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Figure 1. Ferrari example: a surface mesh (left) is converted and rendered into a LEGOr model (right) in real-time.

Abstract—In this work we propose a method for converting
triangular meshes into LEGOr bricks through a voxel repre-
sentation of boundary meshes. We present a novel voxelization
approach that uses points sampled from a surface model
to define which cubes (voxels) and their associated colors
will compose the model. All steps of the algorithm were
implemented on the GPU and real-time performance was
achieved with satisfactory volumetric resolutions. Rendering
results are illustrated using realistic graphics techniques such
as screen space ambient occlusion and irradiance maps.
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I. INTRODUCTION

LEGOr is a worldwide line of toys composed of col-
orful interlocking plastic bricks that can be assembled in
many ways and positions. LEGOr toys were originally
designed in the 1940s in Denmark and since then became
very popular around the world. Throughout the years, the
LEGOr trademark has achieved an extensive subculture
that supports movies, contests, games (e.g. LEGOr Batman
and LEGOr Star Wars), and four amusement parks [1].
In 2008, LEGOr was voted Britain’s favourite toy [2],
which proves its great popularity even after over 50 years
of existence. Nowadays, some artists assemble exclusive
objects using only LEGOr bricks [3], [4]. In this work we
propose Legolizer, an algorithm that can help artists simulate
such results by producing LEGOr -like renderings from
triangular mesh models.

Our work focus on the cubic-like shapes predominant on
the original LEGOr models, although many other shapes

are often found in current toys. Therefore, the essence
of our algorithm is a voxelization procedure, which re-
ceives as input a triangular mesh with colors associated
to vertices, and produces as output a collection of bricks
which are rendered in real-time using the GPU. There
is a vast literature on voxelization algorithms for other
purposes [5], [6], [7], [8], [9], [10], [11], [12]. The main
difference of our approach is how we harness the processing
power of GPUs to both generate and render the volumetric
representations we generate. The original triangular mesh
is first converted to a set of voxels, which are sent to a
polygonization technique which generates uniform cubes.
Every cube receives a little rounded cylinder on its top side,
just like the interlocking part of the brick, while the bottom
side is planar and closed. Bump mapping is used during
rendering to simulate the relief of the LEGOr logo on top
of each cylinder and to smooth the top corners, giving the
appearance of joint pieces when a planar vertical wall is
assembled. Figure 1 illustrates the results we obtain using
Legolizer. The LEGOr representation is obtained through a
volumetric model generated from the object surface.

The main contributions introduced in this work can be
summarized as follows:

• Legolizer, the first algorithm to produce LEGOr -like
representations directly from triangular meshes;

• A GPU-based voxelization and polygonization ap-
proach with color coherence to produce LEGOr bricks

• A rendering algorithm that process the volumetric rep-
resentation of LEGOr bricks in real-time using screen
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Figure 2. Legolizer architecture is composed of four main steps: (i) subdivision, where the triangular mesh is divided until a resolution criteria is
met; (ii) voxelization, where each vertex is associated to one voxel; (iii) polygonization, where each voxel generates an uniform LEGOr cube; and (iv)
rendering, where bump mapping is applied to give the final LEGOr appearance. Steps (i) (ii) and (iii) can be done in a pre-processing stage and the
LEGOr mesh can be stored to speedup the rendering process.

space ambient occlusion and irradiance maps.

The paper is organized as follows. First we review the
relevant work on voxelization algorithms in the literature.
The Legolizer voxelization algorithm in all its steps is
described in the section that follows. We show the results
we obtained and conclude with directions for future work.

II. RELATED WORK

Although voxelization methods have been studied since
the 1980s, the first voxelization algorithms that use graphics
hardware were developed only in the last decade, due to the
flexibility in graphics hardware programming. For example,
Fang and Chen [5], [6] proposed an algorithm that exploited
the graphics hardware by slicing the object surface and
using the sliced planes as clipping planes to reconstruct
and render the object. Ogáyar et al. [7] adapted [8] to use
the graphics hardware with standard OpenGL primitives and
with the programmable capabilities of GPUs. Karabassi et
al. [9] render six z-buffers, two per axis, for an object to
reconstruct its surface in a grid. This approach is fast and
simple to implement, but it misses concavities in convex
objects. Passalis et al. [12] improved the algorithm proposed
by Karabassi et al. [9] to support surface models of arbitrary
topology without loosing performance.

Recently, Eisemann and Décoret [10] proposed a fast
scene voxelization method using the graphics hardware,
assuming that the rendered view of a scene implicitly defines
a grid and keeping the depth value information encoded
in the RGBA channels. This approach proved to be very
fast and favorable to applications that used shadows and
refraction. More recently, Eisemann and Décoret presented
a single-pass technique to voxelize the interior of watertight
3D models [11] with high resolution grids in real-time.

