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Abstract. We develop exact algorithms for geometric operations on general circles and circular
arcs on the sphere, using integer homogeneous coordinates. The algorithms include testing a point
against a circle, computing the intersection of two circles, and ordering three arcs out of the same
point. These operations allow robust manipulation of maps on the sphere, providing a reliable
framework for GIS, robotics, and other geometric applications.

1 Introduction

A spherical map is a partition of the sphere's sur-
face in three elements: vertices (points), edges (cir-
cles and arcs of circles), and faces (open regions).
Most applications in geographical information sys-
tems (GIS) involve maps of this type: they arise from
geodetic lines, latitude-longitude grids, stereographic
projection of plane polygons, satellite images, etc [4].

Our aim is to develop representations and algori-
thms for spherical maps which are free from roundo�
errors, and therefore robust in the sense of Ho�man
and Yap[3, 6]. The central part of our solution is
an exact representation of circles on the sphere, and
exact algorithms for computing the intersection of
two circles, locating a point with respect to a cir-
cle, ordering circular arcs around a point, and other
geometric operations.

Exactness may seem a pointless luxury in GIS

applications, since GIS data is by its nature appro-
ximate, and approximate results are su�cient for all
practical purposes. However, all geometric algori-
thms used in GIS, such as point location and map
overlay, become much more complex and prone to fai-
lure if their basic operations are subject to rounding
errors, no matter how small. Consider for example a
distributed application that cuts a map into smaller
submaps, handles each piece to a separate processor,
and combines the partial results into a single map. If
the cutting step is exact, the �nal step needs only to
identify common boundary edges between the partial
results, and remove them. In contrast, if the cutting
step is a�ected by rounding error, the task becomes
much harder: the partial results may overlap, or may
be separated by gaps of nonzero width. The pasting
operation is almost impossible to specify, let alone to
program.

2 Oriented projective geometry

The geometry of Cartesian three-space R3 is greatly
simpli�ed if we view it as a subset of a larger pro-
jective space P3 [1, 5]. Besides the ordinary points of
R3 , projective space includes points at in�nity, where
parallel lines are assumed to meet. This extension
removes many special cases and allows us to unify
many algorithms that seem unrelated in the Carte-
sian model.

Projective space has one drawback, though.
Many algorithms for Cartesian geometry are based
on the operation of testing which of the two half-
spaces de�ned by a given plane contains a given
point. In projective geometry, however, this test is
meaningless, since the two half-spaces are connected
through the points at in�nity.

The solution is to work in an even larger domain,
the oriented projective space T3 [5], which consists of
two separate copies of R3 , plus the points at in�nity.
This space retains all the nice properties of P3, wi-
thout losing the orientation and separation properties
of Cartesian geometry.

2.1 Points

In T3, a point p is by de�nition a non-zero quadru-
plet of numbers [w; x; y; z], its homogeneous coordi-

nates, with positive scalars multiples identi�ed|i.e.,
[w; x; y; z] and [�w; �x; �y; �z] are the same point,
for all � > 0. Note that p = [w; x; y; z] and q =
[�w;�x;�y;�z] are distinct points; we say that each
is the antipode of the other, and write p = :q.

By de�nition, the Cartesian coordinates of a
point p = [w; x; y; z] of T3, with w 6= 0, are
(x=w; y=w; z=w). In this case, we say that p is a �-

nite point; if w > 0 the point is said to be in the front
range of T3, else it is in the back range. Note that



p and :p have the same Cartesian coordinates but
are distinct points of T3. Conversely, there are two
points of T3 with Cartesian coordinates (x; y; z), na-
mely [1; x; y; z] and [�1;�x;�y;�z]. Thus, the front
and back ranges of T3 can be viewed as two copies
of R3 contained in T3.

A point of T3 of the form [0; x; y; z] is assumed to
be at in�nity, in the direction of the Cartesian vector
(x; y; z), as seen from any point on the front range.
Viewed from any point on the back range, the same
point is assumed to be at in�nity in the direction
(�x;�y;�z). For more details, see [5].

