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Figure 1. Super-resolution of a scanned keyboard with a high-resolution scan of one of its keys: original model (top), reconstructed with the detail
exemplar of a key scanned at high resolution (middle) and reconstructed with the exemplar key generated by low resolution accumulation (bottom).

Abstract—The acquisition of high-resolution 3D models still
requires delicate and time-consuming processes. In particular,
each detail of the object should be scanned separately, although
they may be similar. This can be simplified by copying a small
set of details at different places of the model, synthesizing
high geometric resolution from details exemplars, as introduced
in this paper for three different contexts : when the detail
exemplars are scanned separately at high resolution, when
they are synthesized or edited from other models, or when
they are obtained by accumulating repeated instances of the
detail in the low-resolution scan. The main challenge here is
to correctly register the high-resolution details with the low
resolution model. To address this issue, this work proposes
a careful resolution manipulation of 3D scans at each step
of an automatic registration pipeline, combined with a robust
selection of alignments. This results in a fully automatic process
for geometry super-resolution by example. Experiments on syn-
thetic and real data sets show applicability in different contexts,
including resolution increase, noise removal by example and
geometric texture insertion.
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I. INTRODUCTION

With the advent of cheaper scanning devices, 3D model
acquisition became more popular. However, the scanning
of high-resolution model remains a complex and time-
consuming task. Regardless of the equipment used, the 3D
scanning hardware imposes a limit in the highest achievable
resolution of a single scan. Additionally, the acquired data
is contaminated by sensor noise, further compromising the
effective model resolution.

There is an inherent trade-off between scanning time and
model resolution: While for digitizing an object in low
resolution only a few broad scans may suffice ; To scan
the same object in high resolution many close scans would
be needed to capture each fine detail, even if they are
repeated in the model. This trade-off can be improved if
we reuse a single exemplar of each fine detail, turning the
scan process simpler, faster and still producing models with
high resolution. This goal can be accomplished using super-
resolution by example!



Figure 2. Intelligent geometry insertion: substituting the exemplar detail for a synthetic texture, a new object can be obtained by super-resolution,
incorporating the texture automatically at the right places.

The main idea consists in exploiting the fact that most
human-made objects have a very coherent local structure
that can be summarized by few exemplar features. In this
context, an efficient strategy for high-resolution scanning
is to quickly digitize the entire object in low-resolution
with a small number of scans, and to subsequently scan
or extract the few characteristic features of the object in
high resolution (Figure 1). The scanning process stops here.
As a post-process, the super-resolution method reconstructs
the model in high resolution by extrapolating the global
geometry based on the local exemplars.

Contributions: Super-resolution is a powerful method that
has already been applied to images and video. However, its
adaptation to geometric models is non-trivial due to several
technical difficulties, among which registration with differ-
ent resolutions and the robust identification of many detail
occurrences in large low-resolution models. The contribution
of this paper is the development of a fully automatic method
for geometric super-resolution by example that overcomes
these issues. To do so, we propose a careful resolution
manipulation of 3D scans at each step of an automatic
registration pipeline, combined with a robust selection of
valid alignments.

This approach actually applies to slightly different con-
texts than classical super-resolution, when the resolution of
the exemplar detail is higher than the whole model. De-
pending on the context, the exemplar can be obtained from
a separate scan at high resolution (Figure 1), when the user
has access to the scanning process, or synthesized artificially
for intelligent geometry texture insertion (Figure 2). The
exemplar can also be retrieved by accumulating the repeated
low-resolution instances of a selected detail, identified by the
same mixed-resolution registration (Figure 11).

II. RELATED WORK

There are two basic approaches for super-resolution: re-
moving noise from the accumulation of samples and detail
synthesis by example.

Super-resolution from multiple samples exploits redun-
dancy in replicated data sets of the same scene in order to

filter out noise and enhance the signal, effectively recov-
ering information beyond the sampling frequency [1]. This
approach suits well for video sequences, as proposed for
example by Schultz and Stevenson [2] or Irani and Peleg [3].
It has been used for geometry super-resolution in the work
of Kil et al. [4]. By scanning several times the same object
from slightly displaced viewpoints, the authors obtain an
accumulation of geometry that can be used to remove noise.
However, this slows down the scanning process.

Super-resolution by example exploits the global coherency
of a scene. More precisely, a small set of example features
generally contains a summary of information about the
multi-scale structure of the scene. By properly analyzing
these example features, they can be used to predict and
extrapolate high-resolution details of a coarse resolution
version of the scene. This approach has been first introduced
from fractal-based image compression [5] and then extended
to high-resolution synthesis [6]. Similar ideas have been
developed for 3D models [7], [8]. They reconstruct a surface
from a noisy point cloud and prior shapes. Pieces of these
shapes are compared with the point cloud geometry descrip-
tors, and a Bayesian process validates such match. In their
work, the prior shapes and the point cloud have the same
resolution, allowing the inclusion of non-local geometrical
contexts for matching. In [9], geometric moments are used as
descriptors to match patches from high quality prior shapes
to the point cloud. Then, the point cloud is augmented by a
variation of the MLS projection procedure.

