
Tetra-Cubes: An algorithm to generate 3D isosurfaces based upon
tetrahedra

BERNARDO PIQUET CARNEIROz

CLÁUDIO T. SILVA * y
ARIE E. KAUFMAN *

IMPA–Inst. de Matem´atica Pura e Aplicadaz
Estrada Dona Castorina, 110

22460 Rio de Janeiro, RJ, Brasil
piquet@fluid.impa.br

Department of Computer Science*
Department of Applied Mathematics & Statisticsy

State University of New York at Stony Brook
Stony Brook, NY 11794-4400

fcsilva,ari g@cs.sunysb.edu

Abstract. We present thetetra-cubesiso-surface extraction technique.Tetra-cubesis similar to the well-
know marching-cubestechnique, but its basic building block consists of tetrahedral cells instead of cubes.
When the original cells are not tetrahedral cells, tetra-cubes converts them to tetrahedra. We show that our
technique is simpler than marching-cubes and does not have ambiguity configurations, leading to simpler
iso-surface generation. We advocate the use of tetra-cubes due to its simplicity of implementation and
generality.

Keywords

Isosurfaces, Marching-cubes, Tetrahedral cells, Scalar
fields.

1 Introduction

Many applications in industrial and scientific areas such
as computed tomography (CT) and magnetic resonance
(MR) in the medical field, and numerical simulations in
the field of petroleum extraction in deep sites, generate
3D scalar fields. These data must be presented to the sci-
entists in a suitable visual form in order to facilitate anal-
ysis, interpretatioan, and exchange of information. Vi-
sualization of 3D scalar fields is a necessary step even
during debugging large scientific applications. There are
several methods for the visualization of 3D scalar fields.
The two most common are direct volume rendering and
3D iso-surface extraction (see [3] for an overview of tech-
niques). In this paper we study iso-surface extraction
techniques.

The isosurface extraction problem consists of gener-
ating a polygonal representation for the implicit surface
f(x; y; z) = �, where� 2 R is the value of interest
in the scalar functionf : R3 ! R, which is usually
given by discrete samples. There are several methods to
generate isosurfaces [4, 5, 6, 7], a popular one being the

marching-cubes method [4]. Isosurfaces have a clear ad-
vantage over direct volume rendering when it comes to
interactivity. Once the models have been polygonized
(and simplified [9]; marching-cubes usually generates a
large number of triangles.), a hardware supported graph-
ics workstation can be used to speed up the rendering.
Isosurfaces also have some disadvantages, such as lack of
fine detail and flexibility during rendering (especially for
handling multiple transparent surfaces), and its binary de-
cision process where surfaces are either inside or outside
a given voxel tends to create artifacts in the data (there
is also anambiguityproblem in the marching-cubes tech-
nique, which has been addressed by later papers such as
[7]).

Our main reason for using 3D iso-surface techniques
in our work is its generality as opposed to direct volume
rendering. Volumetric data comes in a variety of formats,
the most common being cartesian or regular data (we are
using the taxonomy introduced in [11]). Cartesian data
is typically a 3D matrix composed of voxels (avoxelcan
be defined in two different ways, either as the datum in
the intersection of each three coordinate planes, or as the
small cube; either definition is correct as long as used
consistently), while the regular data has the same repre-
sentation but can also have a scaling matrix associated
with it. Irregular data is represented in several different

Anais do IX SIBGRAPI (1996) 205–210



206 B. PIQUET CARNEIRO, C. SILVA E A. K AUFMAN

ways, including curvilinear data, that is, data defined on a
warpedregular grid, or in general, one can be given scat-
tered (or unstructured) data, where no explicit connectiv-
ity is defined. In general, scattered data can be composed
of tetrahedra, hexahedra, prisms, etc. Our main interest
in this work is in tetrahedral grids. They have several ad-
vantages, including easy interpolation, simple represen-
tation (especially for connectivity information), and the
fact that any other grid can be interpolated to a tetrahe-
dral one (with the possible introduction of Steiner points
[8]). Among their disadvantages is the fact that the size
of the datasets tends to grow as cells are decomposed into
tetrahedra. In the case of curvilinear grids, for instance,
an accurate decomposition could make the cell complex
contain even six times as many cells (see [1] for six tetra-
hedra decomposition) or five times as many cells as in our
approach.

Our approach consists of a single iso-surface extrac-
tion technique, that uses tetrahedral cells as its building
block. For any other type of grid, aconverteris written
to take that grid format into a tetrahedral complex, which
can be used as input to our algorithm.

In the next sections we will introduce a very eas-
ily implementable alternative to the marching-cubes al-
gorithm called thetetra-cubesalgorithm. The tetra-cubes
algorithm explores the correlation among hexahedra and
tetrahedra to solve ambiguities found in the marching-
cubes algorithm and provides a very general and fast way
of creating isosurfaces.

