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Abstract. This paper discusses a series of new techniques for neuromorphometry, including
Minkowski’s sausages, influence histograms, normal and tangent vector fields, and orientation histograms
and bending energy.  The possibilities opened by these developments with respect to the better
understanding and more realistic simulation of the behavior of neural structures is also discussed.
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1 Introduction

The brain is the most complex structure known to man.
Its remarkable emmerging behavior, responsible for all
human accomplishments, is known to be defined by two
principal factors: (i) the electrochemical processes in
and outside the cell; and (ii) the cell morphology, which
imposes constraints to the aforementioned processes.
The influence of the cell morphology over  the neural
behavior can be understood in terms of a multiscale
perspective [Costa (1997a)]:  at the more microscopic
scales, the diameter and size of dendritic segments
define the electrotonic properties of the dendritic
arborization; at intermediate spatial scales, the
profusion of branches define the degree of spatial
coverage of the cell,  consequently strongly influencing
the pattern of synaptic connections with other cells;  at
larger spatial scales, the overal size and position of
each neural cell play an important role in stablishing not
only the extension of the associated receptive field, but
also the temporal behavior of the respective neural
structures.  The importance of neural shape is further
supported by the large number (about 500) of types of
neurons which have been identified in the mammals’
cortex.  It is thus important to devise effective methods
for the analysis and classification of neural cells.

While the electrochemical aspects of neural
structures have received great attention from
neuroscientists, e.g. [Koch & Segev (1989)], the
morphometric features of such structures have been
relatively overlooked.  In fact, the relatively few
approaches reported in the literature have been largely
restricted to global features such as fractal dimension,
e.g. [Montague & Friedlander (1991)]; influence area,

e.g. [Toris et al. (1995)]; and the number of dendritic
branches, e.g.  [Toris et al. (1995)]; as well as local
features such as the length and diameter of the
segments, represented by dendrograms, e.g. [Toris et al.
(1995); Poznanski (1992); Cesar & Costa (1997b)].
Moreover, such measures and representations have
rarely been characterized and assessed, in such a way
that there are few sound guidelines for selecting a set of
shape features for neuromorphometric analysis of cell
classification.  In short, neuromorphometry is still an
incipient area.

The work reported in the current article presents
several attempts at partially overcoming the above
identified shortcomings.  These approaches are part of a
larger project being developed at the Cybernetic Vision
Research Group, initiated and supervised by the author
since 1993, which is aimed not only at
neuromorphometry, but also at the generation of
biologically more realistic neural structures.  As it
happens, it was precisely this latter objective that
motivated a more comprehensive and careful approach
to neural shape analysis, since it is only by having a
good statistical description of real cells in terms of an
effective set of shape features that it becomes possible
to generate biologically realistic cells.  The present
paper starts by addressing the problem of defining and
estimating the area of influence and the spatial coverage
and complexity of neural cells, which is done in terms
of convex hull, Minkowski’s sausages and influence
histograms [Costa (1995); Costa et al. (1997a,b)].  Next,
a new approach to general contour analysis based on
vector fields [Costa (1997b-d)] is described, which
allows normal vector fields to be obtained by using a
combination of laplacian-of-gaussian and vector field



estimators.  This approach, which can be immediately
extended to N-dimensional spaces, allows the direct
determination of orientation histograms and normal
fields, from which tangen fields and the contour
curvature and bending energy can be derived.  Finally,
the above mentioned vector field framework is
discussed as an underlying mechanism for effective
orientation enconding in the mammals’ cortex.  The
perspectives for future developments, including the
generation of biologically realistic neural structures and
their respective modeling are also discussed.

2 Area of Influence, Spatial Coverage,
Complexity, Minkowski’s Sausages and Influence
Histograms

Though being a common concept in the specialized
literature, there is no precise definition for what the
area of influence of a neural cell actually is, or how it
should be estimated.  A typical approach to this
problem consists in joining the extremities of the cell, in
such a way as to form a polygon containing the cell (see
Figure 1).  However, as illustrated in Figure 1(a,b),
slighly different neural cells can produce largely distinct
involving polygons.   In order to overcome such
criticability, the definition of the influence area as the
convex hull of the cell has been proposed in [Costa
(1995, 1997a)].  Yet another possibility is to assume as
the area of influence of a neural cell the set of points in
the surrounding space whose distance to the neural cell
(the minimal distance) does not exceed a fixed value L
[Costa et al. (1997a,b)]], such as illustrated in Figure
1(c-e), with respect to L=3, 6, 9 and 12.  The choice of
L depends on the kind of physiological effect we are
interested to analyse.

