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Abstract. We describe an animation system that simulates the dynamics of viscoelastic bodies

subject to equality and inequality constraints. The equations of motion are derived from Lagrange's

equation, and constraint forces are computed by the method of Lagrange multipliers. Each elastic

body is modeled as a collection of tetrahedral �nite elements whose deformation is restricted to

a�ne transformations of their rest shapes. We use an original non-linear formula for the elastic

forces, especially devised to prevent elements from collapsing to zero or negative volume. We

also describe a general algorithm to detect violation of inequality constraints. For collisions, in

particular, we use the optimization technique of Lin and Manocha to cut the detection time from

quadratic to almost linear. Collisions are handled by temporary contact springs.

1 Introduction

The kinematic techniques still used in most commer-

cial animation systems leave to the animator the task

of estimating the object motions according to the

laws of physics. Physically-based simulation o�ers a

promising alternative.

We describe here an animation system that sim-

ulates the dynamic behavior of elastic bodies, accord-

ing to the laws of Newtonian mechanics. In order to

allow large deformations without allowing the bod-

ies to be compressed to volume zero or negative, we

adopt a model for the elastic forces that is non-linear

in the deformation measures. This model, neverthe-

less, reduces to Hooke's linear model for small defor-

mations.

We allow for constraints on the positions of the

bodies, expressed as algebraic equalities on their co-

ordinates. These constraints can be used to keep a

body �xed, or force it to follow a prede�ned trajec-

tory. Our system also detects and handles collisions

between objects (or di�erent parts of the same ob-

ject), which are a necessary feature of almost any

realistic animation.

1.1 Related work

Our work is mostly related to that of Terzopoulos

and others [12, 11]. Alternative approaches, which

restrict the deformations in order to reduce the sim-

ulation cost, have been proposed by Pentland and

1Bolsa de mestrado FAPESP 94/4132-6.
2Bolsa de auxilio a pesquisa CNPq 301016/92-5.

Williams [10], and Witkin and Welch [14].

Witkin, Gleicher and Welch [13], among others,

described the handling of constraints by Lagrange

multipliers. For collision detection, we rely on Lin

and Manocha's optimization technique [7]. The han-

dling of collisions by springs was already proposed by

Moore andWilhelms [9]. Newer (and still experimen-

tal) approaches are Mirtich and Canny's microim-

pulse model [8], and Bara�'s detailed analysis of the

\classical" impulse and contact force model [1, 2].

1.2 Notation

We denote a row vector by [u1; u2; : : : ; um]. A point u

ofRm (anm-vector) is by de�nition a column vector.

If f is a scalar function of a vector u 2 Rm, we

denote by @f=@u the vector [@f=@u1; : : : ; @f=@um]
>;

and by @2f=@u2 the m � m matrix whose element

in row i and column j is @2f=@ui@uj , for i; j =

1; : : : ;m.

If v is any property of the system that changes

with time, we denote by v(t) its value at instant t

and by v0 and v00 its �rst and second derivatives with

respect to time.

2 Equations of motion

For the purposes of this section, a dynamic system is

a collection of point-like material particles that move

in space in response to internal and external forces,

each according with Newton's law F = ma.
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2.1 Generalized coordinates

The con�guration of a dynamic system at a given

instant consists of the positions in R3 of all its ma-

terial particles. The state of the system consists of

the current positions and velocities of those particles.

In practice, we must use a simpli�ed model of

the system, where only the most important degrees

of freedom in the motion of the particles are repre-

sented. For example, to model the motion of a rigid

object, it is usually su�cient to keep track of the po-

sition of its center of mass, and the orientation of an

orthogonal frame �xed on the body.

So, suppose we have a simpli�ed model of the

system, and q1; : : : ; qn are n real-valued parameters

whose values at any instant t completely determine

the model's con�guration at t. The particle velocities

at t are then completely determined by the quanti-

ties q1; : : : ; qn and their time derivatives q0
1
; : : : ; q0n.

One says that the former are a set of generalized co-

ordinates for the system, and the latter are the cor-

responding generalized velocities.

We stretch the language a bit and say that the

n-vector q = [q1; : : : ; qn]
> is the con�guration of the

system; and the pair (q; q0) is its state. Note that

both q and q0 are functions of time.