2.2 Planes

A plane � in T3 is represented by a non-zero qua-
druplet ha0; a1; a2; a3i, its homogeneous coe�cients.
By de�nition, ha0; a1; a2; a3i and h�a0; �a1; �a2; �a3i
are the same planes for all � > 0. Note that
ha0; a1; a2; a3i and � = h�a0;�a1;�a2;�a3i are dis-
tinct planes; we say that each one is the opposite of
the other, and write � = :�.

By de�nition, the plane � is incident to every
point [w; x; y; z] of T3 such that a0w + a1x + a2y +
a3z = 0. In general, the set of points that are in-
cident to a plane consists of two copies of the same
Euclidean plane, one on each range of T3, and all
points at in�nity in directions parallel to that plane.
The exceptions are the plane 
2 = h1; 0; 0; 0i, called
the plane at in�nity, and its opposite :
2, which are
incident to all points at in�nity.

Every plane � divides T3 in two half-spaces, its
positive and negative sides. By de�nition, the posi-
tive side consists of all points [w; x; y; z] of T3 such
that a0w+a1x+a2y+a3z > 0. We de�ne the position
of a point p relative to � as

p � � = sign(a0p0 + a1p1 + a2p2 + a3)

Note that p�� = +1 if and only if (:p)�� = �1. The-
refore, the positive side of � consists of a Cartesian
half-space of the front range, and the complementary
Cartesian half-space of the back range (plus a subset
of the points at in�nity).

The external orientation of a plane, de�ned by
`�', can be visualized as an arrow pointing from the
negative half-space into the positive one. A plane
� also has an internal orientation, which can be vi-
sualized as a small circular arrow drawn on it. See
�gure 1. By sliding the circular arrow over �, we
can tell whether a turn at any point on the plane
is positive (agreeing with the arrow) or negative; or
whether any three non-collinear points p, q and r on
� form a positive or negative triangle. Formally, the
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Figure 1: Orientation of a plane.

orientation of the triangle p; q; r on � is given by

�(p; q; r; �) = sign

��������
p0 p1 p2 p3
q0 q1 q2 q3
r0 r1 r2 r3
a0 a1 a2 a3

��������
(1)

Note that sliding the arrow across 
2 reverses
its apparent sense of rotation; i.e. the same turn will
have opposite signs on the front and back parts of
the plane. Note also that � and :� have opposite
orientations, both internal and external.

2.3 Lines

A �nite line of T3 consists of two copies of the same
Cartesian line of R3 , one on the front range and one
on the back range, plus the two points at in�nity in
the directions parallel to those lines. A line at in�nity

consists of all the points at in�nity in the directions
parallel to some plane.

In T3, a line has both an internal orientation,
which de�nes the positive sense of travel along the
line, and an external orientation, which de�nes the
positive sense of turning around the line. These com-
ponents can be visualized as a straight arrow placed
on the line, and a circular arrow surrounding the line,
respectively. By displacing the arrows across 
2 we
can check that the front and back parts of the line
have the same orientation, internal and external.

2.4 Join and meet

The basic geometric operations of P3 are join and
meet. The join operation returns the line p _ q con-
necting two points p; q, or the plane p _ l containing
a point p and a line l. The meet operation returns
the line �^ � where two planes �; � intersect, or the
point l ^ � where a line l intersects a plane �.

In oriented projective space T3, the results of
join and meet have speci�c orientations. By de�ni-
tion, the line p_ q is oriented so as to go from p to q
by the route that does not include their antipodes.

To visualize the orientation of the line l = �^�,
we must imagine the plane � turning towards �



around l, by the smallest angle that makes the two
planes coincide in position and orientation. The
sense of rotation de�nes the external orientation of
l; and the internal orientation can be derived by the
right-hand rule. See �gure 2.

α

β

Figure 2: Meet of two planes

Note that � ^ � = :(� ^ �); that is, in T3 the
intersection of two planes is anticommutative.

