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Abstract. We present a method for sampling, structuring and reconstructing progressively
re�ned images e�ectively. This has direct applications to progressive re�nement of the result of
slow renderers, such as ray tracers, and to the progressive transmission of images on slow media,
as in world wide web browsers. Sampling images adaptively with respect to frequency at the back
end provides a more compact representation. These samples are then structured at the front end
using Voronoi or Delaunay tesselations, and reconstructed with C0 continuity taking advantage of
standard 3D acceleration hardware. The structuring scheme is extended to handle multiresolution
images, with optional antialiasing, allowing the representation of an arbitrary level of detail without
penalizing the reconstruction.

1 Introduction

Images are the result of most processes in computer
graphics. The demand for quality has greatly in-
creased the amount of data to be manipulated, trans-
mitted and stored. Proper image representation is
a key concern in performing these operations e�-
ciently. One must be able to transform an image into
a certain representation and to transform it back,
while understanding the characteristics and control-
ling the e�ects of the mappings. Di�erent terminol-
ogy applies to these transformations depending on
the application: encoding and decoding, compres-
sion and decompression, sampling and reconstruc-
tion. Even though the applications may di�er in
their essential requirements, they build upon a set
of common ideas, and have some overlap in their us-
age.

There are very e�cient methods for compression
of images available, such as JPEG (Pennebaker and
Mitchell, 1993), Wavelet based (Froment and Mallat,
1992) and Fractal based (Barnsley and Hurd, 1993),
which emphasize the bits per pixel rate.

In interactive applications, however, if the in-
termediate steps of the decoding can be displayed
quickly as meaningful images|as is the case of image
pyramids (Williams, 1983), for instance|the out-
put of the data as it becomes available can result
in a faster feedback, even if the compression rate is
smaller, or even negative.

The order in which the information of the im-

age is decoded, or the order in which the samples are
generated, also plays an important role in the percep-
tual \speed". If important areas of the image, such
as the image edges, are displayed �rst, the fact that
the less important parts of the image are not fully
detailed yet may be overlooked. This concept is cen-
tral to progressive re�nement techniques (Bergman
et al., 1986).

Most of the image decoding schemes, however,
are based on uniform sampling, and represent the
image as a matrix of samples. This results in pro-
gressive re�nement schemes that improve images on
a top down scan. Our method, instead, balances the
overall improvement of the image with the emphasis
on the perceptually important features, in an irreg-
ular scanning pattern.

One of the applications that can take advantage
from any such representation is the transmission of
images on relatively slow media, where the progres-
sive re�nement of the quality of the image is a cru-
cial user feedback feature. Some forms of progres-
sive re�nement are present in most web browsers,
for instance, but they are based on traditional image
representations.

Slow renderers used interactively|especially ray
tracers, which are based on individual samples|also
bene�t from progressive techniques. Although pro-
gressive re�nement is available in the majority of the
packages, they often work in a regular fashion, or do
not perform a suitable reconstruction for display.
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Our method allows a good quality reconstruc-
tion to be performed quickly and locally, with the
added processing cost hopefully worth the improve-
ment in feedback. It is particularly useful when the
placement and ordering of the samples cannot be pre-
computed by the encoding algorithm|for instance,
when the sample positions are generated dynamically
for interactive display.

Image Representations

Traditional image representation employs a straight-
forward regular sampling strategy, which facilitates
most of the tasks involved. The regular structur-
ing of the samples in a matrix is conveniently sim-
ple, having given rise to the raster display paradigm,
which makes this representation specially e�cient
due to the tight relationship with typical hardware.

The regular sampling strategy, however, does
not necessarily match the information contents of
the image. If high precision is required, the global
sampling resolution must be increased, often result-
ing in excessive sampling in some areas. Needless to
say, this can become very ine�cient, especially if the
�ne/coarse detail ratio is low.

Many image representation schemes address this
problem, most notably frequency domain codi�ca-
tions (Pennebaker and Mitchell, 1993) (Froment and
Mallat, 1992), quad-tree based image models (Samet,
1984) and fractal image compression (Barnsley and
Hurd, 1993).