Given a collection of forces f1; : : : ; fm acting on

the m particles of the system, one de�nes the corre-

sponding generalized force Ei acting on each general-

ized coordinate qi, such that the work done by those

forces (assumed constant) when the coordinates q

change by a small vector � will be E>�.

2.2 Lagrange's equation

It follows from the laws of classical mechanics that

the evolution of a dynamical system is completely de-

termined by its initial state and the forces applied by

the environment over time. Lagrange's equation [6]

is a general di�erential formula that determines the

system's evolution, in terms of an arbitrary system of

generalized coordinates, from the formulas that ex-

press the energy of the system in those coordinates.

The internal energy of a dynamic system can be

written as the sum of the kinetic energy of its parti-

cles, and a potential energy due to the forces between

particles. The energy of the system may change due

to external forces applied by the environment on the

particles, or by internal friction due to forces be-

tween particles that resist their relative motion.

The potential energy of the system depends on

the particle's positions alone, so it is a function P of

the coordinate vector q. The kinetic energy depends

only on the particle velocities, so it can be written

as a function K of q and q0. The rate of energy loss

due to internal friction depends on the positions and

velocities of the particles, and therefore it can be

expressed as a function W of q and q0.

Lagrange's equation, which is ultimately derived

from Newton's law, states that the evolution of the

state (q; q0) satis�es

d

dt

�
@K

@q0
(q; q0)

�
+
@W

@q0
(q; q0) +

@P

@q
(q) = E (1)

where E = [E1; : : : ; En]
> is the vector of generalized

forces applied on the system by the environment.

Expanding the derivatives of (1) and rearrang-

ing the terms, we get the matrix form of Lagrange's

equation,

Mq00 = F (2)

where M is the generalized mass matrix, and F is the

generalized total force vector, de�ned as

Mij =
@2K

@q0i@q
0

j

(3)

F = E � @2K

@q0@q
q0(q; q0)� @W

@q
(q; q0)� @P

@q
(q) (4)

Equations (2{4) allow us to compute the accelera-

tions q00 for a state (q; q0), given the external force

vector E. The system's evolution can be determined

by integrating the second-order di�erential equation

q00 = M�1F , where F is computed from q, q0, and E.

3 Constraints

Lagrange's formula (1) can be used only when the

generalized coordinates qi are independent and non-

redundant; that is, when the set of allowed con�gu-

rations for the system has dimension exactly n.

In many situations, however, this requirement is

too restrictive. In practice, we generally use a redun-

dant set of generalized coordinates, together with one

or more constraints that restrict them to some lower-

dimensional manifold of valid con�gurations. For ex-

ample, in the case of a particle restricted to move on

the unit sphere S2, we could use the Cartesian co-

ordinates (x; y; z) of the particle, together with the

constraint x2 + y2 + z2 � 1 = 0.

Constraints typically arise in systems that con-

sist of several solid bodies in contact or connected by

mechanical joints, whether among themselves or to

the external environment. As a rule, the only prac-

tical way to model such systems is to model each

part independently, concatenate the coordinate vec-

tors of all parts, and subject the resulting vector to

the equations implied by the additional constraints.

In the context of computer animation, constraints

can be used also to keep an object �xed in space, or

drag it along a prescribed trajectory.
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In general, suppose we have a set of constraints

on the system's con�guration that can be expressed

by equations �r(q; t) = 0, for r = 1; : : : ; k. In order

to keep these equations satis�ed, the constraining

processes must apply appropriate constraint forces

on the system. The corresponding generalized forces

must be added to the right-hand side of Lagrange's

equation (1).

3.1 Constraints as springs

There are two main approaches for computing these

forces. The simplest, and perhaps most intuitive, is

to model each constraint �r(q; t) = 0 by a spring

whose stretching energy is K�r(q; t)
2, for some con-

stant K > 0. This approach allows the constraint to

be slightly violated, but the spring will automatically

provide a force that tends to restore the constraint.

By increasing the spring sti�ness K, the magnitude

of the violations can be made as small as desired.

The drawback of this method is that the presence of

sti� springs makes the di�erential equation unstable.