In general, a line l intersects a plane � in two
antipodal points. By de�nition, l^� is the one where
l enters the positive side of �. For consistency, it
is best to de�ne l ^ � as equal to � ^ l; i.e., the
intersection of a line and plane is commutative.

2.5 Pl�ucker coe�cients of a line

It can be proved [5, 2] that the line l = � ^ � is de-
termined by the six coe�cients l01; l02; l12; l03; l13; l23
where

lij =

���� ai aj
bi bj

���� (2)

These six numbers are called the Pl�ucker coe�cients

of the line l. We write l = hl0; l1; l2; l3; l4; l5i, where
the li is the ith determinant (2) in the �xed sequence
l01; l02; l12; l03; l13; l23.

The six Pl�ucker coe�cients are not independent:
a non-zero sextuple hl0; :: l5i represents a line of T3

if and only if l0l5 � l1l4 + l2l3 = 0.
Observe that the Pl�ucker coe�cients of a line are

homogeneous, that is, hl0; :: l5i and h�l0; :: �l5i are
the same line, for any � > 0. On the other hand,
l = hl0; :: l5i and m = h�l0; ::�l5i are distinct lines:
although they are incident to the same points, they
have di�erent orientations. We say that m is the
opposite of l, denoted by m = :l.

Let p = [p0; :: p3] and q = [q0; :: q3] be two points,
� = ha0; a1; a2; a3i and � = hb0; b1; b2; b3i be two pla-
nes and l = hl0; :: l5i be a line of T3. The basic geo-

metric operations of T3 are given by these formulas:

p _ q = hp2q3 � p3q2; p3q1 � p1q3; p0q3 � p3q0;
p1q2 � p2q1; p2q0 � p0q2; p0q1 � p1q0 i

p _ l = h l0p1 + l1p2 + l3p3;�l0p0 + l2p2 + l4p3;
�l1p0 � l2p1 + l5p3;�l3p0 � l4p1 � l5p2 i

� ^ � = ha0b1 � a1b0; a0b2 � a2b0; a1b2 � a2b1;
a0b3 � a3b0; a1b3 � a3b1; a2b3 � a3b2 i

l ^ � = [�l2a3 + l4a2 � l5a1; l1a3 � l3a2 + l5a0;
�l0a3 + l3a1 � l4a0; l0a2 � l1a1 + l2a0 ]

These formulas return all-zero tuples when the
geometric object is not de�ned. In particular, the
line p _ q is unde�ned if p = q or p = :q, and the
plane p _ l is unde�ned when p lies on l. Similarly,
the line � ^ � is unde�ned if � = � or � = :�, and
the point l ^ � is unde�ned if l lies on �.

If l is a �nite line, its direction dir(l) is the point
at in�nity where l intersects 
2, that is

dir(l) = l ^
2 = [0; l5;�l4; l2] (3)

Note that two lines l and m not on 
2 are parallel if
dir(l) = dir(m) or dir(l) = : dir(m).

The Euclidean distance between l and the origin
O = [1; 0; 0; 0] of T3 is

dist(l; O) =

s
l2
0
+ l2

1
+ l2

3

l2
2
+ l2

4
+ l2

5

(4)

It follows that l passes through O if and only if l0 =
l1 = l3 = 0. The point of l closest to O is

mid(l) = [ l2
2
+ l2

4
+ l2

5
; �l1l2 � l3l4

l0l2 � l3l5; l0l4 + l1l5 ]
(5)

Two lines l = hl0; :: l5i and m = hm0; ::m5i in-
tersect if and only if

l0m5 � l1m4 + l2m3 + l3m2 � l4m1 + l5m0 = 0

In that case, if the lines are not parallel, the
intersection consists of two antipodal �nite points.
We de�ne the front intersection point l

+̂
m as being

the one in the front range, which is given by

l
+̂
m=[�2

24
+ �2

25
+ �2

45
;

(l3m2 � l1m4 + l5m0)�24 � �15�25 � �35�45;
(l0m5 + l3m2 � l4m1)�25 + �04�24 + �34�45;
(l0m5 � l1m4 + l2m3)�45 � �02�24 � �12�25 ]

where

�ij =

���� li lj
mi mj

����



3 Spherical geometry

3.1 The unit sphere

In T3, the unit sphere S2 is the sphere with unit radius
centered at origin, that is,

S2 =
�
[w; x; y; z] jx2 + y2 + z2 � w2 = 0

	
Observe that S2 corresponds to two copies of the unit
sphere of R3 : one in the front range and another one
in the back range.

