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Abstract. Mathematical Morphology is a theory that studies the decomposition of lattice operators in
terms of some families of elementary lattice operators. When the lattices considered have a sup-generating
family, the elementary operators can be characterized by structuring functions. The representation of struc-
turing functions by neighborhood graphs is a powerful model for the construction of image operators. This
model, that is a conceptual improvement of the one proposed by Vincent, permits a natural polymorphic
extension of classical softwares for image processing by Mathematical Morphology. These systems cons-
titute a complete framework for implementations of connected filters, that are one of the most modern and
powerful approaches for image segmentation, and of operators that extract information from populations
of objects in images. In this paper, besides presenting the formulation of the model, we present the poly-
morphic extension of a system for morphological image processing and some applications of it in image
analysis.

1. Introduction

Mathematical Morphology[Ser88] is a theory that stu-
dies the decomposition of latticeoperators(i.e., map-
pings) in terms of some families of simple lattice opera-
tors: erosions, dilations, anti-erosions and anti-dilations.
The combination of these operators, that are calledele-
mentary operators of Mathematical Morphology, via the
operations of intersection, union and composition per-
mits the representation of any lattice operator [BB93].
When the lattices considered have asup-generating fa-
mily (i.e., a set of elements that is enough to create any
other element of the lattice via the supremum operation)
the elementary operators can be characterized by func-
tions from the sup-generating family into the lattice, that
are calledstructuring functions. A natural data struc-
ture for representing a structuring function is an orien-
ted 1-graph, where the vertices are the elements of the
sup-generating family and the edges are pairs of vertices
(x; y) such thaty is in thesup-decomposition(i.e., subset
of the sup-generating family whose elements are less or
equal a lattice element) of the image ofx by the structu-
ring function.

A particular example of lattice that has a sup-genera-
ting family is the set of functions from a finite setE � Z2

to an intervalK � Z
+, with the partial order inherited

from the usual order relation between integer numbers.
When the structuring functions considered are flat (i.e.,
are defined by a translation inK of a subset ofE) the
graphs necessary to represent structuring functions are re-
duced to the ones that have vertices inE.

In image processing applications, these graphs are
in fact neighborhood graphs that represent the adjacency
between objects or regions of the image. For example,E
may represent theflat zonesof the image (i.e., connected
regions of the image with the same gray-level) and the ed-
ges may represent the adjacency between flat zones. This
is the model used to representconnected filters(i.e., fil-
ters that do not affect the pixels of a flat zone or affect
all the pixels of the flat zone of the same value) [SS95],
that are one of the most modern and powerful approaches
for image segmentation. In other applications,E could
represent image objects, as cells or blobs, and the edges
could be given by the application of some tessellation al-
gorithm on these objects, reflecting their proximity under
some distance measure. This is the model used to extract
information from populations of objects in images.

In fact, these models constitute natural representa-
tions for some problems and so simplify the conception



of their solutions. Additionally, when the objects or re-
gions considered are composed of several pixels, the gra-
ph structure is compact and concentrates just the relevant
information, which imply in fast algorithms. For exam-
ple, the implementation of a connected filter as the inf-
reconstruction [BBLJ97] may be many times faster in the
graph structure than in the conventional image represen-
tation, since the iterative manipulation of image pixels is
substituted by the iterative manipulation of flat zones of
the image.

A similar model of representation was proposed by
Vincent [Vin89]. In the original model of Vincent, the
graph structure was associated to the function domain
and, in our model, it is used to describe the structuring
function. This new model is mathematically more consis-
tent, since it is a particular case of the general representa-
tion of operators on lattices that have a sup-generating fa-
mily and generalizes the representation of classical mor-
phological image processing operators. The classical ope-
rators are represented by particular homogeneous struc-
turing functions that are characterized just by a function,
known in the literature by structuring element.

