
Real -Time Rendering of Photo-Textured Terrain Height Fields
LUIZ CARLOS GUEDES

1, MARCELO GATTASS
2, PAULO CEZAR P. CARVALHO

2,3

1 ADDLabs - Departamento de Ciência da Computação, Universidade Federal Fluminense
Praça Valonguinho s/n, Ed. Instituto de Matemática 4o andar, Centro, 24210-130 Niterói, RJ, Brasil

guedes@dcc.uff.br

2 TeCGraf - Grupo de Tecnologia em Computação Gráfica, Departamento de Informática, PUC-Rio
Rua Marquês de São Vicente 255, 22453-900 Rio de Janeiro, RJ, Brasil

gattass@tecgraf.puc-rio.br

3 IMPA- Instituto de Matemática Pura e Aplicada
Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, RJ, Brasil

pcezar@impa.br

Abstract. Interactive tridimensional visualization of terrain models can be found in Geographical Information
Systems and computer games. Both applications share the need for high performance algorithms that are tailored to
produce textured images in interactive time, say at least 5 frames per second. In this paper we propose and analyze the
extension of a well known ray casting algorithm to the case where the view plane is not vertical. Three efficient
algorithms are presented and compared. Experimental results are shown and conclusions are made.

1. Introduction

The evolution of personal computers and video game
arcades has turned photo-realistic virtual worlds a
common requirement in applications such as flight
simulators, action games or geographic information
systems. Particularly, geographic information systems
deal with large scale virtual worlds and require the
integration of many sources of information such as
digital elevation maps and aerial imagery textures.

Although current graphics architectures suggest that
polygonal meshes should be used, spatial requirements
of real data is not appropriate for conventional rendering
pipelines. Huge texture photographs must be loaded
during the rendering process turning the small texture
cache of graphics accelerators useless. A high resolution
polygonal model would also be necessary in order to fit
the required level of detail causing the triangles to be so
tiny that most of them would be projected on a single
pixel.

Reducing the resolution of the models tend to
simplify the terrain in ways that impact the fidelity of the
simulation. Most digital elevation models are compiled
on a regular space grid, where geographic position is
implicit from the position in the array. The enlargement
of the step between sampled points would cause
undersampling effects producing temporal aliasing and
image “pixelization” .

The ray casting approach, on the other hand, is
better suited for the task of rendering huge scale
environments because texture is placed into the model
prior to the exhibition and image driven algorithms avoid
the overload of processing different indistinguishable
information for each pixel.

The ray casting approach for terrain rendering
assumes that the terrain is modeled by a Digital Elevation
Map (DEM) and Digital Color Map (DCM). The DEM
associates an elevation to each position (x,y) in the
terrain and the DCM associates a color value to each
position in the terrain. These maps are sampling of a
height and color field in a uniform grid. A column of the
terrain raised with a height and color taken from the
DEM and DCM, respectively, is called a voxel. Fig. 1
illustrates many voxels in a terrain model.

Fig. 1 - Height field model.

In this paper we propose and analyze the extension
of a well known ray casting algorithm to the case where
the view plane is not vertical. In all cases, we assume
that the terrain is represented by a regularly spaced grid
of column voxels. Each voxel has a height value, taken
from the height field, and a color value, taken from the
digital photograph.

Section 2 presents related works. In section 3 the
initial basic algorithm for vertical view planes is fully
analyzed. Section 4 discusses the difficulties involved in
generalizing this algorithm for inclined view planes. In
Section 5 the efficient algorithms for this case are

presented and compared. In Section 6 experimental
results are shown and conclusions are made.

2. Related Works
Ray Casting algorithms may perform either forward
casting or backward casting. Backward casting
algorithms are very intuitive in the sense that they cast
the rays that reach farther distances before the ones that
reach closer distances. Rays are emitted downwards
through each column. At each intersection with the
ground, the height and the color of that point are taken
and a column of pixels (voxel) of that height and with
that color is painted on the current column of the screen.
Each painted voxel overlaps the previous one and only
the visible portion remains on the screen. Fig. 2
illustrates the backward approach, darker columns
represent the painted voxels.

eye view
plane

i

hi

0

Fig. 2 - Backward ray casting.