The position of a point p = [p0; p1; p2; p3] relative
to S2 is

p � S2 = sign(p2
1
+ p2

2
+ p2

3
� p2

0
)

Note that the negative side of S2 (the points with
p � S2 = �1) consists of two separate unit balls.

3.2 Circles on the sphere

The intersection of a plane � and S2 consists of a
pair of antipodal circles c, one in the front range and
another one in the back range. We will say that c is
the S-circle whose supporting plane is �, and write
c = scrc(�), � = spln(c). By de�nition, the positive

sense of travel along scrc(�) is the one that agrees
with the internal orientation of �. Informally, the
positive sense of travel on the scrc(�) is counterclo-
ckwise as seen by an observer on the front range of
T3 and on the positive side of � (assuming the axes
of R3 are in their standard position). See �gure 3.
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α

drad(c)

sdsc(c)

scap(c)

c=scrc(

srad(c)

dctr(c)

sctr(c)

Figure 3: Elements of an S-circle.

The S-circle c de�ned by � = ha0; a1; a2; a3i will
be denoted by ((a0; a1; a2; a3)). Note that � de�nes
an S-circle (i.e., � intersects S2) if and only if a2

0
�

a2
1
+ a2

2
+ a2

3
. If equality holds, � is tangent to the

sphere, and c reduces to a pair of antipodal points.
An S-circle c divides each component of S2, front

and back, into two regions (one of which may be
empty). By de�nition, the S-cap or front positive

side of c, denoted by scap(c), is the region of S2 that
lies on the front range of T3 and on the positive side

of the supporting plane �. The center of scap(c) is
called the S-center of c, and denoted by sctr(c). Its
coordinates are

sctr(c) =

�q
a2
1
+ a2

2
+ a2

3
; a1; a2; a3

�

The front part of spln(c) bounded by the circle
c is called the S-disk of c, and denoted sdsk(c). Its
center is the D-center of c, or dctr(c) for short, whose
coordinates are

dctr(c) =
�
a2
1
+ a2

2
+ a2

3
;�a0a1;�a0a2;�a0a3

�
In particular, if the circle c is a single point p, its

S-cap and S-disk are empty, and sctr(c)=p=dctr(c).
The axis of an S-circle c is the line axis(c) =

O _ sctr(c), where O is the front origin of T3. The
direction of axis(c), namely axis(c)^
2, is the normal

of c, denoted by snrm(c), that is

axis(c) = h0; 0; a3; 0;�a2; a1i
snrm(c) = [0; a1; a2; a3]

The length of the spherical arc that joins sctr(c)
to any point on c is the S-radius of c, denoted by
srad(c). The distance from dctr(c) to any point on c
is the D-radius of c, denoted by drad(c). The S-circle
c whose S-center is p = [p0; p1; p2; p3] and whose S-
radius is � 2 [0 �] is

c = ((�p0 cos �; p1; p2; p3))

3.3 Spherical Polarity

Consider two quadruplets of numbers a0; a1; a2; a3
and b0; b1; b2; b3 such that a0b0+a1b1+a2b2+a3b3 =
0. We can interpret this equation as saying that the
point [a0; a1; a2; a3] is on the plane hb0; b1; b2; b3i; or,
conversely, that the point [b0; b1; b2; b3] is on the plane
[a0; a1; a2; a3]. Thus, the roles of point and plane in
the equation are interchangeable. This symmetry is
an instance of a fundamental property of projective
space, the principle of duality [1].

In general terms, projective duality is formalized
by the concept of duomorphism, a correspondence
between two spaces that maps planes to points, lines
to lines and points to planes, while preserving the
relative position predicate `�.' It can be shown that
a duomorphism exchanges join and meet, that is, the
meet of two planes becomes the join of their dual
points, and vice-versa.

