
Approximate Arc Length Parametrization

MARCELO WALTER1 ,2 AND ALAIN FOURNIER1

fmarcelow|fournierg@cs.ubc.ca

1Department of Computer Science
The University of British Columbia
2366 Main Mall - Vancouver, B.C.

CANADA - V6T 1Z4

2UNISINOS - Centro de Ciências Exatas
Av. Unisinos 950 - São Leopoldo, RS

BRAZIL - 93022

Abstract. Current approaches to compute the arc length of a parametric curve rely on table lookup schemes.
We present an approximate closed-form solution to the problem of computing an arc length parametrization
for any given parametric curve. Our solution outputs a one or two-span Bézier curve which relates the length
of the curve to the parametric variable. The main advantage of our approach is that we obtain a simple con-
tinuous function relating the length of the curve and the parametric variable. This allows the length to be
easily computed given the parametric values. Tests with our algorithm on several thousand curves show that
the maximum error in our approximation is 8.7% and that the average of maximum errors is 1.9%. Our al-
gorithm is fast enough to compute the closed-form solution in a fraction of a second. After that a user can
interactively get an approximation of the arc length for an arbitrary parameter value.

Keywords: arc-length parametrization, approximation, curve design, Bézier parametric curves.

1 Introduction

For a general parametric curve C(t), an arc length pa-
rametrization C(s) is such that the length l between two
points on the curve C(s0) and C(s1) is l = s1 � s0.
In practice any linear relationship between l and s will
be called an arc-length parametrization since in this case
the curve is easily re-parameterized. For most formula-
tions used in curve design, the length of the curve is not
linearly related to the values of the parameter. In many
applications of parametric curves it is useful or essential
to be able to relate easily the parametric values to the arc
length, and reciprocally. A typical example is in computer
assisted animation systems where the animator defines a
flexible object (such as a shoe-lace, a rope, etc..) whose
length is to be kept constant. Arc length parametrization
is also needed to compute the speed along curves, such as
motion paths used in animation. In this case as well a fast
approximate solution is a very useful one.

It is important to note that in most cases we do not
necessarily need an arc-length parametrization, but just
an easy way to relate parameters and length. We can ex-
press how the length of a given curve changes with the
parametric variable with a graph like the ones in Figure 1.
In (a) the curve being considered is parameterized accord-
ing to arc-length since the length is proportional to t, the
parametric variable. In (b) the curve is not parameterized

according to arc length. The graphs in Figure 1 also give
us the clue on how to determine arc-length or to establish
an arc-length parametrization for any given curve.

t

s

(a) Arc length parametriza-
tion.

t

s

(b) Non-arc length pa-
rametrization.

Figure 1: Types of parametrization. s is the curve length
and t is the parametric variable.

If we are able to construct the curve which describes
how the length varies with the parametric variable, we can
determine from that curve an arc length parametrization,
or from any pair of values of t deduce the length between
the corresponding points. Our goal when developing this
work is related to the more general problem of keeping the
length of a curve constant while it is being manipulated.
Having a fast way to relate the length to the parametric

Anais do IX SIBGRAPI (1996) 143–150

144 M. WALTER, A. FOURNIER

variable is a first step towards that goal.
In this paper we present an approach where we ex-

press the length of a given parametric curve as a function
of the parametric variable using a cubic polynomial ex-
pressed as a one- or two-span Bézier curve. Arc length is
a strictly monotonically increasing function of t for any
regular parametrization, that is, when ds=dt 6= 0, there-
fore we can assume that a one or two-span Bézier curve
has enough flexibility to represent a large range of pos-
sibilities for “length versus t” curves with small or null
errors. Our tests approximating cubic parametric curves
will indicate that this assumption is true. Besides, our
tests will also show that the average and maximum errors
are small enough for our method to be useful in a large
range of applications.

Comparing to previous approaches ours has also the
advantage of less computation since we only need to eval-
uate the curve length at a fixed number of points (at most
7, when the arc length is computed for cubic paramet-
ric curves). Once we have these values we compute the
control vertices which define the “length versus t” Bézier
curve. The approximation is interpolatory in the sense
that we force it to agree with the function being approxi-
mated at particular points and from these points we derive
the Bézier approximation. Ultimately, we developed a
closed-form solution to approximate the arc length of any
parametric curve, which is presented in Section 3 of the
paper. Once we have the variation of the length against
the parametric variable expressed as a continuous curve,
it makes subsequent arc length calculations only a matter
of computing one point of a Bézier curve, a constant time
operation.