In [LaMothe95], the backward approach is
presented in a very introductory fashion, trying to give to
game programmers a very first insight of real time terrain
rendering. His model casts rays only through pixel
located at the low quarter of the screen. Those rays
intersect the ground and raise columns of voxels that may
fill the entire screen.

In the forward casting approach, rays are emitted
beginning at the ray that joins the observer to its
projection on the ground and moving the destination of
the ray farther away on the ground until it intersects the
surface of the terrain. When an intersection occurs, the
corresponding voxel is climbed up and the pixels of the
screen are painted with its color. After the voxel is
processed, the next position on the ground is inspected to
find whether its corresponding voxel intersects the ray.
This approach has the advantage of painting only the
visible portion of each voxel. Fig. 3 illustrates the
forward approach for ray casting.

eye view
plane

i0

hi

Fig. 3 - Forward ray casting.

In [Freese95] the forward approach is presented in a
very optimized version for the case when the view plane
is vertical. Many interesting properties based on the
coherence among consecutive rays are detected and used
in linear incremental procedures that optimize the
rendering process. The view plane can only rotate about
the Y axis (yaw). Rotation about the X axis (pitch) is not
performed; instead, it is faked by moving the observer
out of the center of the view plane across the central
column. Rotation about the Z axis (roll) is performed by
a rotation of the regular image prior to painting the image
on the screen.

In [Cohen+95], a parallel version of the forward
approach is proposed. His algorithm deals with the
inclination of the view plane in a very naïve way. In the
next sections we will briefly discuss his approach and
present various solution to the deformations caused on
the projected image by the inclination of the view plane.

In [Graf+94], a geographic information
visualization is proposed that merges three kinds of data
(terrain, sky and objects). They work with huge terrain
data (~1.5Gb) and its visualization is performed by
backward ray casting that is integrated with a 3D object
ray-tracing software. No real time navigation is
proposed, although predefined tours may be generated
for simulation purposes,.

3. The standard algorithm
Height and texture maps are, generally, stored as image
files where the value of each pixel at image position (i,j)
represents, respectively, the height and the color of a
point at coordinates (i*sxy, j*sxy) in the horizontal plane.
The horizontal scale factor, sxy, is usually implicit in the
representation. The value of the height stored in the
image is also affected by a scale factor, sz. The color
value is normally represented by a color index for a
lookup table which represents the color of that portion of
the terrain, including shading effects due to an implicitly
assumed illumination.

In the standard algorithm the view plane is always a
vertical plane. The eye can move in any direction but can

only rotate around the vertical axis. That is, the up vector
is always vertical. The view plane window may move
with respect to the eye provided its edges remain
horizontal or vertical. Actually, the case when the
window is rotated about the viewing direction can be
solved by applying a suitable rotation in the image
produced by the standard algorithm ([Freese95]).

All rays emanating from the eye to each column of
pixels in the view plane define a plane, here called
sampling plane, which is also vertical, as illustrated by
Fig. 4. This plane holds an important property: only the
terrain heights that are intersected by the sampling plane
are necessary to define the colors of the corresponding
column of pixels. That is, a ray casting algorithm does
not need to test all column heights to determine the
visibility of a given pixel. Only those heights which are
intersected by the sampling plane are candidates to the
intersection test. The 3D problem is reduced to 2D and
the complexity of the intersection test is reduced from
O(m2) to O(m).

xm

ym

zm

view plane
window

eye

samplingplane

pixel
column

Fig. 4 - Vertical planes for each screen column.