Color information is not used in most voxelization ap-
plications, and therefore it is often discarded [5], [10],
[11], [6], [9], [7], [12]. Our voxelization method has some
similarities to the one developed by Karabassi et al. [9] and
Passalis et al. [12], but while they use six z-buffers and thus
six passes, our point-based approach uses only one render
pass, and therefore uses a single buffer while keeping the
original voxel color. Passalis et al. [12] also uses the graphics
hardware to voxelization but they calculate the voxels on the
CPU while we do it on the GPU.

III. LEGOLIZER

The Legolizer algorithm is composed of a four-step pro-
cess that creates and renders LEGOr representations from
boundary models (Figure 2). The first step consists of a
refinement in the triangular mesh using subdivision steps



Algorithm 1 Subdivision Technique (CPU)
Require: M {Triangle Mesh}
1: Create 2 VBOs: vbo1, vbo2

2: Send M to the GPU in vbo1

3: Set vbo1 as the shader input and vbo2 as output
4: Enable subdivision shader
5: while Vertex number in M does not change do
6: Draw input VBO
7: Swap input and output VBOs
8: end while
9: Disable subdivision shader

10: return The last output VBO pointer

until the model is adequately sampled and therefore can
create good voxelization results. This is governed by geo-
metric criteria such as edge size, and are discussed in Section
III-A. The second step of the algorithm consists in applying a
voxelization procedure (Section III-B) over a triangular mesh
to obtain a volume representation. The third step corresponds
to a polygonization procedure (Section III-C) that generates
LEGOr bricks with normal, texture and color information.
The fourth step renders the LEGOr model by using modern
real-time rendering techniques (Section III-D).

A. Step 1: Subdivision

The voxelization algorithm relies on a uniform sampling
of the surface, which can not be assumed in general triangu-
lar meshes since triangles have irregular shapes and varying
edge sizes. We used as assumption for our procedure that a
triangle is well-sampled if its edges are smaller than a user-
defined resolution. When this is not satisfied, we employ
a subdivision strategy to partition the triangle into smaller
triangles. The subdivision strategy used is very simple and
discussed in several other works (see for instance [13]), and
inserts vertices to partition edges that are larger than a given
resolution. Since the voxelization technique we use is vertex-
based, we must enforce that at least one vertex v of the input
triangle mesh M is inside of each brick b of the LEGOr-
based surface B for B to be watertight (i.e. without “holes“).
In order to guarantee a watertight surface, it is necessary to
subdivide the mesh M until each triangle edge e be smaller
or equal than the cube edge length r.

The iterative nature of this algorithm is implemented as
a multi-pass technique entirely on the GPU (Algorithm 1).
Due to the inability to read-write textures on the GPU,
we swap between two Vertex Buffer Objects (VBO), which
serve as input and output buffers while the subdivision does
not end. In the initial step, the input VBO is loaded with
the mesh M . On each execution pass, vertices pass trough
a simple vertex shader which emits its position and color.
A geometry shader (Algorithm 2) splits the triangles into
three different pre-defined patterns chosen by the number of
edges greater than the cube size (Figure 3). The subdivision
depends on the cube size and must be executed whenever
this value changes.

Algorithm 2 Subdivision Geometry Shader (GPU)
Require: v1, v2, v3 {Triangle Vertices}
Require: r {Cube’s size}
1: e ← Set of edges with length greater than r
2: if e = ∅ then
3: Emit triangle v1, v2, v3

4: else if |e| = 1 {Figure 3(a)} then
5: v4 ← first vertex of e1

6: v5 ← second vertex of e1

7: v6 ← new vertex at the middle of edge e1

8: v7 ← triangle vertex opposite to e1

9: Emit triangle v4,v6,v7

10: Emit triangle v5,v7,v6

11: else if |e| = 2 {Figure 3(b)} then
12: v4 ← vertex shared by e1 and e2

13: v5 ← vertex of e1 different from v4
14: v6 ← vertex of e2 different from v4
15: v7 ← new vertex in one half of e1

16: v8 ← new vertex in one half of e2

17: Emit triangle v4, v7, v8

18: Emit triangle v7, v6, v8

19: Emit triangle v5, v6, v7

20: else if |e| = 3 {Figure 3(c)} then
21: v4 ← new vertex in one half of e1

22: v5 ← new vertex in one half of e2

23: v6 ← new vertex in one half of e3

24: v7 ← vertex shared by e1 and e2

25: v8 ← vertex shared by e2 and e3

26: v9 ← vertex shared by e3 and e1

27: Emit triangle v4, v5, v6

28: Emit triangle v7, v4, v5

29: Emit triangle v9, v5, v6

30: Emit triangle v8, v6, v4

31: end if
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Figure 3. Subdivision cases when (a) one, (b) two, and (c) three edge
lengths are greater than the cube edge size r. The shader divides the triangle
according to the red lines.