A concept that is closely related to the area of
influence is the degree of spatial coverage exhibited by
neural cells.  Such as plants roots, dendritic and axonal
arborizations are meant for optimizing the coverage of
the surrounding space, in such a way that the estimation
of the effectiveness of this process can provide valuable
indication about the number of synaptic connections of
a specific cell or structure.  In the specialized literature,
the spatial coverage has been often associated to the
complexity of the cell.  Typical approaches to the
estimation of these characteristics include measures
such as the number of branches divided by the area of
influence, and fractal dimension.  While the former
alternative is simple and interesting, the fractal
dimension is potentially more accurate, since it takes
into account not only the number of branches, but also
the complexity inherent to each dendritic segment (i.e.
its roughness).  The most frequently adopted approach
to estimating the Bouligand-Minkowski fractal
dimension of a neural cell or structure consists of the
box-counting procedure, e.g. [Montague & Friedlander
(1991)].  However, many problems affecting such an
approach have been identified, e.g. [Coelho & Costa
(1997)], including the dependence of the orientaton and
position of the superimposed grid, the fact that neurons
are not perfectly fractal objects, and the limitations
imposed by the discrete representation of the cells in
spatially quantized images.  We have investigated an
alternative method for estimating the Bouligand-
Minkowski dimension that relies on the use on
Minkowski’s sausages [Tricot (1995)].  As illustrated in
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Figure  (1):  The estimation of the influence area in
terms of the involving polygon defined by the

dendritic extremities suffers from the serious problem
that slightly distinct cells may yield rather different

influence areas.



Figure 1(c-e), these sausages are obtained by
convolving the binary representation of the original cell
with circular regions with monotonically increasing
radius, and taking as result (a binary image) the non-
null pixels.  The respective fractal dimension can be
obtained from the slope of the log-log representation of
the curve number of points x radius of circular region
in the region of fractality of the cell [Costa (1997a),
Coelho & Costa (1997)].  The obvious advantage of this
approach is that it does not depend on the orientation

and position of the superimposed grid that is implied by
the box-counting procedure.  Moreover, it provides a
better conceptual understanding of the fractal dimension
in biological terms: since the Minkowski sausage for a
specific radius corresponds exactly to the area of
influence as defined earlier in this section, the estimate
fractal dimension indicate how well the surrounding
space is being covered as the area of influence
increases.  In fact, this interpretation has motivated the
extension of the Minkowski’s sausages in order to
quantify the profile of influence stablished by various
biological processes.  For instance, the stablishment of
synaptic connections is known to be governed by a
number of causes, including the distribution of
chemoattractors and electric fields, which act by
guiding the growth cones.  Thus, if we are interested to
investigate the area of influence of a specific neural cell
or structure with respect to the distribution of electric
potential field, we should obtain the distribution of the
field along the surrounding space, which can be done by
convolving the pictorial representation of the cell with

the point-spread function defined by a single charge
(i.e. pixel) [Costa (1997b-d)].  Perhaps the most
interesting feature of such an approach to the
characterization of the spatial coverage by a neural cell
is that it explicitly takes into account the fact that the
spatial coverage is always relative to a specific
biologically relevant factor (e.g. the electric field in the
above example).  However, such a definition of area of
influence involves every pixel suffering a non-
negligible influence from the cell.  In order to provide
more compact and global measures, it is possible to use
the histogram of the intensity of the influence at each
affected pixel, or even the respective entropy.  Such
histograms, which have been experimentally verified
[Costa et al. (1997a,b)] to provide a global and yet rich
description of the spatial coverage by neural cells with
respect to specific biological factors, have been called
influence histograms.   Figure 2 presents two neural
cells (a,b), the areas of inlfluence obtained with respect
to a gaussian point-spread-function (c,d), and the
respective influence histograms (e).