This new formulation permits a natural polymorphic
extension of the softwares for morphological image pro-
cessing and a complete equality between theory and im-
plementation. The polymorphism is characterized, since
both the classical morphological operators and the new
ones have as arguments exactly a function and a structu-
ring function, with particular characteristics in each case.

Following this introduction, section two presents the
model proposed. Section three describes the architecture
of a polymorphic software for morphological image pro-
cessing. Section four gives some application examples.
Finally, section five presents some conclusions and futu-
re directions for this research.

2. Characterization of morphological operators by
graphs

Let (L;�) or, simply,L be a complete lattice [Bir67].
The elements ofL will be denoted by the upper case let-
tersX andY . An operator is a mapping fromL to L.
The set of operators fromL toL is denotedLL.

An erosion� is an operator onL that commutes with
the infimum (i.e.,�(^X ) = ^�(X );8X � L). The dual
operator of an erosion� is adilation �, which commutes
with supremum (i.e.,�(_X ) = _�(X );8X � L).

Let �; � 2 LL. The pair(�; �) constitutes anad-
junction onL if and only if

�(Y ) � X , Y � �(X); (X;Y ) 2 L2.

A fundamental property of the adjunction onL is
that the only pairs of operators that satisfy this relation
are the pairs formed by an erosion and a dilation. In other
words, if (�; �) constitutes an adjunction, then� is an
erosion and� is a dilation [HR89].

A subset̀ of a complete latticeL is called asup-
generating familyif any element ofL can be written as
a supremum of elements of`. The elements iǹ will be
denoted by the lower case lettersx andy. The set of sup-
generating elements that is less or equal an elementX in
L is denoted̀ (X). Hence, we haveX = _`(X).

Let E be a finite rectangle inZ2: The subsets ofE
represent the binary images and the collection of all bina-
ry images constitutes a complete lattice (under the usual
inclusion relation on sets) that has as sup-generating fa-
mily the set ofsingletons(i.e., points) ofE. Analogous-
ly, a function fromE toK � Z+ represents a gray-scale
image and the set of all imagesKE constitutes a comple-
te lattice (under the partial order inherited from the usual
order on integer numbers) that has as sup-generating fa-
mily the impulsive functions(i.e., the set of functions
fu;v, such that, for all(u; v) 2 E � K, fu;v(u) = v
andfu;v(x) = 0, 8x 6= u).

The functions from̀ toL are calledstructuring func-
tionsand denoted by the lower case lettera. A structuring
functiona will be called astructuring function with pro-
perty of dilationif there exists a dilation� 2 LL, such
thata(y) = �(y);8y 2 `:

The following theorem [Bar92] shows how erosions
and dilations on lattices with a sup-generating family can
be characterized by structuring functions.

Theorem - There exists a bijection between the set
of structuring functions with properties of dilation and
the set of pairs of operators that constitute an adjunction
onL. This bijection is given by, for anyX;Y 2 L and
y 2 `,

�(X) = �a(X) = _fy 2 ` : a(y) � Xg;

�(Y ) = �a(Y ) = _fa(y) : y 2 l(Y )g

and

a(y) = a(�;�)(y) = �(y).

On lattices that have anegation(i.e., that have a
decreasing operator that composed with itself gives the
identity operator) the anti-dilation and anti-erosion are gi-
ven just by the composition of, respectively, dilation and
erosion with the negation operator. Therefore, on this
kind of lattices, the characterization of erosions and di-
lations by structuring functions and the known results of
decomposition of lattice operators in terms of elementa-
ry operators imply that any lattice operator can be cha-
racterized by a collection of structuring functions. Two



examples of lattices that have a negation are the lattices
of binary and gray-scale images.

When E and K are Abelian groups, the most com-
mon structuring function used in image processing is the
one that characterizes the translation invariant elementary
operators and that is given by

a(fu;v) = gu + v;

where(u; v) 2 E�K andgu denotes the spatial transla-
tion of g by u, with g 2 KB andB � E.