3.2 Exact constraint forces

Another approach consists of directly computing the

generalized constraint force vector C that is needed

to exactly ful�ll the constraints at each instant. Given

a constraint equation �r(q; t) = 0, let hr be a func-

tion of time that records the value of the left-hand

side throughout the evolution of the system. Satisfy-

ing the constraint means ensuring that hr = 0 at all

times. If we start from a valid state, we must have

hr = 0 and h0r = 0 at the initial moment. To main-

tain these conditions, we need only to ensure that the

acceleration q00, at every instant, is such that h00r is

always zero. This requirement contributes one linear

equation relating q00 to known quantities, namely

@�r

@q
(q; t)> q00 =  r (5)

where

 r = �q0> @
2�r

@q2
(q; t) q0�2@

2�r

@q@t
(q; t)> q0�@

2�r

@t2
(q; t)

(6)

The matrix formulation (2) is then replaced by�
Mq00 = F + C

Nq00 =  
(7)

where C is an n-vector of unknown constraint forces,

N is a k � n matrix given by

Nij(q; t) =
@�r

@qj
(q; t) (8)

for row r = 1; : : : ; k and column j = 1; : : : ; n, and  

is the k-vector de�ned by formula (6).

3.3 Lagrange multipliers

In general, equations (6{8) do not determine the

constraint forces completely. Fortunately, for most

kinds of mechanical constraints (including contacts

and mechanical joints), we can easily determine the

direction of the associated constraint force; only the

magnitude remains to be determined. For example,

for a particle sliding on a �xed plane, the constraint

force will be some multiple of u� �v, where u is the

plane's unit normal, v is the particle's velocity, and

� is the dynamic friction coe�cient.

If we know the directions d1; : : : ; dk of the con-

straint force vectors for all the equations �1; : : : ;�k,

the total force vector C is some linear combination

C = �1 d1+ : : :+�k dk. We can determine the multi-

pliers �1; : : : ; �k by solving equation (7). This is the

so-called method of Lagrange multipliers.

Let � be a vector of Lagrange multipliers. By

writing C = �G�, for the n � k matrix G whose

columns are the directions d1; : : : ; dk, we can solve (7)

for �, obtaining

NM�1G� = NM�1F �  

This equation allows us to compute �, and hence C,

from known quantities.

4 Continuous model for elastic bodies

In a solid body, neighboring particles remain close to

each other. Therefore, we can model a solid body as

a piece of a continuous medium moving through R3,

and subject to continuous deformations.

More precisely, we model a solid body as a closed

and �nite region U of R3, its reference con�guration.

(Note that U does not have to be connected, so ev-

erything we say here about one body applies equally

well to a set of two or more separate bodies.) A con-

�guration of the body is then a continuous function

f that maps each point u = [ux; uy; uz]
> 2 U of the

medium to a position f(u) = [fx(u); fy(u); fz(u)]
>

in R3. Since we don't want the bodies to inter-

penetrate, we require that f be one-to-one when re-

stricted to the interior U+ of U .

4.1 Potential energy of deformation

For an elastically deformable body, a signi�cant part

of the potential energy is stored in the elastic de-

formation of the material. At the microscopic level,

this energy is due to the displacement of each particle

relative to its neighbors.

Let u be a point of U+. The relative displace-

ment of particles in the neighborhood of u, for a given

con�guration f , is determined to �rst order by the
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Jacobian matrix of f at u,

J f(u) =

2
4 @fx=@ux @fx=@uy @fx=@uz
@fy=@ux @fy=@uy @fy=@uz
@fz=@ux @fz=@uy @fz=@uz

3
5 (9)

Speci�cally, a particle that is located at v = u + "

in the reference con�guration, for any in�nitesimal

vector ", will be located at f(v) = f(u)+(J f(u))"+

O(j"j2) in the con�guration f . For ordinary mate-

rials, it turns out that the second-order terms have

negligible e�ect on the elastic energy. Therefore, the

density of elastic energy �f (u) in the neighborhood

of point u can be computed from the Jacobian J f(u)

alone.

Let g be a con�guration of the body for which

the density �g(u) is zero. (We say that g is locally

relaxed at u.) Then �f (u) depends on the local defor-

mation determined by f , relative to that determined

by g. That is, �f must be expressible as �(C), a

function that depends on the material, where

C = J (f � g�1)(u) = (J f(u))(J g(u))
�1 (10)

is the strain tensor of con�guration f at u.

Moreover, the elastic energy should not be af-

fected by rotating the body as a rigid whole. In that

case, it can be shown that �(C) must be a function

of D = C>C, a symmetric matrix called the metric

tensor of f at u.