Fig. 5 illustrates the sampling process that occurs
for a pixel column k with the observer at the eye position
looking at the direction view also shown in the figure.
The intersection of the sampling plane with the column
heights results in a non-uniform step function. If the
heights are sampled at uniform spaces, as the standard
algorithm assumes, the usual aliasing problem arises.
When the observer is flying at low altitude, as he moves
from one position to another the terrain color boundaries
seem to move giving an unpleasant sensation. If the
altitude is high, however, the ratio between the size of
terrain cells and pixels in the view plane is reduced due
to the perspective effect and this problem becomes less
noticeable.

The basic idea of the standard foward algorithm is
to explore the geometric coherence of the terrain in order
to avoid the processing of each ray individually. If the
sampling along the sray shown in Fig. 5 is uniform, the

rendering problem reduces to forward ray casting as
shown in Fig. 3.

ym

view
srayk

xeye

yeye

xm

sr
ay

k

z m

i = 0, 1, 2, …
srayk(i) = eye + i ûk

ûk = unitary vector in the k direction

Fig. 5 - Sampling process along vertical planes.

Let us consider in Fig. 6 the first visual ray, of slope
m0, corresponding to the lower pixel in the column. In
order to determine the color to be assigned to this pixel it
is necessary to verify, for successive abscissas i=0, 1, …,
if the terrain height, hi, is greater than the height of the
first visual ray, z0= heye + m0 i, at the abscissa i. One
should note that if the terrain heights hi do not intersect
the visual ray corresponding to a given pixel j, they
cannot intersect the visual ray corresponding to pixels
j+1, j+2, …; thus, its not necessary to consider again this
terrain height for the rest of column k.

eye
View
Plane

srayk

dpk

0

1
m0

heye

pitch

1
mj

j
j+1

dzij

mj+1

1

i

Fig. 6 - Floating horizon (visual rays).

Suppose that a visual ray finally intersects a terrain
height at abscissa i, that is, hi is greater or equal to zi.
The corresponding pixel must be painted and the next
visual ray must be considered. This implies in the need to
update slope mj and to repeat the comparison between hi

and zi. Thus, one or more pixels related to this terrain
height are painted until hi becomes smaller than zi. When
this occurs it is time to consider the terrain height at the
next abscissa, i+1, and to compare its value with the
height of the visual ray point. The process ends when all

visual rays or all column heights are considered. For a
screen with nxn pixels and the terrain with an mxm grid
the complexity of the resultant algorithm is O(n+m) per
column or O(n(n+m)) for the entire image. Note that a
naïve ray cast algorithm would test all terrain grids for
each pixel in the screen with a complexity of O(n2 m2)
(or O(n2 m) if voxel coherence is exploited for each
individual ray).

The slope for the jth visual ray, shown in Fig. 6, can
be computed by:
mj = (pitch−j) / dpk (1)
where pitch is the distance shown between the horizon at
eye level and the bottom pixel. Note that the word pitch
in an aeronautical context refers to an angle and not a
distance. We are using it here to denote a distance
because this is the usual notation in game programming
algorithms [Freese95]. Another important consideration
is that j and pitch must be expressed in the same vertical
scale, sz, that affects the terrain heights.

The relationship between two consecutive angular
coefficients can be obtained from equation (1) by:
mj+1 = (pitch−(j+1)) / dpk = mj − 1/ dpk (2)

The increment in zi, dzi, due to a change in angular
coefficient can be computed from Fig. 5 by:
dzij = i(mj − mj+1) (3)

If we replace equation (2) in equation (3) we get:
dzij = i/ dpk (4)

Alg. 1 summarizes all above considerations for
screen column k. The increments dx, dy are, respectively,
the x and y components of the unit vector in the direction
of the sampling direction srayk.

z = heye ; // init. visual ray height
x = xeye; y = yeye; // init. voxel position
m = pitch / dpk ; // init. visual ray slope
dz = 0; // init.height increment
j = 0; // initial pixel
for i = 1 to MaximumRayDepth {

z = z − m; // update ray height
 x = x + dx; y = y + dy; // update voxel position

dz = dz + 1/dpk; // dz = i/ dpk (see eq. 4)

while (hi > z) { // ray intersects current voxel
color = GetColor(x,y); // get voxel color
SetPixel (k, j, color); // paint pixel

 m = m − (1/dpk); // see eq. 2
z = z + dz; // update height
j = j + 1; // next pixel

}
}

Alg. 1 - Floating horizon algorithm.