Since we assume that we can always approximate the
curve “length versus t” as a one or two-span Bézier curve,
we have an intrinsic associated error. We show in Sec-
tion 5 that the error magnitude is small enough for many
practical applications. Section 5 also presents the results
we achieved when running the algorithm on 3 different
sets of two-dimensional cubic parametric curves. The last
section presents some comments on possible extensions
of this work and on how to achieve smaller errors.

2 Previous Work

The general problem can be stated as follows. From dif-
ferential geometry, we know that the arc length for a para-
metric curve in <3 is given by [fari90]:

s(t) =

Z t

0

p
_x(t)2 + _y(t)2 + _z(t)2 dt (1)

where the dots denote derivatives with respect to t. This
formula when evaluated gives us the length as a func-
tion of t. The direct problem computes s(t) for a given
t. Analytic solutions for these kind of integrals only exist

for very simple functions of low degree (at most 2). Nu-
merically, this integral can be computed using Romberg-
integration technique [rals65, pres92], but the cost of
this numerical procedure is rather high (remember that in
cases of practical interest x(t), y(t) and z(t) are cubic
polynomials in t). In [grav95] an approximation for s(t)
is computed by adaptive subdivisionof the curve. The ap-
proximated length is an average of the polygon length (the
sum of the sides of the control polygon as defined by the
control vertices) and cord length of the curve. This solu-
tion is limited to Bézier curves and cannot be used to solve
the inverse problem.

An interesting related but different problem is to find
a parametric curve which satisfies an arc length constraint,
that is, has a specific arc length. Roulier [roul93] presents
a solution for this problem where a Bézier curve of spec-
ified arc length is computed, given the two end points,
two corresponding unit vectors and a positive number
for the desired length. The problem is reduced to solv-
ing numerically a single non-linear equation in one vari-
able. On the same problem Jou and Han [jou92] build a
minimal-energy spline subject to a desired arc length and
some other end constraints. Their energy function is re-
lated to the curvature of the curve. Fiume [fium95] de-
veloped a new class of blending functions called isomet-
ric polynomial which allow the manipulation of paramet-
ric curves with an arc length constraint. To meet this goal
at nearly interactive speeds, he approximates equation (1)
by a quadrature-like scheme where the square root is ap-
proximated by a power series of an arbitrary low degree
polynomial in s.

The inverse problem, determining t for a given
length S, can be solved by finding the root of an equation
of the type:

s(t) � S = 0 (2)

This can be solved by Newton-Raphson technique, as for
instance in [shar82].

Another class of solutions to the inverse problem
uses table lookup schemes. The idea is to create a table
where each entry is a pair (ti; si) where si is the arc length
at parameter value ti. Once this table is built subsequent
arc length determinations use the table to find the interval
in which is the desired arc length. That means the table is
searched for values si = s(ti) and si+1 = s(ti+1) such
that si � S � si+1. The desired t lies between ti and
ti+1. The approaches then differ on how these values are
used.

In [gira87] for example, the desired t is computed
by linearly interpolating ti and ti+1. A more refined so-
lution is presented in [guen90] where the table entries
are adaptively computed according to a desired accuracy.
Newton-Raphson is then used to find the root of equa-
tion (2) and the table values are used to narrow down the
root search.

Anais do IX SIBGRAPI, outubro de 1996

APPROXIMATE ARC LENGTH PARAMETRIZATION 145

Table lookup approaches heavily depend on the orig-
inal number of table entries and for a given accuracy
it is not clear how many entries are needed. Besides,
the desired solution is achieved after evaluating a fairly
large number of curve lengths, which is expensive since
it means computing equation (1) whereas in our solution
a fixed number of evaluations is needed. The exact num-
ber of evaluations in our algorithm depends on the degree
of the parametric curve for which we are computing the
approximation. For a cubic curve we only need to com-
pute s(t) for 7 specific values of t.

Our solution is presented for the direct problem, that
is, given t find s(t). However, an approximate solution to
the inverse problem could also be computed by reversing
the roles of t and s(t) in the proposed algorithm.