2 Tetra-Cubes Algorithm

Following the idea in the marching-cubes algorithm, the
data is represented in slices where logical cubes are cre-
ated from eight adjacent pixels; each four from two adja-
cent planes.

The next step, consists of extracting tetrahedra from
the logical existent cubes (hexahedra), since the algo-
rithm uses the correlation among hexahedra and tetrahe-
dra. Each cube can be divided into a collection of five
tetrahedra, where the vertices of the tetrahedra coincide
with those of the original cubes.

Once the tetrahedra are created, the algorithm inter-
sects the surface with each tetrahedron in one group of
five tetrahedra and then moves on to the next collection
of tetrahedra, which was extracted from an adjacent hex-
ahedron. As in the marching-cube, in order to find the
intersection of a surface with a tetrahedron, we assign a
“1” to a tetrahedron’s vertex if the data value at the ver-
tex exceeds or equals the value of the isosurface we are
constructing, which represents the vertices that are inside
or on the surface. The vertices of the tetrahedra with val-
ues below the surface are assigned a “zero” value and are
considered outside the surface. Thus, the edges of the
tetrahedron which have a vertex inside the surface and

the other outside are intersected by the surface. This fact
allows us to find the topology of the surface within the
tetrahedron in a binary manner. Since there are four ver-
tices in each tetrahedron, and two possible values for each
of them, there are exactly24 = 16 ways a tetrahedron can
be intersected by a surface, including the two cases where
a tetrahedron is completely inside or outside the surface,
thus, no edge is intersected.

However, using symmetry one is able to narrow down
these cases to only three (see Figure 1).

Case 1Case 0 Case 2

Figure 1:Reduced possible tetrahedron’s intersections.

With these three cases, we create a table to look
up surface-edge intersections, where the table contains
the edges intersected for each case. Still following the
marching-cubes idea, we create an index for each case,
based on the state of the vertex. Thus, each vertex is
represented by a binary position in this index, which de-
scribes the case we are treating.

This index is used as a pointer to an edge table that
gives all edge intersections for a given tetrahedron con-
figuration. Using the index to find which edge the sur-
face intersects, we use linear interpolation to place the
intersection point along the edge. Finally, once the in-
terpolation is done for all the tetrahedron edges, the tri-
angle contained in the surface is created connecting all
the intersection points within this cell. The same task is
repeated, cell by cell, generating the complete isosurface.

3 Grid Connection

Due to the implicit symmetry of the new basic cells used,
the tetrahedra, a problem with the connection among the
collections of five tetrahedra extracted from neighboring
hexahedra arises. This problem arises from the fact that
adjacent tetrahedra in different adjacent hexahedra must
share identical faces with identical edges and vertices.
This problem does not occur if the same collection of
tetrahedra is extracted from adjacent cubes (Figure 2).

Figure 2:Erroneous Connection among adjacent cubes.

In order to avoid this erroneous situation, we have

Anais do IX SIBGRAPI, outubro de 1996



TETRA-CUBES: AN ALGORITHM TO GENERATE3D ISOSURFACES BASED UPON TETRAHEDRA 207

created a new collection of tetrahedra to use in adjacent
cubes. This new collection is obtained by a ninety de-
grees rotation of the previous one. In other words, we
have implemented a“zig-zag”, or a “chess-table config-
uration” alternating the collections of tetrahedra in the
three axes directions to avoid this problem (Figure 3).

Figure 3:Zig-zag connection.

4 No Ambiguities

The binary approach used to distinguish the cases leads
to some ambiguities in the marching-cubes implementa-
tion. This does not occur in the implementation of the
tetra-cubes algorithm due to the geometrical differences
between the hexahedron and the tetrahedron, as we can
see by comparison in Figure 4, which depicts the same
ambiguity case in the two different basic cells.

(a) (b) 

Figure 4: (a) Example of two possible surfaces within a
cube, based upon the same two “black” vertices, which
defines an ambiguity. (b) The related case described on
figure (a) using tetrahedra as base cell. No ambiguity
occurs, only one surface is possible.

Since no ambiguity is found using tetrahedra as ba-
sic cells, a fast implementation for the marching-cubes al-
gorithm may be accomplished combining the marching-
cubes and the tetra-cubes algorithms. Cubes would be
used as basic cells, keeping track of the “chess-color” of
the cubes. Once an ambiguity is found, the tetra-cubes
algorithm could be used to intersect the surface with this
specific problematic cube, after dividing it into the right
collection of five tetrahedra. The marching-cube algo-

rithm would be applied to all other non-problematic hex-
ahedra. Using this idea, the tetra-cube algorithm provides
a consistent and elegant rule for resolving the ambiguities
present in the marching-cube algorithm. (It is important
to note that no ambiguity exists if we consider the lin-
ear interpolation as calculated with respect to the tetrahe-
dra. See [12] for a technique that handles the case where
the interpolation is performed with respect to the original
cubes.)