It is important to note that game programming
introduces some optimizations and a basic simplification
in Alg.1. The optimizations are obtained with
implementation strategies such as the use of assembly
codes and the use of fixed point integer representations
and are not treated here. The simplification, however,
deserves to be discussed.

Note that Alg. 1 is very much dependent on the
inverse of the distance dpk from the eye to the kth the
pixel column,. For a planar projection this distance is not
constant. It varies as the inverse of the cosine of the angle
between directions view and srayk shown in Fig. 5. In the
game program literature this distance is sometimes
treated as constant for all srays. That is, instead of
dealing with dpk, we would only use dp. This corresponds
to projecting the scene on the surface of a cylinder
instead of projecting it on a plane. The eye would be at
the axis of the cylinder, which would also be vertical.
The problem with this approximation is that it deforms
straight objects such as airport lanes. In the cylindrical
projections straight lines are projected in ellipses. For
this reason we cannot find straight-edged objects in such
games. The advantage of this cylindrical projection,
however, is that the sky horizon, which in plane
projection is a straight line, appears as an ellipse segment
giving the impression of a round surface such as the
earth. It should be noted that the deformations introduced
by cylindrical projections can be corrected with very
little impact in the algorithm simplicity and performance.
It suffices to adjust the step sizes along each column to
compensate for the varying distances dpk (see
[Szenberg+97] for more details.)

4. Non-vertical view plane
We now consider the problem of generalizing the
techniques in the previous section to the situation where
the view plane is allowed to rotate about one of its
horizontal lines. This implies that the view plane may no
longer be vertical. Casting individual rays behaves as
before; however, the optimization techniques based on
the synchronization of image and terrain traversals are
not applicable (at least in the same way). In the case of a
vertical view plane, the rays corresponding to all pixels
in a given image column are contained in a vertical
plane. This does not hold when the view plane is not
vertical: a plane containing the eye and a column of
pixels in the image is no longer vertical (Fig. 7); on the
other hand, vertical planes passing through the viewpoint
intersect the view plane along lines which are not parallel
to the edges of the visualization window.

The above discussion suggests two different
possible approaches for the case of a inclined view plane.
The first approach, which is discussed below, is to

continue to cast rays for a column of pixels in the image
at a time and deal with the difficulties posed by the fact
that the plane containing these rays is not vertical. The
other approach is to insist in treating together rays that
are contained in a same vertical plane. Textures
associated to such rays produce an intermediary image,
which must be warped in order to yield the final image.
This is not considered in detail here and is subject of part
of our current research.

xm

ym

zm

ω ω= 90

sampling ray

sampling lines

Fig. 7 - Sampling planes are no longer vertical.

Our goal, therefore, is to adapt the algorithm
discussed in section 3 to the case of a inclined view
plane. Pixels in the image will be treated a column at
time, as before. As in the original algorithm, we sample
the terrain, along the plane containing the rays, as shown
in Fig. 7. However, since the sampling plane is not
vertical, the sampling direction is no longer vertical. The
best we can do is to choose a sampling direction
contained in the sampling plane which is as close to the
vertical direction as possible.

Several difficulties arise in this process:
a) The terrain may not be a height field in the sampling
direction. That is, a sampling line may intersect the
terrain at several points. The problem becomes worse at
the extreme columns of the image.
b) Since the sampling lines are not vertical, deciding
whether a given ray intersects the terrain along a given
sample line is more complicated.
c) If the terrain becomes sufficiently inclined, portions
of the terrain which are behind the observer become
visible. The algorithm has to be modified to cast rays
both forward and backward.