For our purposes, the following duomorphism is
particularly useful:

De�nition 1 The polar complement relative to S2,



denoted by `�', is given by:

[p0; p1; p2; p3]
�

= h�p0; p1; p2; p3i
ha0; a1; a2; a3i� = [�a0; a1; a2; a3]

hl0; l1; l2; l3; l4; l5i� = h�l5; l4; l3;�l2;�l1; l0i

Geometrically, if p is a point outside S2, let c be
the circle where the cone tangent to S2 with vertex in
p meets S2. See �gure 4. Then p� is the supporting
plane of c, oriented so that p is on its positive side.

p

p*
c

Figure 4: Point-Plane spherical polarity

More generally, the polar of a �nite point p =
[p0; p1; p2; p3] (inside or outside the sphere) is the
plane that cuts the ray from O through p perpendicu-
larly at distance 1= dist(p;O) from O, and oriented
so that p � p� = p � S2. In particular, O� = 
2.

It turns out that `�' is the composition of Stol�'s
right polar complement ``' [5, page 85] and the pro-
jective map M = [p0; p1; p2; p3] 7! [�p0; p1; p2; p3].
Strictly speaking, M is an isomorphism between T3

and :T3, a copy of T3 where the meet of two planes
is de�ned with opposite orientation as in T3. The-
refore, the e�ect of `�' on meet and join sometimes
requires orientation reversal. More precisely, for any
points, lines, or planes u; v of T3, we have

(u _ v)� = u� ^ v�

(u ^ v)� = :(u� _ v�)
(u�)� = :du

Moreover, `�' preserves the relative position of
points and planes; that is, �� � p� = p � � for any
plane � and any point p.

3.4 Tangent lines and planes

It's easy to see that, if p is a point on the sphere,
then p� is a plane that is tangent to the sphere at
p. Moreover, if p is a front range point, the plane
p� will be oriented so that the front origin O is on
its negative side; and snrm(p�) is the direction of the
line O _ p, that is, snrm(p�) = [0; p1; p2; p3].

Also, let p be a front point on an S-circle c. The
line spln(c) ^ p� is tangent to c at p, and oriented so
as to agree with the orientation of c at that point.

3.5 Arcs of S-circles

Let p and q be two distinct front range points on an
S-circle c = scrc(�). The points divide the front part
of c into two connected parts. By de�nition, the S-

arc of c from p to q, denoted by sarc(p; q; c), is the
set of points encountered as we move from p to q on
c, along its positive sense of travel.

The arc can be described geometrically as the
part of c that lies on the front range and on the posi-
tive side of the plane � = p _ q _ ��. In fact, we can
let � be any plane such that � ^ � = p _ q.

3.6 Intersection of S-circles

Let a and b be two S-circles and let l be the line
spln(a) ^ spln(b). It's easy to see that a \ b = l \
S2. It follows from equation (4) that, depending on
whether (l2

2
+ l2

4
+ l2

5
)� (l2

0
+ l2

1
+ l2

3
) is negative, zero,

or positive, the intersection of two S-circles consists
of respectively zero, one or two pairs of antipodal
points.

We de�ne the front meeting point a
+̂
b of two

S-circles a and b as being the point where a arrives
at b from its positive side, or leaves b into its negative
side. See �gure 5. Another way of identifying a

+̂
b is

b

a

l

ext(l)

ent(l)

Figure 5: Intersection of two S-circles.

to observe that the unit vectors of R3 corresponding
to sctr(a), sctr(b) and a

+̂
b, in that order, form a

positive basis of R3 .

3.7 Enter and exit points of a line

In general, if l is a line that meets S2, we can dis-
tinguish the intersection points using the orienta-
tion of l. We de�ne ent(l) and ext(l) to be the
points on the front range where l enters and lea-
ves the positive side of S2, respectively. See �-
gure 5. Then, for two S-circles a and b, we can write
a
+̂
b = ext(spln(a) ^ spln(b)).