This kind of structuring function is calledtransla-
tion invariant, since it is built by translation of a function
g.

Another interesting choice of structuring function is
the one based on a neighborhood graph and given by

a(fu;v) = g=DG(u; r) + v;

whereE is an arbitrary finite subset ofZ2; g=DG(u; r)

denotes the restriction of a functiong 2 KE to a disk
DG(u; r) of centeru and radiusr, under the distancedG
defined on a graphG of verticesE. If g is a constant
function equal to zero, thena will be a flat structuring
function. Figure 2.1 shows an example of a dilation by a
structuring function represented by a graph.

E E

X

a

�a(X)

Figure 2.1. Dilation by a flat
structuring function, with r=1.

The operators that are translation invariant only inK
are characterized by the following structuring function

a(fu;v) = a(fu;0) + v.

Note that the other two structuring functions pre-
sented are particular cases of this one, that is calledK-
translation invariant structuring function.

The translation invariant structuring function is cha-
racterized by an homogenuous graph, that can be repre-
sented just by the functiong, called in the literaturestruc-
turing element. The flat structuring functions can be cha-
racterized by a neighborhood graph defined onE. The
K-translation invariant structuring functions are charac-
terized by a graph with edges of the type(x; fu;v), where
x is an element ofE.

A general structuring functiona from ` toL is cha-
racterized by a graph whose vertices are the elements
of ` and the edges are pairs of vertices(x; y) such that
a(x) = Y andy 2 `(Y ).

The classical morphological operators are characte-
rized by structuring elements, while the ones studied by
Vincent are characterized by flat structuring functions.

Note that using the characterization of lattice ope-
rator by structuring functions the polymorphic extension
of a software for morphological image processing is qui-
te natural. It is a question of adding algorithms for the
elementary operators characterized by different classes of
structuring functions and choosing the right algorithm ba-
sed on the analysis of the given structuring function.

3. Polymorphic implementation of a morphological
image processing software

The morphological operators based on generic structu-
ring functions are useful in image analysis to extract pro-
perties of families of objects or to segment images. In
both cases the function to be transformed constitutes a
model of the image, that represents geometrical or gray-
scale properties. In the case of image segmentation, the
function has a point for each flat zone, which is associa-
ted to the gray-value of this flat-zone, and the structu-
ring function is given by the flat zones adjacency graph.
Transformations using this model permit the construction
of any connected filter [SS95] and, consequently, solve
any image segmentation problem without distortions on
the edges. Another useful model for image segmentation
is the function which has a point associated to each catch-
men basin created by the watershed operator [Vin89]. In
this case, the function may represent the mean gray-value
or other statistical measurement in each region, and the
flat structuring function is given by the adjacency graph
of the watershed.

In order to apply this approach to image analysis
problems, we need to extend the conventional morpho-
logical image processing softwares to systems that sup-
port structuring functions represented by neighborhood
graphs. Additionally, we need tools to build the functions
that will be processed, to create the neighborhood graphs,
and to visualize graphs and functions.

We have implemented an extension of the MMach
toolbox [BBL94] for dealing with structuring functions
based on neighborhood graphs [Zam97]. Figure 3.2 pre-
sents a diagram showing the complete process from the
creation of the image model function and the structuring
function to the processing of the function and visualiza-
tion of the results.

In the diagram of Figure 3.2, we see an input image
that is represented by an array of pixels. From this ima-
ge, we construct a function, for further processing, and
a neighborhood graph, to represent the structuring func-
tion.
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Figure 3.2. Graph based image processing.

The function is represented by an array which con-
tains the coordinates of the centroid (or of another in-
ternal point) of each region or object, and its associated
values. These values may represent geometrical proper-
ties of objects (e.g, area, perimeter, projections, number
of adjacent regions, etc.) or gray-scale properties (e.g,
mean, variance, median, maximum value, minimum va-
lue, value of a particular point, entropy, etc.).