Also, if the material is isotropic (meaning that

its mechanical properties are the same in all direc-

tions), the energy should remain una�ected by rota-

tion of the locally relaxed con�guration around point

g(u). In that case, it can be shown that �(C) must

depend only on the coe�cients d1; d2; d3 of the char-

acteristic polynomial of D,

�(�) = det (D� �I) = 1 + d1�+ d2�
2 + d3�

3 (11)

It can be checked that

d1 =
P

iDii =
P

ij C
2

ij (12)

d2 =
P

iD
�

ii =
P

ij(C
�

ij)
2 (13)

d3 = detD = (det C)2 (14)

where M� denotes the matrix of 2�2 cofactors of M.

In conclusion, the energy function �(C) is a

function of the coe�cients d1; d2; d3 that is mini-

mum (zero) when D is the identity matrix, i.e. when

d1 = d2 = 3; and d3 = 1. These conditions still al-

low in�nitely many functions �. Partly for reasons

of computational e�ciency, we have chosen

� =
�

2

�p
d3 +

1p
d3

� 2

�
+
�

2

�
d2
1

3
� d2

�
(15)

For small deformations, the coe�cients � and � that

appear in formula (15) are precisely the two elastic

moduli of the material, that express its resistance to

changes in volume and in shape, respectively.

One advantage of formula (15), compared to the

simpler quadratic forms that have been used in other

works, is that it tends to in�nity as the volume ap-

proaches zero. Therefore, the elastic forces computed

by this formula will automatically prevent the tetra-

hedra from turning \inside out".

4.2 Viscosity losses

A real deformable body generally shows viscous fric-

tion, a loss of kinetic energy due to forces that tend

to oppose the relative motion of neighboring particles

inside the body.

The function that gives the current velocity of a

particle in terms of its current position is h = f 0�f�1.
The relative motion of particles in a small neighbor-

hood is therefore summarized, to �rst order, by the

spatial derivatives of this function; namely by the

matrix V = Jh = J (f 0 � f�1) = (J f 0)(J f)�1).

By a reasoning similar to that used in the deriva-

tion of the elastic energy formula, we conclude that,

in an homogeneous medium, the power loss ! per

unit volume is some function of the coe�cients of

the symmetric part of V. We eventually settled for

the following formula,

! =
�1

2
(
X
i

V2

i ) +
�2

2
(
X
i<j

(Vi;j +Vj;i)
2) (16)

where �1 and �2 are viscosity coe�cients related to

the rates of change of volume and shape, respectively.

5 Finite element model

In order to obtain a �nite description of the con-

�guration of an elastic body, we use a simple �nite

element model. Namely, we approximate its shape

by the union of tetrahedra (elements), with pairwise

disjoint interiors, glued by their faces. Note that the

kinetic energy, elastic energy, and dissipated power

of the model are simply the sums of the correspond-

ing terms for each element.

We restrict the deformations of the body so that,

within each element, the con�guration function is al-

ways an a�ne map of R3 to R3. We assume that the

elastic moduli and viscosity coe�cients of the mate-

rial are equal for all points in the interior of each

tetrahedron, and do not change with time. Finally,

we assume that the total mass of each element is con-

stant over time, and uniformly distributed within it.

(Note that its density will vary as it gets deformed).
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5.1 Barycentric coordinates

Let T be a tetrahedron in U , with vertices u1; : : : ; u4.

If u is a point in T , we can write it as a convex linear

combination of the vertices ui,

u = �1 u1 + �2 u2 + �3 u3 + �4 u4

where 0 � �i � 1, for i = 1; : : : ; 4, and �1+�2+�3+

�4 = 1. The �i's are called the barycentric coordi-

nates of u in T . If the vertices u1; : : : ; u4 are mapped

to the points p1; : : : ; p4 by some con�guration f , the

current position p = f(u) of point u will be

p = �1 p1 + �2 p2 + �3 p3 + �4 p4 (17)

Analogous interpolation formulas hold for the cur-

rent velocity and acceleration of the point u, in terms

of the current velocities and accelerations of the ver-

tices of T .