Most of these schemes use non homogeneous sam-
pling, even though they are based on a regular rect-
angular grid. This originates aliasing artifacts, which
are usually reduced by increasing the sampling rate
and/or band-limiting the input image (Gomes and
Velho, 1995). Approaches that do not use rectan-
gular grids, such as hexagonal or triangular grids
(Glassner, 1992), facilitate the avoidance of aliasing
artifacts, but still rely on regular sample distribu-
tion. Irregular sampling strategies, such as an ape-
riodic triangulation (Radin, 1994), are signi�cantly
less prone to aliasing, although they introduce some
noticeable noise.

In general, images as represented must be ma-
nipulated or transformed at least to some degree.
Certain forms of transformations can be easier or
harder to perform on certain representations. Most
image representation schemes require resampling of
the image when transforming the domain, due to the
�xed sampling grids which are employed. The image
transformation cycle therefore has the added cost of
reconstruction and resampling phases which must be
performed carefully to reduce aliasing.

2 Proposed Solution

We propose a simple and compact image representa-
tion scheme based on adaptively sampling the input
signal, using multiresolution Delaunay or Voronoi
tesselations as structuring primitives and using con-
ventional 3D acceleration hardware to quickly recon-
struct images for display.

The transformation of images represented in this
form by continuous, one-to-one, warping maps is di-
rect and, in general, avoids the necessity of resam-
pling as the representation is not based on a �xed
grid. This approach also results in the ability to
represent images to an arbitrary level of detail, un-
constrained by traditional pixels.

Moreover, the representation scheme is extended
to handle multiple levels of resolution, with or with-
out antialiasing, allowing sub-representations of ar-
bitrary complexity to be obtained directly from the
model. This shares the usual advantages of multires-
olution methods, mostly due to the ability to easily
adapt the amount of information in the image to the
way it is used (Heckbert and Garland, 1994).

A central idea in the multiresolution scheme is
that the addition of a new appropriate sample will
improve the quality of the approximation. This leads
naturally to incremental techniques that progressively
re�ne the quality of the image. Also, as mentioned
before, the ordering of the samples is essential to the
perception of \re�nement". Therefore, several per-
ceptual issues must be taken into consideration when
selecting the samples, and if that is done carefully,
this form of image representation can result in an
improved sense of quality progress.

In order to work with irregularly sampled im-
ages, we must �rst choose the sampling positions,
and then reconstruct the samples to obtain an ap-
proximated image. These processes can be treated
as independent, even though knowledge of each oth-
ers characteristics may help. Some sort of structure
must be imposed upon the samples, to allow the sam-
pling decisions to be made in an e�cient and consis-
tently distributed way, and also to facilitate the dis-
play of the results. Therefore, we distinguish three
basic questions in the problem:

� How to structure the samples?

� How to sample?

� How to reconstruct the image?

In the next section, we will review some basic
concepts, and in the following sections, each of these
issues will be addressed.
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3 Image Model

An adequate mathematical model for a continuous

image (Gomes et al., 1996) is a function that relates
points in a subset of the Euclidean plane to colors in
a color space, i.e., a continuous image is a function
f : U � R

2 ! C, where C is a color space, that
can be considered a generic vector space containing
the color space as a subspace. In practice, U is a
rectangle aligned with the Cartesian axes of R2 and
C is a one-, three- or four- dimensional color space.

A discrete or point sampled image f� is a repre-
sentation of that image, through a set of samples of
f taken at a �nite number of positions pi:

f� = fhsiig; si = (pi; f(pi)); pi 2 U:

The sample positions usually possess some form
of structuring that makes a consistent representation
of the samples easier. A natural structure is a reg-
ular rectangular grid, which is by far the most used
representation and therefore is naturally associated
with the concept of discrete images.

A more e�cient representation of the continu-
ous image f would, in general, have more samples
in the regions where the function f has higher fre-
quencies and curvature, and less samples in the lower
frequency areas. This usually results in less samples
for the same error in the approximation.

4 Structuring Irregular Samples

Each sample represents the image with absolute �-
delity at that point. To be able to decide new sample
positions and to display the samples, more complex
information will be required, such as adjacency re-
lations and distances. Thus, the samples must be
structured in some way.