3 Fourier-Transform-Based Vector Fields,
Normal Fields, Tangent Fields, Curvature and
Bending Energy

As commented in the previous section, chemoattractors
and electrical fields present immense importance in
defining the interconnection patterns among neural
cells.  Furthermore, ionic and electrical gradients are
also known to strongly and continuosly influence
typical neural behavior.  Consequently, in order to
analyse and simulate neural structures, it is extremely
important to have effective ways for calculating scalar
and vector fields in 2 and 3-D spaces in real-time.  As
described in the previous section, scalar fields can be
obtained straightforwardly by convolving the neural
shape with the point-spread-function, an operation that
can be effectively implemented in the Fourier domain
because the point-spread-function typically implies a
large support area.  It has been shown by the author
[Costa (1997d)] that this approach can be extended also
for the calculation of vector fields.  In this case, two
scalar point-spread-functions, each corresponding to the
x- and y-components of the field, respectively, are
convolved with the neural shape in order to determine
the x- and y-components of resulting influence vector
field, in such a way that the convolution can be
performed through Hadamard porducts in the Fourier
domain.  Figure 3 shows an example of the
determination of a vector field of influence of the neural
cell in Figure 1(a) with respect to a exponentially
decaying vector field (equivalent to electrical field in
2D spaces).
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Figure  (3):  The electric field stablished around a
neural cell, estimated in the Fourier domain.



Such an approach also allows the trajectory of
development of a growth cone, simulated in terms of
differential equations assuming that the arc-length of
the growth cone progresses at constant speed, to be
accurately predicted.

In addition to its inherent value for simulation

of the development of neural structures, the effective
numerical calculation of vector fields also allows us to
estimate the normal field along the contours of general
objects in the image.  This can be done by having the
the image first to undergo a laplacian-of-gaussian
filtering, the result of this operation been used for
estimation of a vector field with exponentially decaying
magnitude.  The underlying idea is that the laplacian-of-
gaussian defines distributions of negative and positive
values at each side of the image contours, thus making
the field to orthogonally cross such contours.

The normal field obtained for the cell in Figure
1(a) is depicted in Figure 4(a).  Orientation histograms,
usually visualized in polar form, can be

straightforwardly obtained from the normal fields,
providing an interesting representation of the
distribution of orientations exhibited by the neural
processes. In addition to orientation histograms, tangent
fields can also be extracted from the respective normal
fields.  Since the point curvature along the contours is

defined as the derivative of the angle between the
tangent vectors and the x-axis [Stoker (1969)], it is
possible to use the derivative property of the Fourier
transform and the total derivative theorem to estimate
the point curvature, which provides important
information for the detection of critical points in the
contours, directly from the 2D representation of the
tangent field.  Morever, the normalized multiscale
bending energy of the contours, which has been shown
[Cesar & Costa (1996,1997a)] to represent an important
subsidy for the classification of neural cells,  can be
obtained by adding the squares of the point curvature
values.  Since the determination of the curvature in this
process does not depend on the previous segmentation
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Figure  (3):  Two neural cells (a,b) and their respective influence areas with respect to gaussian point-spread-functions
(c,d), and the respective influence histograms (e).  Being more complex, the cell (b) yields a broader influence

histogram than that for cell (a).
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of the contours, the proposed method can be used for
the treatment of even cluttered images such as textures .

5 Concluding Remarks and Future
Developments

This article has presented a series of new concepts and
methods for the morphometric analysis and simulation
of neural cell and structures.  The concept of influence
area, spatial coverage and complexity of neural cells
have been defined in a way that is biologically sound
and which can be effectively calculated in terms of
convex hulls, Minkowski’s sausages, and influence
histograms.  The idea of influence area has been
extended to include vector fields, such as those obtained
from conservative fields, which provide an interesting
alternative for the stactic and dynamic simulation of the
physiological processes, such as the development of
growht cones and electrotonic potential distribution, in
neural structures.  It has also been shown that, by
estimating vector fields with exponentially decaying
magnitude over images first processed by laplacian-of-
gaussian, it is possible to estimate the normal and
tangent fields along the image contours, from which
orientation histograms, point curvature, and normalized
multiscale bending energy can be determined.  All these
concepts and techniques can be easily extended to
higher dimensional spaces.  The Fourier-based
approach and scalar decomposition used in the
numerical approach to the estimation of such vector
fields have also yielded interesting possibilities for

explaining orientation encoding at the primate visual
cortex in terms of orthogonal orientation channels,
corresponding to the x- and y-components of the point
vector field [Costa (1997b,c)].  In fact, this hypothesis
is supported by the fact that the receptive fields of
simple cortical cells bear a substantial similarity with
the point-spread-functions defined by the combination
of laplacian-of-gaussian and exponentially decaying
vector fields.

We are currently developing a framework for
generation and simulation of biologically-realistic
neural structures, and investigating the use of linear and
non-linear variational methods  in order to obtaining
better localization of the contours dufing the blurring
process implied by the laplacian-of-gaussian.
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Figure  (5): The normal vector fields obtained for the
neural cell in Figure 1(a).
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