3 The Algorithm

Let Qm(t) = (x(t); y(t); z(t)) be a parametric curve of
degree m in <3 with 0 � t � 1 � <. We want to com-
pute a length curve, that is, a 2D parametric curve which
express how the length s(t) of Qm(t) varies with t. We
will call this curve L(t) = (t; s(t)), where s(t) is given
as [fari90]:

s(t) =

Z t

0

k _Qm(t)kdt

and
k _Qm(t)k =

p
_x(t)2 + _y(t)2 + _z(t)2

For simplicity we will use a normalized version ŝ(t)
of s(t) such that ŝ(t) = 1 for s(1). The corresponding
length curve is then L̂(t) = (t; ŝ(t)). For now we will as-
sume that L̂(t) can be adequately approximated by a cubic
polynomial represented as a one-span Bézier curve. Later
on we review this assumption and expand the solution for
cases where we need more than one span. The problem of
finding an approximation for L̂(t) can now be formulated
as follows:

Given a parametric curve Qm(t), find the 4 control
vertices Vi; i = 0; 1; 2; 3 which define a Bézier curve
L̂B(t) of degree 3 such that this curve fits as an approxi-
mation for L̂(t).

Figure 2 illustrates our problem.
From the way we formulated the problem, we have

two control vertices already defined V0 = (0; 0) and V3 =
(1; 1), since it is reasonable to impose1 that ŝ(0) = 0 and
ŝ(1) = 1. Our problem reduces therefore to the prob-
lem of computing V1 and V2. Expressing L̂B(t) in matrix
form we have:

L̂B(t) = TBV (3)

1Because of this imposition the approximation might not be optimal
in a minimax sense.

V

V

V

V0

1

2

3

t

1

1

s(t)^

Control Polygon of L (t)

L (t)

L(t)

B

^

^

 ^

B

Figure 2: Length against t curve: real (dotted line) and
approximation (solid thinner line).

where T = [t3 t2 t 1], B =

2
664
�1 3 �3 1
3 �6 3 0
�3 3 0 0
1 0 0 0

3
775 V =

2
664

0
V1
V2
1

3
775. L̂B(t) is a two-dimensional curve. Let xL̂B(t)

and yL̂B (t) be thex and y components of L̂B(t). We have
to compute now V1 = (V1x; V1y) and V2 = (V2x; V2y).

3.1 Computing V1x and V2x

Recall that L̂B(t) is an approximation for L̂(t) =
(t; ŝ(t)), therefore the x-component of L̂B(t) should
equal t, that is, xL̂B (t) = t. This requirement char-

acterizes L̂B(t) as a functional curve [fari90] and from
the linear precision property of Bézier curves follows that
V1x = 1

3
and V2x = 2

3
.

3.2 Computing V1y and V2y

Now we can compute V1y and V2y. In order to do that we
need the 2 values of the curve length along the curve for
V1x and V2x just computed. We will assume now that we
know the values for ŝ(1=3) and ŝ(2=3). Later on we ex-
plain how we calculate these two values. From equation 3
follows:

V1y =
18ŝ(1=3)� 9ŝ(2=3) + 2

6
(4)

V2y =
�9ŝ(1=3) + 18ŝ(2=3)� 5

6
(5)

In summary, in order to compute the approximation to the
real length versus t curve, we need to compute the actual
curve length at 3 points along the curve, respectively at
t = 1=3, t = 2=3 and t = 1, i.e., s(1=3), s(2=3) and s(1).
Having these 3 values we can compute ŝ(1=3) = s(1=3)

s(1)

and ŝ(2=3) = s(2=3)

s(1)
.

Anais do IX SIBGRAPI, outubro de 1996

146 M. WALTER, A. FOURNIER

There are different quadrature methods to compute
these lengths at specific t values. A quadrature formula
gives us an approximation to the definite integral of a
function f(t) as a linear combination of values of f(t):

Z b

a

f(t)dt =
nX
j=1

Hj f(aj) +E (6)

where E is the absolute error in the approximation which
includes the derivatives terms of f(t) and Hj are spe-
cific weights. When equation (6) is computed with the
aj given as zeros of the Legendre polynomial of degree
n we call the quadrature a Legendre-Gauss quadrature
formula or simply Gaussian quadrature. These abscissas
and weights are tabulated in many numerical books such
as [rals65].

We know from numerical literature [rals65] that if
we are not limited, by the way the problem is formulated,
to equally spaced points when computing the integral, we
may benefit from Gaussian quadratures which can give us
higher accuracy than that of Newman-Cotes quadratures2

if the integrand is smooth in the sense of being well ap-
proximated by a polynomial [pres92] which is the case in
our problem.