A natural geometric concept is the area of dom-
inance of each sample, which is well captured by the
Voronoi polygon of that sample, and will be the basis
of our representation.

Given a set S of n points in a plane, the set of
points p, such that p is closer to one of the given
points pi than to any other pj of S is called the
Voronoi polygon of pi in S (see �gure 1). In this
way, each of the Voronoi polygons is the intersec-
tion of the half planes that contain pi de�ned by the
medians between the point pi and each of the other
points in S. The union of the Voronoi polygons of all
the points in S is a planar subdivision called Voronoi
diagram (Preparata and Shamos, 1985), such as the
example in �gure 1.

Note that in the diagram, inside each Voronoi
cell, there is a single sample which dominates that
region. Not only does this concept acommodate ar-
bitrarily distributed samples, but the resulting shape

Figure 1: Voronoi diagram and its dual Delaunay
triangulation

of the cells is usually not regular, and therefore, less
prone to aliasing.

It is interesting to notice that the dual of a
Voronoi diagram, the Delaunay triangulation (shown
dotted in �gure 1), will also be very useful, and, in
fact, can be used as the structuring scheme in place
of Voronoi diagrams. Since both structures can be
constructed and kept simultaneously in a quad-edge
structure (Guibas and Stol�, 1985), for instance, any
of them can be used interchangeably. A Delaunay
triangulation is intuitively \good", especially for in-
terpolations: since it maximizes the smallest angle
of each triangle, it produces well-behaved triangles,
in the sense that they are as close to equilateral as
possible. This will reduce numerical interpolation
problems and any discontinuities on triangle bound-
aries caused by C0 interpolations.

In the next sections, we will show how Voronoi
diagrams or Delaunay triangulations can be used in
the sampling and reconstruction of adaptively sam-
pled images.

Incremental Construction

There are various algorithms for the construction
of Voronoi diagrams, but, in this application new
samples must be added incrementally to an existing
structure. The addition of each sample should be
a quick process that does not interfere, as much as
possible, with the overall speed of the display.

The addition of a point to a Voronoi diagram is
a local operation, although it may a�ect the entire
diagram in a worst case scenario. On the average, for
randomly distributed points, it can be shown that a
Voronoi polygon has only six sides, or equivalently,
that each vertex of a Delaunay triangulation has six
incident edges (Sibson, 1978). Any part that has to
be redisplayed is also limited, by the same principle.
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Figure 2: Levels of a multiresolution triangulation and their di�erence sets.

There are algorithms for incremental construction of
Voronoi and Delaunay tesselations; a complete im-
plementation is presented in (Lischinski, 1994).

Multiresolution Representation

The multiresolution representation is an extension
of the basic Delaunay triangulation to a pyramidal
data structure (Floriani, 1989). The idea is to com-
pute di�erence sets between each level Li and the
�ner level Li+1, each level adding a certain number of
samples to the previous level. Levels can be seen con-
ceptually as complete triangulations, although they
are not stored as such: to construct any level Lk, we
start from L0, and apply k patches sequentially.

A di�erence set Di consists of the triangles of
Li that are not in Li+1. A pyramid is contructed
by linking each triangle t in Di to all the triangles
in Li+1 that intersect t. A pyramid for the levels in
�gure 2 is shown in �gure 3.

Our representation of multiresolution images is
a simple extension of that for point sampled images,
obtained by the addition of a set of dividers that split
the samples in levels. This can be done by indicating
the number of samples for each level of detail. If ni
is the number of samples for the ith level and sj is
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Figure 3: Links in a Delaunay pyramid.

the jth sample, a multiresolution image f� can be
described as

f� = fhsji; hniig; sj = (pj ; f(pj)); pj 2 U:

Each level is, then,

Si = hsni�1+1; : : : ; snii:

Alternatively, we can say that

f� = hS1; S2; : : : ; Smi

This sequence of samples can be used to con-
struct a Delaunay pyramid as follows. We start from
an empty triangulation, which we call L0, and ap-
ply an incremental Delaunay algorithm to add all
the samples in S1 to L0. By de�nition, D0 is empty.
We proceed by applying the incremental algorithm
to add all the samples in S2 to L1 which will result
in L2 (see �gure 2). The incremental algorithm can
easily determine D1, which is essentially composed
by the triangles modi�ed at that step. This process
is repeated until we reach the mth level.