As we can prove,

ent(l) = [ � ; �l1l2 � l3l4 � l5
p
�;

l0l2 � l3l5 + l4
p
�;

l0l4 + l1l5 � l2
p
� ]

ext(l) = [ � ; �l1l2 � l3l4 + l5
p
�;

l0l2 � l3l5 � l4
p
�;

l0l4 + l1l5 + l2
p
� ]

(6)

where � = l2
2
+ l2

4
+ l2

5
and � = �� (l2

0
+ l2

1
+ l2

3
). Note

that ent(l) = ext(l) if and only if l is tangent to S2,
that is (l2

2
+ l2

4
+ l2

5
) = (l2

0
+ l2

1
+ l2

3
).

If p is a front point of S2, any line l such that
p = ext(l) is called a stabbing line for p.

4 Exact spherical geometry

4.1 Rational points, lines, and planes

A point, line, or plane of T3 is said to be rational

if all its homogeneous coordinates or coe�cients are
rational numbers. Note that the set of rational objects
in T3 is dense in the set of all objects.

Since a point of T3 does not change when its
coordinates are scaled by a positive factor, the set
QT3 of all rational points of T3 is precisely the set
of points with integer homogeneous coordinates. The
same holds for rational lines and planes.

4.2 Exactly representable points of S2

There are two sets of points of S2 that have obvious
exact representations. One is the set A of those
points whose all four homogeneous coordinates are
rational. Another is the set B consisting of the points
whose x, y, and z coordinates are rational; since the
points lie on S2, the weight coordinate w is deter-
mined by the formula w =

p
x2 + y2 + z2. In other

words, B is the radial projection onto S2 of all ratio-
nal points of R3 . Since w does not have to be expli-
citly stored or computed, it does not matter whether
it is rational

A = f [a0; :: a3] j a21 + a2
2
+ a2

3
= a2

0
and

(a0; :: a3) 2 Z4
	

B = f [b0; :: b3] j b21 + b2
2
+ b2

3
= b2

0
and

(b1; b2; b3) 2 Z3
	

Obviously, B is a proper superset of A.

4.3 Rational circles

An S-circle is rational if it is de�ned by a rational
plane. Our proposition is to consider only rational
S-circles and arcs thereof. Again, this is not a sig-
ni�cant restriction for practical purposes, since the

subset of rational S-circles is dense in the set of all
S-circles, in the Hausdor� metric.

Let a = ((a0; :: a3)) be a rational S-circle, and
l = hl0; :: l5i be a rational line. Then, the elements

sctr(a) 2 B mid(l) 2 QT3

dctr(a) 2 A snrm(a) 2 QT3

can be represented exactly.
Unfortunately the front meeting of two rational

S-circles may not be a rational point, and not even
a point of B. For instance, ((1; 2; 2; 2))

+̂
((1; 2;�2; 2))

is the point p =
�
4 ; �1 +

p
7 ; 0 ; �1�

p
7
�
. Since

the ratio p3=p1 is not rational, p is not in B.
On the other hand, the intersection of the two

rational supporting planes is a rational line. It follows
that the front meeting point of two rational S-circles
lies in the set

C = f ext(l) j l is a rational line g

A point p of C can be represented exactly by the
six integer coe�cients of any of its rational stabbing
lines. In that case, we denote that line by lin(p).

Let l = hl0; :: l5i be a rational line. Equation (6)
implies that ext(l) is in A if and only if (l2

2
+ l2

4
+

l2
5
)� (l2

0
+ l2

1
+ l2

3
) is a perfect square. The set A can

be characterized as follows:

Theorem 1 A point p lies in A if and only if there

are two non parallel rational lines l and m such that

ext(l) = p = ext(m).

