. In equation (3)T indicates the tem-
perature of the system and h(:) indicates the Euclidean
distance to the surface as mentioned in section 3.2.

Pij =

(
1if h(xi) � h(xj)

e(h(xj) � h(xi))=T if h(xi) > h(xj)

(3)

Figure 4: Approximation error for both vertex optimiza-
tion methods
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Figure 5: Three stages of the GDM-adaption process with (a) 1300 (b) 7500 (c) 16000 triangles

In order to calculate the distance of an arbitrary point
to the surface, the distance transformed volume is sam-
pled at each vertex point and additionally at the center of
gravity of each triangle. From these sample points the root
mean square distance is calculated. As can be seen later
the minimizationof this average value results in high qual-
ity surface approximation. The procedure terminates if
the average vertex movement is below a given threshold
value. The adaption algorithm is summarized as follows:

Adapt Mesh (T)
loop f

loop f
remove short edges (T);
remove redundant points (T);
swap edges (T);

g until no more vertices are removed;
improve vertex positions (T);
subdivision (T);
swap edges (T);
improve vertex positions (T);

g until the required accuracy is reached;

7 Results

Results are presented for a bust of the composer Richard
Wagner. The bust was reconstructed from 27 range im-
ages. The topology of the bust and a first approximation
of its shape was sculptured in a volume of 23� 25� 16
voxels. Fig. 5(a) shows the triangulation generated with
the marching cube algorithm. Small edges have already
been eliminated. Afterwards our GDM adaption proce-
dure was applied to the data set as it is presented in Fig.
5(b) and (c).

Simultaneously the root mean square approximation
error has been calculated as distance value of each triangle

center of gravity resp. vertex point during each subdivi-
sion step. As can be seen from Fig. 4 the GDM approach
leads to far lower approximation errors than the faster ap-
proach of smooth and reproject. Dependent on the object,
approximately 4 times the number of triangles are needed
for the smooth and reproject approach in order to achieve
the same quality for the reconstructed object. However,
the GDM approach requires far more computation time.
Whereas the smooth-and-reproject approach takes in to-
tal only a few minutes for the mesh optimization and re-
finement, the GDM approach is approx. 100 times slower.
Thus, we have a strong tradeoff between run time and ac-
curacy.
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