Antialiasing

In the previous discussion, the samples in the
�ner levels of the multiresolution image are simply
ignored in the coarser levels. We extend that tech-
nique so that all samples can be used to reduce the
aliasing in the coarser levels of the representation.
This corresponds to the idea of �ltering the �ner lev-
els before resampling them to the lower resolution.

This implies, however, that the color of the sam-
ples will be di�erent in di�erent levels. With the
�ltering technique we propose, in going from level
Li to Li+1 the only samples that change their color
are those adjacent in Li+1 to a sample in Si+1, i.e.,
those on the boundary of the di�erence set Di. Since
the �ltering is invertible, we do not need to change
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Figure 5: 2,000 samples reconstructed with constant color Voronoi cells.
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Figure 4: Region modi�ed by the addition of sj .

the representation of multiresolution images to ac-
count for more than one color for each sample. Only
the antialiased samples are stored at each level, and
when there is a change to a �ner level, the colors of
the neighbors of each new sample are �xed to remove
its inuence.

Our approach to antialiasing in the lower levels
is therefore a simple propagation of the color of each
sample in Si+1|they are not in Li|to its neigh-
bors which are in Li. Each sample sj 2 Si+1 is
considered individually. Let Bj be the set of points
on the boundary of the region that was modi�ed
by the addition of sj . In the example in �gure 4,
Bj = fa; b; c; d; eg. The samples in Bj will have their
color in the previous level Li modi�ed.

The propagation is based on the Euclidean dis-
tances dk from the sample sj to each of the samples
bk in Bj as follows:

b0k =
bk + wksj

1 + wk

; bk 2 Bj ;

where wk is

wk =
1

1+dkP
k

1

1+dk

:

5 Adaptive Sampling Strategy

To sample adaptively, it is necessary to devise a cri-
terion that determines where new samples may be
needed. We will start from a basic set of samples,
that can be just a few points that cover the domain
of interest of the image. The information necessary
to make further decisions will be based solely on the
current set of samples, as we assume that no other
information about the continuous image is available.

One way to decide where samples may be needed
is a simple stack, as proposed in (de Figueiredo,
1995) for sampling parametric curves. The stack is
initialized with the endpoints of the curve. The pair
at the top of the stack is probed to test if insert-
ing a new sample between them is actually neces-
sary. If the two samples and the probe are reason-
ably collinear, the probe is discarded and that sample
pair need not be considered again. Otherwise, two
new segments will be pushed onto the stack: one
containing the new sample and the last endpoint,
the other containing the �rst endpoint and the new
sample. Obviously, this process is not immune to
aliasing, and if applied for curves with localized high
frequency detail, it will fail to detect it. Note that
this scheme generates the samples in the order they
occur along the curve. In our case, we want to gen-
erate samples in the high frequency area �rst, which
corresponds to the use a breadth �rst strategy, or a
queue, instead of a depth �rst strategy.

This concept can be extended to a priority queue
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(a) (b)

Figure 6: 2,000 samples reconstructed with constant color Delaunay triangles.

that makes the perceptually more important areas of
the image be attacked �rst. We used a simple prior-
ity scheme that takes two factors into consideration:
the di�erence in color between adjacent samples, and
the size of cells. Between adjacent samples with high
di�erence in color, there is probably an image edge.
Large cells should be probed, too, since there is a
high probability that signi�cant detail was lost.

Using the Voronoi diagram or the Delaunay tri-
angulation to structure the samples, these criteria
can be easily evaluated. Each Voronoi edge corre-
sponds exactly to a pair of adjacent samples. If the
priority is evaluated as samples are added, and stored
at each Voronoi edge, the edges can be placed in the
priority queue. The �rst edge of the queue is then
probed repeatedly, possibly adding more edges to the
queue. Once an edge to be broken is selected, the
probe position will be chosen randomly between the
endpoints of the edge. The rationale behind this de-
cision is that endpoints of Voronoi edges are equidis-
tant from the neighboring samples, yielding a better
sample distribution.