5.2 Kinetic energy

Let T be a tetrahedron of mass � and vertex veloc-

ities v1; : : : ; v4. The kinetic energy of T is given by

the integral

KT =

Z
1

0

Z
1��3

0

Z
1��3��2

0

v2

2
(6�)d�1 d�2 d�3

where v = �1 v1+�2 v2+�3 v3+(1��1��2��3)v4.
This integral evaluates to

KT =
�

20

0
@ 4X

i=1

v2i +

4X
i=1

i�1X
j=1

vi � vj

1
A (18)

5.3 Elastic energy

We will assume that for each tetrahedron T there is

a con�guration gT of the body where T is relaxed,

i.e. has zero elastic energy. If the current con�g-

uration f maps the vertices of T to points pi =

[xi; yi; zi]
>, the strain tensor C = J (f � gT�1) at

any point u in the interior of T can be computed as

C = BA�1, where

B =

2
4 x2 � x1 y2 � y1 z2 � z1
x3 � x1 y3 � y1 z3 � z1
x4 � x1 y4 � y1 z4 � z1

3
5

and A is computed in a similar way from the vertices

of T in its relaxed con�guration.

From the strain tensor, we compute the elastic

energy density �f (u) by formula (15). Its integral

over the tetrahedron T is merely the product of �f (u)

by its volume VT in its relaxed con�guration.

5.4 Viscosity losses

The loss of energy due to viscous friction inside a

tetrahedron is obtained by multiplying the power loss

per unit volume ! by the current volume of the tetra-

hedron.

Since J f = C = BA�1 and A is constant, J f 0

reduces to B0A�1, and hence V = B0 B�1. The vis-

cous power loss density ! is then computed by for-

mula (16).

6 Inequality conditions and discrete events

In general, integration of the di�erential equations

cannot continue forever. Besides the equality-type

constraints, there are other inequality-type condi-

tions that must be satis�ed. In general, we con-

sider conditions that can be expressed by inequali-

ties �i(q; q
0; �; t) > 0 for i = 1; : : : ;m, where the �i

are continuous functions, and �i are the Lagrange

multipliers of the constraint forces.

Inequality conditions arise, for example, when

we want to avoid interpenetration between bodies.

This condition can be translated into a combination

of algebraic inequalities applied to the vertex coordi-

nates. Also, when a body is resting or sliding on an-

other, the contact force must always push the bodies

apart, rather than against each other. This condition

can be written as �i > 0, where �i is the Lagrange

multiplier associated with the contact force.

6.1 Discrete event detection

While integrating the equations of motion, we must

stop the integration whenever we reach a state where

one of the �i is about to become negative. In order to

continue the simulation past that moment, it will be

necessary to change the system's state, the equations

of motion, or the set of conditions that need to be

satis�ed. In any case, we'll then say that a discrete

event has occured at that moment.

Suppose the integration took us from a valid ex-

tended state sa at time ta to a proposed extended

state sb at time tb. We must check that all functions

�i remained of the same sign during that interval.

Otherwise, we must detect the �rst instant after ta,

say te, at which one of the functions �i becomes zero,

and redo the integration from ta to te.

We can suppose in practice that at most one

function � becomes zero at any given instant. Simul-

taneous sign changes (which might correspond, for

example, to bodies colliding in two or more points at

the same time), have probability zero in general, and

are meaningless anyway in the presence of numerical

errors.
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6.2 Detection by Hermite interpolation

So, let g be a function of time that describes the evo-

lution of a condition function �(q; q0; �; t) along the

system's trajectory. In order to check whether the

condition g(t) > 0 was satis�ed throughout the inte-

gration step, we use Hermite interpolation of order k

for g in that interval; that is, a polynomial of degree

2k+1 whose values and derivatives to order k agree

with those of g at ta and tb.

If the function � depends only on q, and pos-

sibly on t (which is true, for example, for the non-

penetration conditions), we use a �rst-order Hermite

interpolant, that is, the cubic polynomial whose val-

ues and �rst derivatives agree with those of g at ta
and tb. These parameters are

g(ta) = �(qa; ta)

g0(ta) = @�
@q

(qa; ta)
>q0a +

@�
@t

(qa; ta)
(19)

and similarly for tb.