The fact that the terrain may no longer be a height
field is the most serious of the above difficulties. The
optimized algorithm in section 3 relies heavily in the fact
that if a given ray does not intersect the terrain at a
certain sampling line, then the same is true for all
subsequent rays; thus, after a voxel has been processed,
we can continue to march along the terrain. Consider

however, the situation of Fig. 8, where the darker
portions of the sampling lines indicate the portions that
intersect the terrain. Ray 1 only hits the terrain when it
reaches sampling line s. If sampling lines that precede s
are ignored when subsequent rays are considered, the
algorithm will erroneously report that ray 2 intersects the
terrain at B and not at A.

2

1

BA

r s

Fig. 8 - Ray coherence failure.

Therefore, if we decide to keep exploring ray and
terrain coherence then we must be aware that errors such
as the one described above may occur. These errors will
be worse when the plane containing the rays is far from
the vertical position and when the terrain is very
irregular.

One way of avoiding these errors altogether would
be to start over each time a new ray is considered.
However, this increases algorithm complexity from
O(n(n+m)) to O(n2m), which may be unacceptable for
interactivity. This justifies studying approximate
algorithms in which we retain the efficiency of the basic
algorithm and, at the same time, obtain a rendered image
which will not depart too much from the correct one.

5. Efficient approximate algorithms
When designing approximate algorithms, there is often a
trade-off between processing time and degree of
correctness. The algorithms described below were
adapted from the basic algorithm in section 3, and show
progressive geometrical correctness, at a cost of
increasing processing times.
a) The naïve approach
The most naïve approach consists in ignoring the fact
that the sampling planes are not vertical, as done in
[Cohen+95]. Actually, the sampling plane corresponding
to the middle pixel column is vertical. If the view plane
is not too far from the vertical position, the remaining
view planes can be treated as vertical without distorting
the image too much. As the plane becomes more
inclined, however, the distortions produced by the
algorithm become severe.

Let j0 denote the row of pixels which, together with
the view point, defines a plane perpendicular to the view
plane. Each column of pixels is considered to be
produced by taking the middle pixel column and sliding
it along row j0, in such a way that it stays in a vertical
plane containing the view point and its angle with the
vertical direction is kept constant. It is easy to see that the
pixel columns thus generated will not stay in the view
plane; instead, they will generate a curved surface,
which accounts for distortions in the image.

The basic algorithm can be adapted to deal with this
new situation. The main required change is in the
updating of the slope m of each consecutive ray. When
the column of pixels is vertical, m increases by a constant
amount 1/ dpk for each ray, which provides an efficient
incremental procedure for computing ray slope. This
does not hold for a inclined column, forcing the separate
computation of each slope.

Let us denote by α the angle between the pixel
columns and the vertical direction (Fig. 9). To be
consistent to the terminology in section 3, we will call
pitch the distance from the bottom of the screen to row j0.
The horizontal and vertical components of vector rj,
which joins the eye to the jth pixel in the column, are
given by:

r d j pitch sinjh pk= + −cos ()α α
and

r d sin j pitchjv pk= − + −α α() cos

Therefore, the slope of the jth ray is given by:

m
d j pitch a

d j pitchj
pk

pk

=
− + −

+ −
sin () cos

cos () sin

α
α α

Both the numerator and the denominator of the
above expression can be computed incrementally, but a
division is required for each ray, causing inefficiency.
The cost of slope computing can be reduced, however,
by using pre-computed slope values. In fact, we may
compute slopes only for the middle column and either
use the same slopes for the other columns (which results
in straight horizontal lines having curved projections) or
correct the size of the horizontal step to account for the
varying values of dpk, as explained in section 3.