B. Step 2: Voxelization

The voxelization uses the vertices of the refined mesh to
find the locations to create voxels. For this we use an image-
space approach. Given a viewing position, the algorithm
renders all vertices of the original surface into a 2D image
that is stored as a frame buffer object (FBO). This strategy
relies on the fact that the projected vertices will sample well
the projected surface, and therefore will allow for creating
a good volumetric approximation.

The mesh is already on the GPU after the previous sub-
division step, and passes through a shader that computes in
which voxel each vertex will belong. Each vertex is projected
into a FBO using an orthogonal camera (Algorithm 4).
Voxels are placed inside a regular grid and sequentially



Algorithm 3 Voxelization (CPU)
Require: M {Subdivided Triangle Mesh}
1: Create FBO
2: Set ortogonal projection to FBO
3: Enable mapping shader
4: Draw M , which already is on GPU
5: Disable mapping shader
6: Download FBO
7: Create a VBO from FBO
8: return VBO pointer

Algorithm 4 Voxelization: Vertex Shader
Require: vp {Vertex 3D Position}
Require: vc {Vertex Color (RGB)}
Require: size {Grid size}
1: voxelxyz ← vcxyz

2: voxelw ← int(vpx)× size× size
+ int(vpy)× size
+ int(vpz)

3: if voxelw is outside the grid then
4: voxelw ← NULL
5: end if
6: voxelw ← voxelw/(size ∗ size ∗ size)
7: Emits the voxel as a pixel

numbered according to their 3D position, in axis ordering:
x, y, and z. When a vertex is placed outside the grid, it
receives a null value as voxel number. The FBO contains
information about the vertex color in the x, y, z channels
and the normalized voxel number in the alpha channel. The
FBO is downloaded to the CPU and re-sent as a VBO, where
each pixel becomes a vertex.

Obviously, some vertices are written at the same position
in the FBO or discarded by the Z-buffer test. This entails
two important characteristics of our proposal: (i) unlike the
method developed by Karabassi et al. [9] which renders the
surface six times, we use a single frame buffer and only
one rasterization is needed; and (ii) the front surface is
completely displayed, but back surfaces may contain holes.
Fortunately, these holes can be avoided by increasing the
frame buffer size. In Section IV we provide an analisys of
the method performance as function of the FBO size.

C. Step 3: Polygonization

Given the voxel information stored in the VBO, numbers
(stored in the alpha coordinate) and colors (stored at the
x, y, z coordinates), we use the geometry shader to gen-
erate triangles of the LEGOr bricks (Algorithm 5). The
alpha channel (w) is first converted to spatial coordinates
representing the center of the cube. Given the cube edge
length r, the shader computes each face of the cube with
normal and texture coordinates, discarding the vertices with
ilegal values in the alpha channel. Remember that, in the
step of mapping vertex to voxels, we set NULL values in
the alpha channel for vertices outside the grid, thus making
the models partially or entirely voxelized depending on its
position inside the grid.

Algorithm 5 Polygonization: Geometry
Require: v {Vertex}
Require: size {Grid size}
Require: r {Cube size}
1: if vw not NULL then
2: vw ← vw × (size× size× size)
3: Load x, y, z cube center coordinates from vw

4: Set output color as vxyz

5: Given x, y, z and r, Emit as a triangle strip:
6: 6 cube faces with normal and tex. coord.
7: 1 cylinder above the cube top face
8: 1 disk with normal and tex. coord. to cover the cylinder
9: end if

Figure 4. LEGOr bricks rendering

This method does not guarantee that only one cube will
be generated for each voxel. Instead, we let the graphics
pipeline remove the duplicated cubes in the same spatial
position by culling, clipping and z-tests. We did not experi-
enced z-fighting between duplicated cubes in our tests.

D. Step 4: Rendering

The rendering of LEGOr bricks (Section III-D) uses
Phong shading [14] and a real-time screen space ambient
occlusion [15]. Ambient occlusion is an approximation to
global illumination and is defined as the amount of occlu-
sion neighboring occluders define over a point. Together
with the occlusion, the mean direction of incident light
called band normal is computed. Since, ambient occlusion
is a computationally expensive technique, it is necessary to
perform some approximations to allow real-time rendering.
One is the screen space ambient occlusion [16], which we
implemented in our LEGOr representation. This approach
is independent from scene complexity and approximates the
occlusion caused by near and distant surfaces.