6 Reconstruction from Irregular Samples

Reconstructing data from irregular samples is a prob-
lem of sparse data interpolation. There is an ex-
tensive literature on this subject, including methods
using high order interpolation schemes (Cendes and
Wong, 1987). Our concern here is more on speed
than on quality, since these goals are hard to achieve
simultaneously. The applications that motivated this
work require good speed in the incremental recon-
struction of images speci�cally for display.

The simplest form of reconstruction of irregu-
larly sampled images is actually based on Voronoi di-

agrams: each cell is �lled with the color information
of the sample that dominates it. A similar process
has been used for artistic results in (Haeberli, 1990).
Although the reconstructed image has discontinuities
that translate into arti�cial high frequencies, it can
be e�ciently displayed using hardware polygon �ll-
ing in the screen space to �ll each Voronoi cell. This
form of reconstruction is illustrated in Figure 5, that
shows an 800x800 image sampled at 2,000 positions
(0.3% of the �nal resolution).

Moreover, the addition of a new Voronoi cell
causes only the �lling of the newly created polygon,
as it does not alter the shape of any other cell be-
sides its neighbors. This is important in the refresh

Figure 7: 2,000 samples reconstructed with Gouraud
shaded Delaunay triangles.
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Figure 9: Gouraud reconstruction with progressive number of samples: 100, 240, 800, 2,000 and 8,200. The
last frame is a normal raster image with 90,000 samples.

of progressively displayed images, which will be also
incremental.

Another alternative is to �ll each triangle of the
dual Delaunay triangulation with a constant color.
Since each Delaunay triangle has three samples at
the corners, they must be averaged to yield a suitable
color for the triangle. Although this method is also
discontinuous, it yields a more blurred reconstruc-
tion, which seems adequately smoother. Since there
are much more Delaunay triangles than Voronoi cells
for a given set of samples, although the color infor-
mation of the samples is the same, it is more dis-

Figure 8: 15,000 samples reconstructed with
Gouraud shaded Delaunay triangles.

tributed in the Delaunay triangulation. Figure 6
shows the same 2,000 samples reconstructed with
constant color Delaunay triangles.

For improved results, a continuous reconstruc-
tion should be used. The simplest one is a linear
reconstruction, which yields a C0 continuous result.

A C0 image reconstruction can be implemented
by linearly interpolating the color values inside each
Delaunay triangle. Gouraud shading performs ex-
actly this type of interpolation, and is available in
standard 3D acceleration hardware. This means that
linearly interpolated triangles can be painted almost
as fast as at shaded triangles. Figure 7 shows again
the same 2,000 samples, reconstructed with Gouraud
shaded Delaunay triangles.

Although higher order reconstructions are def-
initely better, linear �ltering provides a quick, low-
error approximation that works well for progressive
quality re�nement (see �gure 9). At very low reso-
lutions, artifacts due to the linear interpolation are
clearly noticeable, but they tend to disappear at �ner
levels. This is especially true for synthetic images,
which can be well represented with such approxima-
tions (Velho and Alvarenga, 1990).

7 Conclusion and Future Work

We have presented a technique for the representation
of multiresolution images based on adaptive sam-
pling, and methods for their reconstruction that can
be performed quickly with hardware assistance.

The main applications of this technique are where
interactive feedback is needed, such as in interactive
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rendering and transmission of images. We have im-
plemented it as a quick, good quality preview mode
for a ray tracer, and we are working on a WWW
browser extension that allows the progressive decod-
ing of such images.

We are currently working on other forms of adap-
tive sampling heuristics, which take advantage of
knowing how the reconstruction will be performed.
This includes properties of linear interpolation, which
can be combined with estimates of the image deriva-
tives to yield representations with less error (Rippa,
1992), and attempts to align the discontinuities of
the reconstruction, i.e., the polygon edges, with those
of the continuous image.
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