At the same time since we have in mind applications
where L̂B(t) must be computed in real-time, it is impor-
tant to compute it in the fastest and most accurate way
possible. Thus, Gaussian quadratures are natural can-
didates in our case since they have slightly more favor-
able error terms than Newton-Cotes formulas for the same
small number of points [rals65].

The number n of points used to compute the quadra-
ture is directly related to the accuracy of the solution. For
n points the highest degree polynomial for which E can
be made null is 2n� 1. For n = 3, for example, we have
the following closed-form solution for computing s(t) at
a specific b value:

s(b) �
b

2

�
5

9
k _Qm

�
1:774597b

2

�
k+

8

9
k _Qm

�
b

2

�
k

+
5

9
k _Qm

�
0:225403b

2

�
k

�
(7)

and
k _Qm(t)k =

p
_x(t)2 + _y(t)2 + _z(t)2

We show in Section 5 the effect of n on the accuracy of
our approximation.

3.3 Approximating L̂B(t) with more than one span

We assumed earlier that a one-span Bézier curve was
enough to adequately approximate L̂(t). This assumption

2A quadrature formula in which the abscissas (i.e., the points at
which the integrand is evaluated) are constrained to be equally spaced
is called a Newton-Cotes quadrature formula [rals65].

is limited by the fact that a one-span Bézier curve can have
at most one inflexion point and in general s(t) will have
more than one inflexion point. In order to address this is-
sue we have to restrict ourselves to some cases of practical
interest, for instance, when the curves for which we need
the arc length approximation are cubic. In this case we
can assess qualitatively the behaviour of s(t) and use an
adaptive scheme to compute an approximation. The crite-
rion used to assess s(t) is the number of inflexion points it
has. The number of inflexion points of a function gives us
some informationabout the general behaviour of the func-
tion and it is therefore a good candidate to drive an adap-
tive solution such as ours. For a cubic parametric curve,
s(t) will have at most 3 inflexion points since its second
derivative is of degree 3, as demonstrated below. The first
and second derivatives of s(t) (equation 1) with respect to
t are:

_s(t) = (_x(t)2 + _y(t)2 + _z(t)2)1=2

�s(t) =
1

2

2 _x(t)�x(t) + 2 _y(t)�y(t) + 2 _z(t)�z(t)

(_x(t)2 + _y(t)2 + _z(t)2)1=2
(8)

The numerator of equation (8) is a cubic equation in
twith at most 3 real roots which are the inflexion points of
s(t). Our adaptive solution uses the number of inflexion
points as input information to decide on how many Bézier
spans we need to adequately approximate s(t). The valid
inflexion points in our case are the real roots in the interval
(0; 1). Our solution will either use one or two spans. For
curves where s(t) has zero or one inflexion point we com-
pute the approximation as a one span cubic Bézier fol-
lowing the algorithm described in subsections 3.1 and 3.2.
For curves where s(t) has 2 or 3 inflexion points we com-
pute the approximation L̂B(t) as a two-span cubic Bézier
curve. In order to decide where to “break” the two spans,
we use the values of t which define the inflexion points
of s(t). When it has two inflexion points at t1 and t2, the
first span approximates ŝ(t) for 0 � t < (t2 + t1)=2 and
the second span for (t2 + t1)=2 � t � 1. When s(t)
has 3 inflexion points at t1, t2, and t3 the first span ap-
proximates ŝ(t) for 0 � t < t2 and the second span for
t2 � t � 1. Since s(t) is a continuous function we have
a positional constraint at the t value where the two spans
meet. One important observation is that the approxima-
tion is only used to control the original curve and in par-
ticular a derivative discontinuityin L̂B(t) does not mean a
discontinuity in the original curve(s). The computational
cost of using two spans is exactly double the cost of com-
puting only one, plus the cost of computing the number of
inflexion points3 for s(t).

3Note that we do not constrain the approximation to have the same
inflexion point(s) as s(t) itself. This can be added as a constraint but it
is not clear whether it would reduce the error more than by introducing
some other constraints.

Anais do IX SIBGRAPI, outubro de 1996

APPROXIMATE ARC LENGTH PARAMETRIZATION 147

t

s(t)
^

t 1 t t2 3

(a) One Span (error = 13.6%)

t

s(t)
^

t 1 t t2 3

(b) Two Spans (error = 3.9%)

Figure 3: Difference in the approximating curve when us-
ing one or two spans. Dotted line is L̂(t) and the solid line
is L̂B(t). The vertical dotted lines are the inflexion points
of s(t).