Our approach mainly follows the super-resolution by
example paradigm. However, differently from these ap-
proaches, we match noisy detail at high resolution entirely
onto a large low-resolution model: no geometry context
is used for matching. We also borrow from the multiple
samples approach when the high-resolution exemplar is not
available for scan, in order to generate it by accumulating
its repeated occurrences, approaching structure extraction
applications[10]. In that sense, this work can be used as
geometry texture synthesis [11], [12], allowing to correctly
position texture elements from low resolution information.



III. REVIEW OF SINGLE RESOLUTION SCAN
REGISTRATION USING SPIN IMAGES

One of the main difficulties of adapting super-resolution
methods originally conceived for images to 3D geometry is
that an image has a trivial topology and also possesses a
regular structure while surfaces generally do not. In order to
overcome this difficulty it is necessary to resort to invariant
feature analysis that are coordinate independent and also
employ registration methods for point sets. Spin images [13]
constitute one of the most successful feature types for the
analysis of geometric data. In our technique we use spin
images to identify correspondences between parts of the
complete coarse resolution model and exemplar structures
containing high-resolution details. This section details how
to use such local descriptors for registration [14], [15].

Scan registration pipeline: The registration process tries
to identify the matching parts of models and estimate the
spatial transformations that align them. When restricting
to rigid transformations, the identification can be done by
associating to some significant points of the model a rigid-
invariant descriptor. The significant points are usually chosen
as high mean-curvature points in each range image. The
matching descriptors then correspond to matching parts of
the models. Since the matching may be imperfect, these
correspondences must be filtered, and the alignment refined,
typically using iterative closest points algorithms [16].

Spin images: Given a reference point p, its spin image
is bi-dimensional density histogram of the neighbors q
of p (Figure 3). To be rigid invariant, this histogram is
represented in radial coordinates: the two coordinates of q
are its distance to the tangent plane at p and its distance
to p when projected in the tangent plane. This histogram is
normalized to cope with slight variations of the sampling
rate in the two models.

The spin-image comparison is performed using linear
correlation coefficients and specific statistical measures [13].
In particular, it counts only the number of correct matchings
between the histograms, and does not penalize unmatched
parts. Two parameters define the spin image: the histogram
size and the extension of the neighborhood. For usual scan
registration, the histogram size varies from 10 to 20, and the
extension is set to twice the point density to ensure enough
points in each class of the histogram [13], turning the spin
image less sensitive to noise.

Correspondence grouping: The robustness of this de-
scriptor is improved by geometric consistency filtering. For
each reference point in the first model, there should be a
corresponding point in the second model with similar spin
image. Groups of such correspondence should be coherent,
in particular the distances between points should be pre-
served across correspondences. This geometric consistency
test would require checking every combination of correspon-
dences. To optimize this, a greedy strategy prioritizing corre-
spondences that are far apart is generally used, since far apart

Figure 3. Spin images at the central point (right) are rigid-invariant
geometry descriptors for a neighborhood of a reference point (left).

correspondences improve the transformation accuracy. Each
group of correspondences generates a rigid transformation,
and the greedy search stops when the transformed models
have a sufficient overlapping.

This procedure as is would be ineffective for super-
resolution purposes, since it does not cope with different
resolutions and eventual multiple valid transformations.

IV. MIXED-RESOLUTION REGISTRATION

In this work, we automatically identify and replace all
instances of a given high resolution detail in a low resolution
3d model, which can be a triangle mesh or an oriented
point cloud. The proposed method can be decomposed into
five steps, each of them suffering significant modifications
for super-resolution. Initially, we decompose the model and
the detail in two resolutions: the original resolution, which
will be used in the final result, and a low resolution,
used for registration purposes. We choose the resolution
carefully to preserve as much information as possible while
reducing both the model and the detail to a common ground
(Section IV-A). For super-resolution from multiple samples,
the user selects the detail example from the model, so that
this phase is unnecessary. We further compute the spin-
image parameters for small details matching (Section IV-B).
We then filter and group correspondences from different
occurrences of the detail (Section IV-C). After that, we
identify the unique occurrences of the detail in the model
by detecting and removing duplicate or symmetric trans-
formations (Section IV-D). Finally, we incorporate the new
geometry information in the model (Section IV-E).

Figure 4. Scaling the model (left) and the detail (middle) to a common
resolution (right) by reconstructing them at the same octree depth.



A. Scaling

In order to identify information from the detail to the
model, we scale them to a common resolution (Figure 4).
We estimate the resolution r of a triangle mesh as the
median of the edges’ lengths for meshes, and using the k
nearest neighbors for point sets, as described by Pauly et
al. [17]. For noisy triangle meshes, we reduce the estimated
resolution by multiplying r with the inverse of the mean
curvature variance, following the noise estimation of Vieira
and Shimada [18].