We have two possible forms to construct neighborho-
od graphs: one based on tecellations of the function do-
main and the other based on image region adjancency.
We implemented two kinds of tecellations: one based in
the minimum distance and the other based onk nearest
neighbours. In the minimum distance method, we define
an edge between two points if they have a distance less
than a fixed value, according with some distance measu-
re. In thek nearest neighbour method, we define edges
between a point and thek nearest neighbours of it, accor-
ding with some distance measure. For the construction
of graphs based on region adjacency, we use the partition
of the image domain given by the watershed or by the
flat-zones of the image. An edge is defined between two
regions if they are adjacent.

The next step is the morphological processing of
the function by the operators characterized by the neigh-
borhood graph. Once Mathematical Morphologyon func-
tions leads to a hierarchical construction of operators from
dilations and erosions, the extension of the software is
simple. It is enough to create specialized algorithms for
these two elementary operators and build a polymorphic
structure integrating all the algorithms for each of them.
Procceding in this way, the code for the other operators
that depend on erosion and dilation do not need to be
changed.

Additionally, other operators which were implemen-
ted in a non hierarchical way were extended by specialed
algorithms based on the graph structure. Among these
operators are distance function, geodesic distance func-
tion, watershed, labeling, area opening, etc.

Finally, we visualize the results of the processing.
The function may be presented in two ways: as an ima-
ge that contains a graphical representation of the graph or
as an image such that for each pixel in a region is given
the value associated to the point corresponding to that re-
gion in the function. This second kind of visualization is
important, for example, for the visual verification of the
results of the segmentation procedures.

In the next section, we show some applications of
this system to image analysis problems.

4. Application examples

In this section, we present the solution of three image
analysis problems by the methodology presented: detec-
tion of fracture lines in porous materials; detection of non
productive parts of Eucalypt pulpwood for the production
of celulosis; and segmentation of the faces of a block.

4.1. Fracture Lines

The first problem is the detection of the most probable
fracture lines in a porous material (i.e., a material that
has holes), when submited to mechanical efforts. The
image (Figure 4.3) used in the experiment is a random
simulation of a real image of such material. This problem
was first studied by Vincent [Vin90].

The idea of the method used in the solution is that
the material should break on lines that pass over the holes.



From all these lines, the most probable are the ones that
have the minimum number of holes.

The method consists in building a neighborhoodgra-
ph, defining two extreme points, computing the graph dis-
tance of the paths between these two points and choosing
the paths of minimum distance. By choosing all possible
pairs of points, we can compute the length of all possi-
ble fracture lines and choose the shortest (i.e., the one the
pass over the smallest possible number of holes).

Figure 4.3. Image of the porous material.

The functions that model this image are binary func-
tions, whose domain are the centroids of the holes. We
work with two binary functions: one that is zero only in
one of the end points considered and the other that is zero
just in the other end point. Figure 4.4 shows the two end
points chosen.

Figure 4.4. End points.

The neighborhood graph was constructed from the
adjacency between regions of the watershed of the input
image. Figure 4.5 presents the result of the watershed
operator and Figure 4.6 presents the graph built from the
watershed.

The next step is to compute the geodesic distance
functions for the two images constructed. Note that the
value associated to each point after the geodesic trans-
form is the distance between that point and the zero end
point. Figures 4.7 and 4.8 show the two geodesic distance
functions produced.

Adding the two geodesic distance functions we get a
new function, such that the value associated to each point
is the length of the shortest path that goes from one end
point to the other and pass over this point. Extracting the

Figure 4.5. Watershed.

Figure 4.6. Neighborhood graph.

Figure 4.7. Geodesic distance.

Figure 4.8. Geodesic distance.

minimum value of this function, we get the path with mi-
nimum density of holes. Figure 4.9 presents the fracture
line found in our example.



Figure 4.9. Fracture lines detected.