b) Non-vertical sampling
We now consider the actual geometry of the sampling
planes. Each column (except the middle one) determines
with the eye a non-vertical plane. Since the vertical
direction is not contained in such a plane, we have to
settle for a sampling direction which is not too far from
the vertical position. The optimal sampling direction for
each sampling plane can be obtained by projecting the
vertical vector (0, 0, 1) onto the plane. However, the

basic algorithm is more easily modified if, instead, we
sample each plane along the lines obtained by
intersecting them with a family of regularly spaced
vertical planes parallel to the pixel rows. This is
equivalent to consider the terrain as being composed by
regularly spaced vertical planar slices. By using this
approach, we can project orthogonally each sampling
plane onto the vertical sampling plane corresponding to
the central column of pixels and take advantage of the
same pre-computed slopes used in the previous
algorithm.

Side
View

eye
View
Plane

90−α

dpk

he

αα

1
mj

pitch

j

O

rj

foot

he tanα

viewαα

Fig. 9 - Ray slopes for a non-vertical view plane.

As in the basic algorithm, for each pixel column k,
we march on the terrain along the line of intersection
srayk of the corresponding sampling plane with the
horizontal plane z = 0. The march starts at point Pk of
intersection of srayk with the vertical slice through the
eye. The steps along srayk are given by vector sk . Let us
consider the local coordinate system of Fig. 10 to derive
expressions for Pk and sk.

The direction of srayk can be found by conducting a
horizontal vector from the eye to point Hk on the
corresponding pixel column. The coordinates of this
vector are given by:

(k – km ,
dpk

cosα
, 0),

where km denotes the index of the middle pixel column.

O

Pk

srayk

eye
z

y

x
foot

Hk

view

he

α

θk
Correction A

θk

Correction A

z

z ctg θk

sk

Fig. 10 - Non-vertical sampling planes.

The step vector sk is then computed by applying

the scaling factor
cosα
dpk

, leading to a vector with unit y-

component given by:

s
k k

dk
m

pk

=
−

()
cos , ,α 1 0 (5)

Choosing sk in such a way ensures that the slopes mj

computed for the middle pixel column are valid for all
pixel columns, in the sense that they correspond to the
change in height for each horizontal step.

A simple way to obtain the coordinates of Pk

consists in observing that each line srayk goes through
the point denoted by foot, obtained by intersecting plane
z = 0 with the line through the eye that is parallel to the
pixel columns. The coordinates (0, −he tan α, 0) of foot
are readily available (Fig. 10). Adding to foot the
appropriate multiple of sk yields

Pk =
h

d
k ke

pk
m() sin , ,−

α 0 0 . (6)

The above derivation is not valid when the view
plane is horizontal. However, both sk and Pk are easily
computed in that case, and are given by sk = (0, 1, 0)

and Pk =
h

d
k k

e

pk
m(), ,−

0 0 .

The last aspect to be considered is the actual
sampling of the terrain. In the standard case, the height
and texture of the terrain at a given position P(x, y) along
srayk is obtained from the corresponding point in the
height and texture maps. If we do the same in the non-
vertical case, we obtain an approximate solution which
may be appropriate in many cases. The projection
obtained by such a procedure is not a true parallel or
perspective projection, but has the property that vertical
lines always project vertically. A more accurate
projection is obtained by correcting the position where to
sample based on the height z of the current ray. As the
detail in Fig. 10 shows, the slope of each sampling line is

given by − −
d

k k sin
pk

m()
.α Therefore, the position where

to sample the terrain can be obtained by adding the
correcting vector zcj to P, where cj is the vector whose
local coordinates are given by:

cj = −
−

()
, ,

k k

d
sin

m

pk
α 0 0 . (7)

This correction should be applied only when z >0. If
z < 0, we may either sample the terrain at point P

(without applying any correction), or try to estimate the
point where the ray intersects the terrain (using linear
interpolation, for instance). Our experiments show that
the resulting images are similar.