Irregular Grid Approach: Unlike the marching-
cube approach that receives as data only the density val-
ues, implicitly assuming a regular grid of cubes, our ap-
proach not only receives the density values for each pixel,
but also the 3D coordinates of each pixel. This approach
does not assume a regular grid; in fact, it creates a grid of
irregular tetrahedra, since the coordinates read from the
data may be completely irregular. Thus, the tetra-cubes
algorithm receives as data the coordinates of each pixel,
which may be completely irregular, and it is still able to
generate the irregular tetrahedron grid. These irregular
coordinates are then used by the algorithm as the coor-
dinates of the irregular tetrahedron’s vertices and, based
on these vertices, the tetra-cubes algorithm generates the
high resolution 3D isosurface of the irregular grid.

5 Implementation Details

5.1 Look up Tables

The first implementation aspect to be analyzed is the look
up tables.

Pattern Tables: This table establishes the relation
between the value of the binary index found using the ver-
tices’ status and the pattern in the three possible symmet-
ric cases. The table is implemented as a one-dimension
array.

Edge Tables: These tables contain two indices for
the array of vertices. These two vertices are the end ver-
tices for the edge being intersected by the isosurface. There
is one edge table for each tetrahedron configuration. Since
within each tetrahedron we have seven edges and each
edge has two end vertices, these tables are 7 x 2 matrices.

Case Tables: These tables contain the intersected
edges for each of the three symmetric cases. They are im-
plemented as two dimensional matrices whose size varies
with the number of cases handled in each table. The im-
plementation also uses auxiliary tables called “caseindex”,
which are just pointers to the right index in the “casesedges”
tables. The usage of the tables is explained in the next
section.

5.2 Code

The code is structured and divided in four major parts:
Data input: These are the functions related with the

reading of the input files (data), creation of data struc-

Anais do IX SIBGRAPI, outubro de 1996



208 B. PIQUET CARNEIRO, C. SILVA E A. K AUFMAN

tures, user interface and creation of the output file.
Extraction of tetrahedra: For each logical cube

(hexahedra), the cube’s vertices are used as the tetrahe-
dron’s vertices. In this way, each group of four different
vertices in the cube is used to represent one tetrahedron.
In Figure 5, for instance, vertices V1, V2, V4 and V5
represent one tetrahedron.

V1 V2

V3
V4

V5 V6

V7V8

Figure 5:Relation cube (hexahedron) - tetrahedron.

Accessing the tables:Once the tetrahedra are ex-
tracted, the density value on each vertex is used to gen-
erate the binary index for each tetrahedron; this index
is used as the index in the “patterntable”. This table
then will map one of the three symmetric cases. Know-
ing exactly which case we are treating now, we use the
“casesindex” tables to find the index of the current case
in the “casesedges” tables. The “casesedges” tables
map the edges intersected by the isosurface and finally,
the informations provided by the “edgestables” are re-
trieved to find the edges’ vertices which will be used in
the linear interpolation, in order to find the exact point of
intersection along the edge.

Triangles creation: At the end, for each tetrahe-
dron, the triangle contained in the isosurface is created
and sent to the output. Then, the isosurface can be vi-
sualized using the triangle model created for the specific
function/density value.

6 Results

We have tried to run tetra-cubes on a variety of inputs,
including both regular and irregular grids. See Figures 6,
7 and 8 for images of iso-surfaces.

The table below shows the clock time taken to gen-
erate the isosurface models for each of the results shown
in this paper. They were measured for the function den-
sity value 128 using an SGI Indigo2 machine (Table 1).

7 Conclusion and Future Work

It is interesting to try comparing our method with other
approaches published in the literature. Relative to Marching-
Cubes: (1) our method is simpler to implement due to the

Table 1: Clock time to generate the isosurfaces using
tetra-cubes on a SGI Indigo 2 machine.

Dataset # tetrahedra # polygons Time(sec)
Sphere 1,642,545 73,580 151
Bulb 32,400 7,258 12
Terrain 87,120 15,228 26
House 2,744,280 201,052 564
Blunt 187,395 5,297 9

smaller number of cases; (2) it does not have the ambigu-
ity problem, and always generates correctC0 functions
representations. Recently, Zhou et al [12] showed that the
use of tetrahedra still does not solve ambiquities, but in
their paper they assume the trilinear interpolation is per-
formed on the cube, while the isosurface sampling is per-
formed on the tetrahedra. In our method we perform the
interpolation and sampling in the tetrahedra, thus avoid-
ing this problem.