In order to check whether the cubic polynomial

is positive throughout the interval, we rewrite it in

terms of the Bernstein-B�ezier basis [5], that is

g(t) = P1(1�u)3+P2 u(1�u)2+P3 u2(1�u)+P4 u3
(20)

where u = (t� ta)=dt, dt = tb � ta, and

P1 = g(ta) P4 = g(tb)

P2 = g(ta) +
dt

3
g0(ta) P3 = g(tb)�

dt

3
g0(tb)

(21)

The advantage of this representation is that the

value of g(t) for any t 2 I = [ta; tb] is a convex com-

bination of the coe�cients P1; : : : P4. Therefore, if

these coe�cients are all positive or all negative, the

same can be said of g(t) throughout the interval. If

they have mixed signs, we bissect the interval with

DeCasteljau's algorithm [5], and repeat the test in

each half, recursively.

However, when the condition � depends on � or

on q0, this cubic approximation cannot be used. To

compute g0(ta) and g
0(tb), we would need to compute

�0 and q00. The former depends on the derivatives of

the external forces, which may not be known; and the

latter cannot be safely evaluated for the �nal state

sb, until we have veri�ed that all preceding states

were valid.

Therefore, in this case we just use a straight-line

aproximation (Hermite interpolant of order k = 0)

between the values of g(ta) and g(tb). Since g(ta)

is assumed to be positive, the test for g(t) > 0 in I

reduces to checking whether g(tb) > 0. If this test

fails, the approximate time when g becomes zero is

te = (tag(tb)� tbg(ta))=(g(tb)� g(ta)).

6.3 Collision detection

Realistic animation requires the detection and han-

dling of collisions between the objects. In fact, we

only need to watch for collision between a vertex

and a non-adjacent face, or two non-adjacent edges;

all other combinations are \coincidences" that occur

with probability zero.

For typical models, with hundreds of facets, check-

ing for collisions among all possible vertex-face and

edge-edge pairs would be far too expensive. Fortu-

nately, we can eliminate most of these tests by ex-

ploiting the spatial and temporal coherence of the

scene.

Moreover, in typical situations, most of these

pairs are widely separated in space. To take advan-

tage of this fact, we compute an axis-aligned bound-

ing box for each exposed vertex, edge, and face, over

the current integration interval, and consider only

pairs of elements whose bounding boxes intersect.

The bounding box of a surface vertex is com-

puted by applying Hermite interpolation and Berns-

tein-B�ezier range estimation to each coordinate, as

in section 6.2. The bounding box for an edge is then

obtained by enclosing the bounding boxes of its end-

points; and similarly for each face.

In order to quickly �nd the pairs of boxes that

intersect, we use the incremental technique of Lin

and Manocha [7]. We store the minimum and maxi-

mum coordinates of all boxes in three sorted lists, one

for each axis. By scanning each list we can determine

which pairs of boxes overlap when projected on the

corresponding axis. Only the pairs whose bounding

boxes overlap in all three axes are tested for collision;

these pairs are kept in a set S.
Thanks to temporal coherence, only a few pairs

of elements need to be swapped in each list; and

only the corresponding pairs of boxes may have to

be added or deleted from the set S. Therefore, the

cost of keeping the lists sorted, and updating the set

S, is almost linear in the number of exposed faces.

7 Handling collisions

When two solid bodies collide, the material around

the points of contact must deform, in order to pre-

vent their interpenetration. The deformation gives

rise to a contact force that tends to push the two

bodies away from each other. The force disappears

if and when the two bodies move apart.

7.1 The impulse model

For ideally rigid bodies, the force must be idealized

as an impulse | an in�nitely strong force, acting for

an in�nitely short time, with a �nite integral. The
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e�ect of the impulse is to instantaneously change the

velocity of the bodies, without a�ecting their posi-

tions, so that the colliding surfaces are either sliding

against or moving away from each other.

Computing these impulses is a very di�cult prob-

lem, especially when the model allows multiple rolling

and sliding contacts between the bodies, with static

and dynamic friction. In general, the equality con-

straints allow in�nitely many solutions for the im-

pulses and constraint forces, and �nding one that

satis�es the inequality conditions is NP-hard [1, 2].

7.2 The spring model

The impulse model is not very appropriate for col-

lisions between elastic bodies. The deformations in

this case are macroscopic, and therefore the contact

forces are �nite and have nonzero duration. There-

fore, we have chosen to use a simple spring-based

model for the contact forces, which is a special case

of the spring approach for equality constraints (sec-

tion 3.1).