Bump mapping was applied on the disk covering the
cylinders to simulate the relief of the LEGOr symbol, and
over each vertical cube face to smooth the top corner
normals, generating the appearance of interlocking pieces
(Figure 4).

IV. RESULTS

In this section we summarize the results we obtained.
Tests were performed on a AMD Athlon 64 3500+ with 2GB
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Figure 5. Bunny voxelization generated with 1024x1024 of frame buffer size. a) original mesh b) 323 resolution; c) 643 resolution; d) 1283 resolution;

of RAM, and a GeForce 8800GTX on a Linux 32 bits. As
mentioned before, our voxelization approach mainly depends
on the frame buffer size. It represents a tradeoff between
performance and accuracy. However, the model shape also
affects the accuracy, since it can be prone to generate
overlapped points, thus demanding a bigger frame buffer
to achieve good results. Usually, a frame buffer with size
of 512x512 pixels produces good results with resolutions
up to 1283 voxels. In complex objects it is necessary to
increase the frame buffer to values over 1024x1024 pixels.
Figure 5 shows the voxelization of model Bunny in different
resolutions using a frame buffer size of 1024x1024.

Figure 6.(a) shows how the time to generate each frame
increases when the frame buffer size grows. This happens
due to two reasons: a bigger frame buffer results in more
data to be sent to the GPU and more vertices to be processed,
thus increasing the number of threads. Our method tends to
be up to 5 times faster than Passalis et al. [12], since we
render the model only once and use a single frame buffer,
while they renders the model six times and uses more than
six buffers. However, our approach depends on the model
surface complexity, thus producing different resulting times,
opposed to Passalis et al. [12] that is almost surface inde-
pendent and presents similar results with different models.
Karabassi et al. [9] missed concavities in concave objects
and Passalis et al. [12] missed objects that are not strictly
closed or with irregular faces. However, as points from inside
surfaces are also projected, our voxelization method does
not suffer from these issues and voxelizes models with or
without holes, including its internal parts.

The model is rendered in an environment illuminated by
high dynamic range (HDR) light probes which generates
irradiance maps to be used as the ambient color of the Phong
equation sampled by the band normal of the ambient occlu-
sion technique. The final LEGOr bricks rendering is showed
in Figure 4 and the final Legolizer output is presented in
Figure 7. After applying all these techniques we rendered
the models with different resolutions, and achieved real-
time performance. Figure 6.(b) shows the FPS for different

models in different resolutions. Notice that even for 1283

resolution, all datasets are rendered in real-time.

V. CONCLUSIONS AND FUTURE WORK

In this work we presented a real-time method to convert
and render LEGOr representations from surface models.
Along this work we developed a new voxelization approach,
which proved to be fast and flexible. It can be seen as
an alternative to Passalis et al. [12], but faster and with
precision dependent of the frame buffer size. This approach
fits perfectly on our LEGOr conversion as it has good
performance, provides voxel colors, and can adjust the
accuracy according to our needs.

Although our method achieved real-time performance,
there are some improvements that could be developed to
save memory and processing time. The first modification
concerns the way data is saved on a texture to store voxeliza-
tion and color information. We used a four channels(RGBA)
32-bits precision texture, three channels(RGB) for colors
and one(A) for the voxelization. However, a single channel
could be used by compacting the data into a single 32-bits
channel. Furthermore, regarding primitive generation, there
could be developed a method to sample a unique vertex
inside each voxel to generate a cube. This would avoid
the need to generate and remove duplicated cubes. Another
improvement can be made in the cylinders generation, since
they represent the major challenge to render our models with
real-time performance due to the great amount of vertices
inserted. Cylinders are generated along with cubes, thus
for each cube there is a cylinder. Their generation could
be split and an algorithm to determine voxels with upper
neighbors could be applied to detect hidden cylinders, thus
saving both memory and processing time. This work can
also be used together with a Microsoft proprietary technique
on automated brick layout[17] which provides a step by
step method to assembly the object from a brick(voxel)
representation.



(a) Voxelization time (b) Rendering FPS

Figure 6. Performance results: (a) time (in milliseconds) elapsed with the frame buffer size increase for several different datasets and (b) the frame rate
obtained for different grid resolutions. Notice that results in (a) show that the frame buffer size affects all the models in the same manner. In (b) we can
notice how the grid resolution affects the frame rate performance for each dataset.
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[10] E. Eisemann and X. Décoret, “Fast scene voxelization and
applications,” in ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games. ACM, 2006, pp. 71–78. [Online].
Available: http://artis.imag.fr/Publications/2006/ED06
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Figure 7. LEGOr representations created by our method