Here is a direct characterization of the set C:

Theorem 2 A point p of T3 is in C if and only if

p =
�
a0; a1 + b1

p
c; a2 + b2

p
c; a3 + b3

p
c
�

where a0, a1, a2, a3, b1, b2, b3, and c are integers

satifying

(i) a0 6= 0 and b2
1
+ b2

2
+ b2

3
6= 0

(ii) a1b1 + a2b2 + a3b3 = 0

(iii) (a2
1
+ a2

2
+ a2

3
) + (b2

1
+ b2

2
+ b2

3
)c = a2

0

In that case, a stabbing line of p is

ha2b3 � a3b2; a3b1 � a1b3; a0b3;
a1b2 � a2b1; �a0b2; a0b1i

5 Algorithms for spherical circles

We will now describe some exact algorithms for ratio-
nal points and circles on S2. We will assume available
the basic geometric operations of T3, such as `:', `�',
`^', `_', and the equality test `�' for points, lines,
and planes (ignoring homogeneous scaling).



5.1 Equality test for points in C

Since a point p of C can have many stabbing lines,
it is not trivial to decide whether two tuples hl0; :: l5i
and hm0; ::m5i denote the same point. To implement
this test, we need the following results:

Theorem 3 If l is a line that intercepts S2, then

ent(l) � dir(l)� � 0, and ext(l) � dir(l)� � 0.

Corollary 4 Given two coplanar and non-parallel

lines l and m, let q = l
+̂
m. Then ext(l) = ext(m)

if and only if q 2 S2 and q � dir(l)� = +1 and

q � dir(m)� = +1.

procedure CEqual(l;m);
input: lines l = hl0; :: l5i and m = hm0; ::m5i.
output: ext(l) � ext(m).

begin

if (l � m) then return true

else if (l � :m) then
return l2

0
+ l2

1
+ l2

3
= l2

2
+ l2

4
+ l2

5

else

d l0m5� l1m4+ l2m3+ l3m2� l4m1+ l5m0

if d 6= 0 then return false f l \m = ; g
else

q  l
+̂
m;

return q � S2 = 0 and
q � dir(l)� = +1 and
q � dir(m)� = +1

end.

5.2 Relative position of point and S-circle

Another important predicate is the position of a gi-
ven point p 2 C relative to a given S-circle c. As
explained in section 3.2, we use the orientation of c
to distinguish the two caps delimited by c. The test
relies on the following result:

Theorem 5 Let c be a rational S-circle and let l be
a rational line such that ext(l) 2 C nA. Then ext(l)
lies on c if and only if l lies on the plane spln(c).

procedure SideCpointAndScircle(l; c);
input: a line l and an S-circle c.
output: ext(l) � spln(c).

begin

q  l ^ spln(c)
if q = [0; 0; 0; 0] then return 0
�  q2

1
+ q2

2
+ q2

3
� q2

0

� mid(l) � spln(c); �  dir(l) � spln(c)
if s < 0 then return �
else if s > 0 then return �
else if � = � then return �
else return 0

end.

6 Circular order

Many algorithms for Euclidean geometry rely on the
ordering of points along a line. When we extend such
algorithms to projective space, or to circles on the
sphere, we must replace this notion of linear order
with that of circular order.

6.1 Ahead and behind

The basic predicate �(p; q; c) for circular ordering
takes two points p, q on an oriented (topological)
circle c, and returns +1 if q is ahead of p, �1 if q is
behind p. For this predicate to make sense, we must
de�ne what is the \natural" or \shortest" route from
p to q. Equivalently, for each point p, we must de�ne
the \diametral opposite" point 	(p; c) on the circle
c; then the \shortest" path from p to q is the one
that does not go through 	(p; c). It follows that the
predicate `�' is unde�ned if q = p, or q = 	(p; c).
For consistency, the opposite point must be de�ned
in such a way that

�(p; q; c) = �(q; 	(p; c); c)
= �(	(p; c); 	(q; c); c)
= �(	(q; c); p; c)

In particular, a straight line l of T3 has the topo-
logy of a circle. So, we can de�ne the ahead/behind
predicate �(p; q; l) for two points p,q of l as +1 if
p _ q � l, �1 if p _ q � :l, and 0 if p � q or p � :q.

Dually, the set of all planes passing through a
given line l has the topology of a circle, and is circu-
larly ordered by the external orientation of l. The-
refore, the ahead/behind predicate �(�; �; l) for two
of those planes can be de�ned as for points, with ^
substituted for _.