In Figure 3 we can see an example where s(t) has
3 inflexion points (t1, t2, and t3). In Fig. 3(a) L̂B(t) has
only one span and in Fig. 3(b) it has two spans. The de-
crease in error is very significative, of order 3. We explain
how the error is being computed in the next section.

3.4 Summary of the algorithm

Here is a summary of our algorithm to compute L̂B(t) as
a one or two-span Bézier curve using 3 points Legendre-
Gauss quadrature for cubic parametric curves:

1. Find the number of inflexion points for s(t)

2. If the number of inflexion points is 0 or 1:

(a) Compute s(1=3), s(2=3) and s(1) using equa-
tion (7)

(b) Compute ŝ(1=3) = s(1=3)

s(1)
and ŝ(2=3) =

s(2=3)

s(1)

(c) Compute V1y and V2y using equations (4) and
(5). The 4 control vertices which define L̂B(t)
are then:

V0 = (0; 0) V1 = (1=3; V1y)

V2 = (2=3; V2y) V3 = (1; 1)

3. Else s(t) has 2 or 3 inflexion points:

(a) If s(t) has 2 inflexion points at t1 and t2. Com-
pute tmid = (t2 + t1)=2;

(b) Else s(t) has 3 inflexion points at t1, t2, and t3.
Do tmid = t2;

(c) tmid is the point at which the two spans meet.
Apply the algorithm described for one-span
above twice, when 0 � t < tmid and when
tmid � t � 1.

If we are using more than 3 points to compute the quadra-
ture, the only difference in the algorithm described above
will be on step 2(a), where we compute the curve length
at specific t values.

4 Errors

It is important to distinguish between the two kinds of er-
rors present in our formulation. The first one is the in-
trinsic error associated with the numerical computation of
the Gaussian quadrature. We can make this error as small
as desired if we use enough points when computing the
quadrature. The biggern the smaller the error. Forn = 3,
for example, we have an associated error of:

E =

�
23(3!)2

6!

�2
2

7

fvi(�)

6!

Anais do IX SIBGRAPI, outubro de 1996

148 M. WALTER, A. FOURNIER

=
fvi(�)

15750
� 2 [�1; 1]

The second kind of error is the difference between
the real curve L̂(t) and the one computed using our al-
gorithm L̂B(t). There are many possible metrics to mea-
sure this error and the most appropriate one is possibly
connected to the specific application where the arc length
parametrization is necessary. To assess the adequacy of
our algorithm we are using a local metric defined as the
absolute difference between the real length and the com-
puted one as follows:

j L̂(t) � L̂B(t) j (9)

It is important to notice that this difference is already
relative in the sense that since we are using the normalized
version of the real length, the total length of the curve be-
ing considered is 1.

5 Results

In order to assess how well L̂B(t) is fitting L̂(t) we
tested our algorithm using 3 sets of 2D cubic Bézier
curves. It is important to note that our solution is not
limited to 2D curves and the tests could as easily be
done for any 3D parametric curves. In this case there
would be the extra cost associated with the addition of
a third dimension. The first two sets are the Bézier
curves which define 2 families (Cooper and Zurich) of
fonts (4 fonts per family) from Bitstream, Inc. Fig-
ure 4 shows one character from the Cooper family. The

Figure 4: Example of a Cooper font composed of 22
Bézier curves.

third set is a set of 3000 random Bézier curves we cre-
ated. Each curve in this set is described by its 4 con-
trol vertices in 2D. The 8 values were generated by in-
dependent calls to a uniformly distributed random gen-
erator number function described in [pres92]. The curve
depicted in Figure 8 for example has control vertices
defined by (6:885279; 0:753269),(9:738172;4:203904),
(1:734599; 8:224792), and (8:154818; 4:145680). These
test sets provided a reasonable challenge to our algorithm
since the range of curves they span is considerably large
for any design for practical purposes. Before using the
curves in the test sets we assessed them with respect to

how far they were from being already arc length parame-
terized. We measured js(t)�tj for t varying from 0 to 1 in
steps of 0:05 and kept the maximum value among subin-
tervals. For the random test set for example, the range
of values varied from 0:013059 to 0:438717, with an av-
erage of 0:1707. We considered these curves far enough
from being arc length parameterized to be useful in our
tests.