Algorithm 2 below summarizes the above
discussion.

z = heye ; // init. visual ray height
P = Pk ; // init. voxel position (see eq. 6)
m = m0; // pre-computed slope
 j = 0;
for i = 1 to MaximumRayDepth {
 P = P + sk; // update voxel position(see eq. 5)

z = z – m;
h = GetHeight(P+zcj); (see eq. 7)
while (h > z) { // ray intersects current voxel

color = GetColor(P+zcj); // get voxel color
SetPixel (k, j, color); // paint pixel
j = j+ 1;

 m = mj; // pre-computed slope
 z = z + i* m; // update height
 h = GetHeight(P+zcj);
}

}

Alg. 2 - Floating horizon for non-vertical view plane.

6. Experimental results and conclusions
For comparison purposes, the following algorithms were
implemented:
• the standard algorithm (for vertical view planes);
• the naive algorithm of section 5a;
• the algorithm in section 5b in two versions, with and

without the correction for the sampling position;
• the brute force algorithm that casts each ray

individually;
Average running times for a Pentium 133 machine

are given in Table 1.

Time per frame
(ms)

Frames per
second

Standard 107 9.3
Naive 123 8.1
No correction 134 7.5
With correction 277 3.6
Brute force 4697 0.21

Table 1 - Frame rate of proposed algorithms.

The data shows that both the naive and the first
algorithm in section 5b have performances that are
comparable to the standard algorithm, while the version

with the sampling correction (which must be done for
each painted pixel) is roughly half as fast as the others.
The running time for the brute force algorithm
demonstrates the need for optimized versions.

We ran each algorithm with two types of data:
terrain real data and artificial scenes of blocks on a
checkered ground. The first type of data was used to
assess the ability of each algorithm to generate images
which help the user to understand the terrain being
examined. The second type of data was used to see how
precise was the projection generated in each method.
Figures 11 e 12 shows some of the results. Both figures
show, in the top row, images produced by the brute
force and the naive algorithm and, in the bottom row,
images produced by the algorithm in section 5b, without
and with correction. In both figures, the view plane was
inclined 30° with respect to vertical.

Fig. 11 - Visualization of real terrain data.

Fig. 12 - Visualization of artificial data.

The general conclusions are:
• For terrain data, all methods generate reasonable

images when the view plane position is not far from
the vertical. As the view plane becomes more
horizontal, the images generated by the naive method
become unacceptable, but both methods in section 5b
give reasonable results.

• The artificial data shows that the correction in the

algorithm of section 5b helps producing images that
are very close to the one obtained without the
approximations. However, images produced without
the correction may be acceptable in many cases,
especially because they have the property that vertical
lines project vertically, which may result in some
comfort for the user.

9 Acknowledgments

This work was mainly developed in TeCGraf/PUC-Rio
and was partially funded by CNPq, by means of
fellowships and the PROTEM/CC-GEOTEC project.
TeCGraf is a Laboratory mainly funded by
PETROBRAS. Part of the research was done at the
VISGRAF/Impa laboratory. The authors want to thank
Paula Frederick for her valuable contribution in the early
stages of this work.

References
A. La Mothe, Black Art of 3D Game Programming,

Waite Group Press, 1995.
P. Freese, More Tricks of the Game Programming Gurus,

Chapter 7, SAMS Publishing, 1995.
Williamson, H., “Algorithm 420 Hidden-Line Plotting

Program”, CAC, 15(2), February 1972, 100-1003.
D. Cohen and A. Shaked, “Photo-realistic Imaging of

Digital Terrains”, Computer Graphics Forum, 12(3):
363-373, 1993.

K. Ch. Graf, et alli, “Perspective Terrain Visualization -
A Fusion of Remote Sensing, GIS and Computer
Graphics”, Computer and Graphics, 18(6): 795-802,
1994.

F. Szenberg, et alli. An algorithm for visualization of a
terrain with objects. Proceedings of SIBGRAPI,
1997.