6.2 Circular order of three points

The concept of circular order can also be formalized
by a predicate 	�(p; q; r; c) that returns +1 if the three
points p; q; r occur in that order along the oriented
circle c; �1 if they occur in the opposite order; and
0 if any two of the points coincide.

This approach is more elegant, because it de-
pends only on the topological orientation of c, and
does not require the notion of \opposite point" or
\shortest route." However, it is often simpler to com-
pute 	�(p; q; r; c) by reducing it to three calls of the
ahead/behind predicate `�', as shown below:

procedure CircularOrder(p; q; r; c;�);
input: three points p; q; r on

an oriented topological circle c,
and the ahead/behind predicate � of c.



output: 	�(p; q; r; c).
begin

spq  �(p; q; c)
sqr  �(q; r; c)
srp  �(q; r; c)
return sign(spq + sqr + srp)

end.

Note that the circular order of three planes �, �
and  around a common line l can be computed using
this procedure with p; q; r, and c substituted for ��,
��, �, and l�.

6.3 Circular ordering of three arcs around a

common origin

In the construction of spherical maps, a common sub-
problem is to compute the circular ordering of three
arcs A = sarc(v; p; a), B = sarc(v; q; b) and C =
sarc(v; r; c), in a su�ciently small neighbourhood of
their common endpoint v. Informally, the result
	�(A;B;C; v) should be +1 if A;B;C leave v in coun-
terclockwise order, as seen from a front range point
on the positive side of the tangent plane v�. The
result should be �1 if the arcs leave v in clockwise
order, and 0 if any two of them are parts of the same
circle. See �gure 6.
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B

C

v

(a)

A

B

v

CC

v

(b) (c)

A

B

Figure 6: Circular order of three S-arcs.

In the general case, we only need to order the
directions in which the three arcs leave the point v,
on the line v� ^
2. However, we must overcome two
di�culties: the direction vectors may not be rational,
and two distinct arcs may leave the point v in the
same direction (see �gure 6 (b)).

If v =2 A, then, by theorem 1, we know that v
has a unique rational stabbing line l (and l is not
tangent to the sphere). Therefore, the supporting
planes of the three circles pass through the common
line l. In that case, the ordering of the arcs is the
same as the order of the three planes around l, i.e.
	�(spln(a); spln(b); spln(c); l), which can be computed
exactly.

If v 2 A, the three planes may not have a com-
mon line. In this case, however, the plane v� tangent
to the sphere at v is rational, so we can compute the
oriented tangents at v to the three arcs, and circularly
order their directions along the line v� ^
2.

To complete the algorithm, we need to consi-
der the case of two or more coincident tangent lines.

In that case, we must break the tie by comparing
the curvatures of the arcs|which is again equivalent
to ordering their planes around the common tangent
line. In particular, if all three tangents are equal, the
result is simply the circular order of the three planes
around that common line. If only two of the tan-
gents coincide, it su�ces to check the ahead/behind
order of that two corresponding planes around that
common line.

procedure CircOrderArcs(A;B;C; v);
input: three arcs A = sarc(v; p; a),

B = sarc(v; q; b), and C = sarc(v; r; c).
output: 	�(A;B;C; v).

begin

� spln(a); �  spln(b);   spln(c)
if v =2 A then

f�, � and  must contain lin(v),g
fand lin(v) is not tangent to S2.g
return 	�(�; �; ; lin(v))

else

fThe tangent plane v� is rational.g
ta  � ^ v�; tb  � ^ v�; tc   ^ v�
if ta 6� tb and tb 6� tc and tc 6� ta then

return 	�(dir(ta); dir(tb); dir(tc); v� ^ 
2)
else if ta � tb � tc then

return 	�(�; �; ; ta)
else

fOnly two tangents are equal.g
while ta 6� tb do

(�; �; ) (�; ; �);
(ta; tb; tc) (tb; tc; ta)

return �(�; �; ta)
end;
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