Speci�cally, when we detect a collision between

two surface points a and b, we attach a virtual spring

between them, and allow the integration to continue

from the same state. The polyhedra representing the

two bodies will then interpenetrate to some extent,

but the spring will eventually stop and possibly re-

verse this motion. If the spring is strong enough, the

interpenetration will be slight and hardly noticeable.

We remove automatically the spring if and when it

starts pulling the two bodies towards each other, in-

stead of pushing them apart.

In the current implementation, we model only

\sticky" (non-sliding) collisions. That is, a contact

spring remains tied to the same surface points through-

out its life. In a vertex-face collision, the spring is

anchored to the vertex and to a speci�c point on

the face, de�ned by the barycentric coordinates of

the contact point at the moment the collision was

detected. In an edge-edge collision, the spring is at-

tached to a speci�c point along each edge, de�ned by

the ratio of distances from the collision point to the

edge endpoints.

If we allowed sliding contacts, we would have to

worry about other kinds of events, for instance when

a vertex that is sliding on a face hits a boundary

edge. At that moment the vertex might y away

from the surface, or slide into the adjacent face, or

(if the edge is concave) bounce back into the same

face, or start sliding along the edge. Handling all

these cases would require more time than we had

available.

On the other hand, our collision model still al-

lows objects to roll against each other: springs get

added at the front edge of the contact region, and

removed from the back edge.

The virtual springs have linear force and zero

rest length, i.e. their stored energy is simply KL2

where L is the current distance between the end-

points. The constant K must be chosen with some

care: if too small, the bodies may push right through

each other, and perhaps become tangled in a multi-

tude of springs. If too strong, the integrator will have

to use a small time step in order to follow the spring

motion.

8 Implementation issues

8.1 Factoring the mass matrix

Observe that the kinetic energy formula (18) for a

tetrahedron T depends only on the vertex velocities

of T , and not on their positions. It follows that the

mass matrix M is constant, depending only on the el-

ement masses and their adjacency relationships; and

therefore needs to be computed only once, at the be-

ginning of the simulation.

Moreover, it can be shown that M is symmetric

and positive-de�nite. Therefore it can be factored

as M = LDL> where L is a lower triangular matrix

with unit diagonal and D is a diagonal matrix with

positive values [4]. This way, we can solve the system

Mq00 = F in O(n2) operations.

Finally, we take advantage of the fact that M is

quite sparse: the number of non-zeros in M is exactly

3nv + 6ne, where nv is the number of vertices of the

model, and ne is the number of edges. For typical

models, the factor matrix L is also sparse. Thus,

by storing only the non-zero elements of L, the cost

of evaluating the accelerations becomes practically

linear in n.

8.2 Computing the internal forces

When computing the total force vector F , accord-

ing to formula (4), we need to compute the partial

derivatives of P and W with respect to the state co-

ordinates. These derivatives are computed e�ciently

with the technique of Baur and Strassen [3], which is

basically a sistematic application of the chain deriva-

tion rule.

8.3 Numerical integration

To integrate the di�erential equation q00 = M�1F , we

use the 4th order adaptive method of Runge-Kutta-

Fehlberg [4]. This routine automatically generates

an estimate of the truncation error, and adjusts the

step size so as to keep that error below a user speci-

�ed numerical tolerance.
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9 Results

Below we see an animation produced by our system,

of two soft rubber cylinders falling on a hard oor.

The 12 frames shown cover about 1 second of simu-

lated time. The models have a total of 462 tetrahedra

and 191 vertices, with 334 exposed triangles.

Construction and factorization of the mass ma-

trix took 6 minutes, and the simulation itself took

1 hour and 5 minutes (3900 times \real time") on a

SPARC 1000. The integrator took 6650 steps, aver-

aging 150 microseconds of simulated time and 0.58

seconds of CPU time per step. Roughly 1/3 of this

time was spent computing the vertex accelerations,

and 2/3 testing for possible collisions among 120,000

edge-edge and 57,000 vertex-face pairs; 140 collisions

were detected during the run.

10 Conclusions

We feel that the performance of our simulator is ac-

ceptable, given the complexity of the task. However,

there is still plenty of room for improvement. The

main problem we face at the moment is the \sti�-

ness" of the di�erential equation, due to the con-

tact springs, which forces the integrator to use a very

small step size (around 100 microseconds when the

error tolerance is set to 1mm). To solve this problem,

we may have to replace the contact springs by some

combination of impulses and equality constraints.
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