4.2. Eucalypt pulpwood image segmentation

The second problem is related to the evaluation of the ca-
pacity of production of celulosis from the trees of a given
forest by the analysis of microscopic pulpwood images
taken from these trees. Figure 4.10 shows a microscopic
image of an Eucalypt pulpwood. Note that it has several
small blobs immersed in a background. The non produc-
tive regions are the ones where the density of blobs is
small. The goal is to segment the image to find these re-
gions. This problem was proposed and first studied by
[Jon96].

The idea of the method is to creat a graph, where the
edges are the blobs, and to separate the regions such that
the distance between blobs is larger than a given value.

Figure 4.10. Microscopic image of
the Eucalypt pulpwood.

The graph is created by the watershed of a first seg-
mentation of the blobs, that is performed by a filtering
(top-hat) followed by a threshold. This result is presented
in Figure 4.11. The result of the watershed is presented
in Figure 4.12.

Figure 4.11. Segmentation of the blobs.

Figure 4.12. Watershed.

The function that models the image is created by
associating to the centroid of each blob, the maximum
Euclidean distance to its adjacent blobs under the gra-
ph constructed. The first operator applied to the function
is the threshold, which separates the more isolated blobs
from the others. Figure 4.13 presents the result of the
thresholding of the image model function.

Figure 4.13. Threshold.

The next step is a closing (i.e., dilation followed by
erosion) of size three, followed by a dilation of size one.
Figure 4.14 presents the result of this operator.

Figure 4.14. Dilation.

Finally, Figure 4.15 shows the result of the superpo-
sition of the original image of the regions detected from
the graph (Figure 4.14).

4.3. Segmentation of a block

The third problem is the segmentation of the faces of a
block. This segmentation may be useful, for example, in
robotic vision for positioning of the robot arms relatively
to the object. The image considered for the segmentation
is the image presented in Figure 4.16.



Figure 4.15. Segmentation.

The approach that we use for this problem is based
on connected filtering. We build a graph of the flat zo-
nes and from a marker for each face we reconstruct the
complete faces.

Figure 4.16. Image of a block.

The first step is the filtering by an alternated sequen-
tial filter. The result of this filter is the elimination of very
small flat zones. Figure 4.17 presents the image obtained
by this filter. From this filtered image we create the flat
zone model for the image.

Figure 4.17. Filtering.

In the following, we label the image model function
and choose some flat zones as markers for the faces, one
for each face. Figure 4.18 presents the labeling of the
flats zones and Figure 4.19 presents the flat zones chosen
as markers.

Finally, from the image model and the marker we
applied a connected expansion that preserves the number
of markers, as proposed by Crespo [Cre93]. The result of
this procedure is the segmentation of the block faces as
shown in Figure 4.20.

Figure 4.18. Labeling.

Figure 4.19. Markers.

Figure 4.20. Segmentation.

5. Conclusion

In this paper we have presented a conceptual improve-
ment of the model proposed by Vincent for the construc-
tion of morphological operators based on neighborhood
graphs. This new model permits a complete equality betwe-
en theory and implementation, and leads to a natural po-
lymorphic extension of morphological image processing
softwares. Furthermore, the complete class of connected
filters can be implemented by this approach.

Using the conceptual model proposed, we have im-
plemented an extension of the MMach toolbox and used
it for the solution of some image analysis problems: de-
tection of fracture lines on porous materials, identifica-
tion of non productive regions of Eucalypt pulpwood and
segmentation of the faces of a block.

The next step of this research will be to use this ap-
proach to study techniques for the design of connected
filters.
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thématique, 1990.

[Zam97] F. de A. Zampirolli.Operadores Morfol´ogicos baseados
em grafos de vizinhanc¸a - Uma extens~ao da MMach To-
olbox. Dissertac¸~ao de Mestrado em Matem´atica Aplicada
apresentada ao Departamento de Matem´atica Aplicada a
Computac¸~ao do IME/USP, S~ao Paulo, 1997.