One possible shortcoming of our approach is the large
number of triangles generated. Fortunately, this can be
solved with simplification techniques, such as decimation
[9]. By running a topology preserving simplification al-
gorithm on the output of tetra-cubes, we can remove the
redundanttriangles. This is also necessary when using
other isosurface generation techniques, such as marching-
cubes.

In summary, we have presented an extension of the
marching-cubes algorithm, which works with tetrahedra-
based grids. The tetra-cubes algorithm may be applied to
irregular grids, as we have shown in the case of a curvi-
linear grid. It can also be used as a consistent and elegant
way of solving ambiguities in the marching-cube algo-
rithm.

For future work, we would like to explore further
optimizations of our algorithm. Possibly we could try
to incorporate the technique presented in [10] into our
code. Another area of interest is the generation offat iso-
surfaces, defined over an interval, and not just a single
value (e.g., [2]). Finally, because decimation is expen-
sive, it would be interesting to add some form of adaptive
generation of triangles (such as [6] did for the case of
marching-cubes) directly to our method.

Acknowledgments

Bernardo Piquet was supported by RHAE-Brazil during
his MS work at Stony Brook. C. Silva is partially sup-
ported by CNPq-Brazil under a Ph.D. fellowship, by San-
dia National Labs, and by the National Science Foun-
dation (NSF), grant CDA-9626370. A. Kaufman is par-
tially supported by NSF (CCR-9205047, DCA 9303181

Anais do IX SIBGRAPI, outubro de 1996



TETRA-CUBES: AN ALGORITHM TO GENERATE3D ISOSURFACES BASED UPON TETRAHEDRA 209

and MPI-9527694) and by the Dept. of Energy under the
PICS grant. We would like to thank the members of the
Visualization Lab at Stony Brook for the support given to
this work.

References

[1] Eugene Allgower and Kurt Georg. Simplicial
and continuation methods for approximating fixed
points and solutions to systems of equations.SIAM,
22(1):151–158, 1980.

[2] Issei Fujishiro, Yuji Maeda, and Hiroshi Sato. Inter-
val volume: A solid fitting technique for volumet-
ric data display and analysis. InIEEE Visualization
’95, pages 151–158. IEEE CS Press, 1995.

[3] Arie E. Kaufman. Volume Visualization. IEEE
Computer Society Press, 1990.

[4] William E. Lorensen and Harvey E. Cline. March-
ing cubes: A high resolution 3D surface construc-
tion algorithm. Computer Graphics (SIGGRAPH
’87 Proceedings), volume 21, pages 163–169, July
1987.

[5] James V. Miller, David E. Breen, William E.
Lorensen, Robert M. O’Bara, and Michael J.
Wozny. Geometrically deformed models: A method
for extracting closed geometric models from vol-
ume data. Computer Graphics (SIGGRAPH ’91
Proceedings), volume 25, pages 217–226, July
1991.

[6] Heinrich Muller and Michael Stark. Adaptive gen-
eration of surfaces in volume data.The Visual Com-
puter, 9(4):182–199, January 1993.

[7] Gregory M. Nielson and Bernd Hamann. The
asymptotic decider: Removing the ambiguity in
marching cubes. InVisualization ’91, pages 83–91,
1991.

[8] F. P. Preparata and M. I. Shamos.Computational
Geometry: An Introduction. Springer-Verlag, New
York, NY, 1985.

[9] William J. Schroeder, Jonathan A. Zarge, and
William E. Lorensen. Decimation of triangle
meshes.Computer Graphics (SIGGRAPH ’92 Pro-
ceedings), volume 26, pages 65–70, July 1992.

[10] Han-Wei Shen and Christopher Johnson. Sweeping
simplices: A fast iso-surface extraction algorithm
for unstructured grids. InIEEE Visualization ’95,
pages 143–150. IEEE CS Press, 1995.

[11] Don Speray and Steve Kennon. Volume probes:
Interactive data exploration on arbitrary grids.
In Computer Graphics (San Diego Workshop on
Volume Visualization), volume 24, pages 5–12,
November 1990.

[12] Yong Zhou, Weihai Chen, and Zesheng Tang. An
elaborate ambiguity detection method for construct-
ing isosurfaces within tetrahedral meshes.Com-
puter & Graphics, 19(2):355–364, 1995.

Anais do IX SIBGRAPI, outubro de 1996



210 B. PIQUET CARNEIRO, C. SILVA E A. K AUFMAN

(a) (b)

Figure 6:(a) 3D Sphere 70 X 70 X 70 grid. (b) 3D Bulb Model 19 X 21 X 19.

(a) (b)

Figure 7:(a) 3D Terrain Model 34 X 17 X 34. (b) 3D House Model 127 X 67 X 67.

Figure 8:3D Blunt Model 40 X 32 X 32 - Curvilinear Grid.

Anais do IX SIBGRAPI, outubro de 1996