The maximum and average errors for our tests are
summarized in Table 1. Since we have 4 fonts per family,
we are only listing for each family the font which gener-
ated the largest error.

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of Curves

E
rr

or
 M

ag
ni

tu
de

3 points quadrature

10 points quadrature

Figure 5: Distribution of errors (jL̂B(t) � L̂(t)j) for the
random test set.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

100

200

300

400

500

600

700

800

Error Magnitude

N
um

be
r

of
 C

ur
ve

s

Figure 6: Histogram of errors for the random test set (10
points quadrature).

Errors
Test Set Cooper Zurich Random
number of curves 3401 1285 3000
max of set 0.060545 0.030641 0.087392
avg of max errors 0.002432 0.001708 0.019202
avg of averages 0.000946 0.000737 0.007405

Table 1: Errors for �t = 0:05, 10 points quadrature.

Anais do IX SIBGRAPI, outubro de 1996

APPROXIMATE ARC LENGTH PARAMETRIZATION 149

0 0.005 0.01 0.015 0.02 0.025 0.03
0

500

1000

1500

Error Magnitude

N
um

be
r

of
 C

ur
ve

s

Figure 7: Histogram of errors for the Cooper family font
set (10 points quadrature).

For each curve in each test set we first computed
L̂B(t) as presented in Section 3 of the paper. Then, we
made t vary from 0 to 1 in steps of 0:05 and computed the
error for each �t as presented in equation (9). We kept for
each curve only the maximum value among all t subinter-
vals.

The “true” value of the curve length, L̂(t), was com-
puted using Simpson’s rule with 1:0e�4 of fractional ac-
curacy. As we can see from the table, the errors for the
two font families are considerably small. The maximum
error of 6.1% for the Cooper family font, for instance,
would mean a difference of about 6 pixels in 100 pixels
and the average error would mean a difference of less than
half a pixel for 100 pixels. The errors for the random test
set were higher than those of the two family fonts as ex-
pected. The maximum error for this set was about 44%
higher than the maximum error for the font sets but still
the average error was only 1.9%. We believe that our ran-
dom test set gives an upper bound for the maximum error
associated with our algorithm.

In Figure 5 we have the errors for the random test set
sorted and plotted as a continuous curve. We can clearly
see the effect that the number of points used to compute
the quadrature has on the final errors. As expected, 10
points quadrature gives us a reasonable improvement over
3 points quadrature. We can see also that for 10 points
quadrature more than 2500 curves had errors smaller than
4%, that is, more than 83% of the curves in the set. Fig-
ure 6 shows the histogram of errors for the random test
set and Figure 7 for the worst case set from the Cooper
family font test (since that was the set with the highest er-
ror among the two families). Figure 8 shows the Bézier
curve from the random test set which had the maximum
error when we used 10 points for computing the quadra-
ture. In Figure 9 we show the computed approximation.
This is a typical case where our adaptive scheme for de-
ciding how many spans to use fails to adequately approxi-

mate the real arc length. There are cases where in spite of
the fact that s(t) has only one inflexion point, a two-span
Bézier would provide a better approximation. In that case
a good alternate strategy is to keep only one span, but to
constrain the curve to go through the inflexion point with
the tangent determined by ds

dt
at that point. A similar ap-

proach can be used for the three inflexion points case to
determine the two spans.

Figure 8: Curve from the random set for which the largest
error in the approximation was computed.

t

s(t)^

Figure 9: Length against t for curve in Figure 7. n = 10,
�t = 0:05. Error = 8:7%. The dotted line is L̂(t) and the
solid line is L̂B(t). The dotted vertical line indicates the
inflexion point of L̂(t).

6 Conclusions

We presented a closed-form solution to compute a cubic
2D Bézier curve which approximates how the length of
a given parametric curve is varying with the parametric
variable. This curve is important in applications where an
arc length parametrization is necessary, providing a sim-
ple way to relate the length with the parametric variable.
In this way our method gives a fast way to compute an
arc length parametrization, since once the length versus t
curve is computed it takes only a constant time to find the
parametric value associated with a given length and con-
versely. Our method presented a maximum error of 8.7%
and an average error of 1.9% for a test set of 3000 random
2D cubic Bézier curves. We tested the algorithm also us-
ing 8 sets of 2D cubic Bézier curves designed as character
fonts by Bitstream, Inc. Among all 8 sets the largest error
was 6.1% and the worst average error was 0.24%. The er-
rors were computed as the absolute difference between the

Anais do IX SIBGRAPI, outubro de 1996

150 M. WALTER, A. FOURNIER

real curve length and the approximated one. Although we
tested only Bézier curves the method does not depend on
the type of parametric curve studied. The random curves
used as test presented more irregularities than curves ac-
tually designed such as for the Bitstream fonts. In partic-
ular the random set included curves with cusps, loops and
stationary points.

This work has been done in connection with the
problem of keeping the length of a given curve constant
while the user is manipulating the curve and in this con-
text having a fast and accurate way to compute an arc
length parametrization is a first concern. The algorithm
is fast enough to compute the length versus t curve in real
time, i.e., while the user is manipulating a given paramet-
ric curve, our algorithm is fast enough to update the length
versus t curve in real time on a Silicon Graphics Indigo 2
workstation.

A possibly serious drawback is that our constraints
on L̂B(t) do not guarantee its monotonicity. Even though
this has not been a problem (no approximation was found
to be non-monotonic for the non-random curves) it would
be indicated to check for monotonicity or better to add
constraints to the approximation to enforce it.

We can achieve smaller errors basically in two dif-
ferent ways: computing the quadrature with more points
and use different ways to decide on how to select one or
two-spans for the approximation. Computing the quadra-
ture with more points is a very straightforward operation
and therefore the only consideration to be made is if we
are willing to pay the increase in computation time. As
for different criteria on when to use two spans instead of
one, there are a few issues to address. The first one is the
problem of automatically detecting when two-spans are
necessary, instead of one. We compute the number of in-
flexion points that s(t) has and make a decision based on
that. Our experience with the test sets have shown that
sometimes this criterion is too strict in the sense that it
forces a two-span approximation even when a one-span
would provide an approximation with roughly the same
error magnitude. A more flexible scheme using the inflex-
ion points as the points where we force the approximation
to agree with the function and its first derivatives could
provide smaller errors in some cases. There is a trade-
off between a general approach like we have now and a
more specialized one where the kind of approximation is
derived on a case by case basis.

Acknowledgments

The help of Avi Naiman and Bitstream, Inc. in provid-
ing the font families is gratefully acknowledged. The first
author gratefully acknowledges the financial support of
CNPq and FUNDEPE and wishes to thank Rob Walker
from UBC for valuable feedback on a first version of
this paper. We gratefully acknowledge the support of

the Canadian National Science and Engineering Research
Council through Research Grants.

References

[fari90] Gerald Farin. Curves and Surfaces for Com-
puter Aided Geometric Design. Academic
Press, 1990.

[fium95] Eugene Fiume. “Isometric Piecewise Poly-
nomial Curves”. Computer Graphics Forum,
Vol. 14, pp. 47–58, Jan 1995.

[gira87] Michael Girard. “Interactive Design of 3D
Computer-Animated Legged Animal Motion”.
IEEE Computer Graphics and Applications,
Vol. 7, No. 6, pp. 39–51, June 1987.

[grav95] Jens Gravesen. “The Length of Bézier Curves”.
Graphics Gems V, pp. 199–205. Academic
Press, Boston, 1995.

[guen90] Brian Guenter and Richard Parent. “Com-
puting the Arc Length of Parametric Curves”.
IEEE Computer Graphics and Applications,
Vol. 10, No. 3, pp. 72–78, May 1990.

[jou92] Emery Jou and Weimin Han. “Minimal Energy
Splines with Various End Constraints”. Curve
and Surface Design, pp. 23–40. SIAM, 1992.

[pres92] William H. Press et al. Numerical recipes in C :
the art of scientific computing. Cambridge Uni-
versity Press, 1992.

[rals65] Anthony Ralston. A First Course in Numerical
Analysis. McGraw-Hill, 1965.

[roul93] John A. Roulier. “Specifying the Arc Length
of Bézier Curves”. Computer Aided Geometric
Design, Vol. 10, No. 1, pp. 25–56, Feb 1993.

[shar82] Richard J. Sharpe and Richard W. Thorne.
“Numerical Method for extracting and arc
length parameterization from parametric
curves”. CAD, Vol. 14, No. 2, pp. 79–81,
1982.

Anais do IX SIBGRAPI, outubro de 1996