The scaling must maintain a reasonable amount of feature
points to serve as references for the spin image. To ensure
that, the low resolution model is simply filtered by a two-step
normal smoothing / vertex fitting method [19]. To scale the
high-resolution detail, we use a Poisson reconstruction [20]
at low resolution, setting the maximal depth of its octree to
log(r). The Poisson scheme is mainly based on normals,
which help in preserving the locus of high-curvatures in
the detail. This way, the scaling process removes high
frequencies from both the model and the detail, keeping the
common high curvatures, and naturally eliminates random
noise.

Figure 5. As opposed to scan registration (left), the extension of spin-image
for super-resolution must be adapted (right). It is automatically computed
from the resolution of the model and the size of the detail.

B. Local feature matching

The classical spin-image design and matching described at
Section III would fail for our super-resolution application. In
particular usual spin-images use large neighborhoods, since
in that case we expect large overlapping around few very
sharp feature points. In our context, we will prefer smaller
neighborhoods and more feature points since the detail is
small and its high curvatures have been smoothed in the
scaling process (Figure 5).

More precisely, we automatically set the neighborhood
extension for the spin images to n = αd, where d is the

Figure 6. Matching between the spin images of reference points (red dots)
in the detail (left) and the model (right).

length of the detail’s bounding box diagonal. For the spin-
image reference points, we select the top β highest curvature
points in the detail, or at least 10 points to guarantee
matching robustness (Figure 6). In our experiments, we
obtained good results with α = 1

4 and β = 10%. To assure
that matching reference points in the model will be selected,
we use the interval defined by the smallest and highest
curvature of the selected points in the detail. Moreover, we
avoid creating spin-images with neighborhoods overflowing
the detail. To do so, we only select reference points in the
detail at distance less than n to its center.

Finally, when comparing two spin-images, we take into
account every entry of the histogram, as opposed to the
classical matching, where only the overlapping entries are
considered. Given two spin-images P and Q, the standard
linear correlation coefficient RPQ is defined as

RPQ =
1

σPσQ

(
N
∑
i

piqi −
∑
i

pi
∑
i

qi

)
,

where σP is the standard deviation of histogram P and N is
the number of bins. In the classical spin-images matching,
the similarity measure is defined as CPQ = atanh2(RPQ)−
λ

N−3 . C is then a loss function that returns higher values
for highly correlated images that have a large number of
overlapping bins (N). The λ parameter is given by the
expected number of overlapping pixels entries. In particular,
this strategy is well suited when considering geometry that
do not fully overlap, like classical 3d scan registration. For
mixed resolution, we look for full overlap, so we consider
only the linear correlation coefficient RPQ.

C. Correspondences filtering

Every matching pair of spin-images corresponds to a
positioning of the detail in the model. The valid occurrences
are obtained by selecting coherent groups of such corre-
spondences. Such group is coherent if they induce a rigid
transformation that maps the detail onto a single occurrence
in the model. The rigid transformation criterion is similar



to the classical case (Section III). The additional single
occurrence criterion is specific to our super-resolution. It
requires the correspondences inside a coherent group to
be distributed in the model on an area smaller than the
detail surface. In particular, this criterion greatly accelerates
the process, since only a small number of correspondences
combinations must be tested.

D. Identification of the detail occurrences

Each coherent group of at least three correspondences
induces a transformation T . However, T may not map the
detail onto one of its occurrences. Moreover, different groups
can lead to similar transformations, in particular since the
model may contain only approximate copies of the detail
(Figure 7). Therefore, we first filter each transformation T
according to the overlap between the detail mapped by T
and the model. We are looking a priori for fully overlapping
detail occurrences, i.e. 100% of the transformed detail
points. Observe that this is significantly higher than usual
scan registration thresholds. However, as the model is prone
to noise and detail occurrences are not exactly identical, we
validate transformations whose resultant overlapping points
are higher than k% of the number of detail points. In our
experiments, we set k to 90%.

Figure 7. Duplicate transformations must be identified in a symmetry-
proof manner.

Secondly, we eliminate duplicate transformations by mea-
suring their difference in a symmetry-proof manner. To do
so, we define a pseudometric M between transformations T1

and T2, which considers the axis-aligned bounding boxes
of T1(detail) and T2(detail). The distance between the
resultant bounding boxes lower-left-front points p1 and p2,
and upper-right-back points q1 and q2 is measured by

M(T1, T2) = 1
2‖p1 − p2‖ + 1

2‖q1 − q2‖ .

When M(T1, T2) ≤ 1
2‖p1 − q1‖, the transformed details

considerably overlap each other, eventually with symmetry.
In this case of overlapping, we keep only the transformation
that results in the highest overlap with the model.

Figure 8. The geometry is merged by replacing the overlap region (top)
with the detail (bottom).

E. Detail insertion

Given the set of unique transformations, we refine these
transformations by a simple iterative closest point algo-
rithm [16]. Aside from improving the registration accuracy
between the transformed detail and the model, this algorithm
detects the regions of the model that the detail overlaps. To
insert the high resolution into the model, it is necessary to
remove this overlapping part. In particular, this is crucial
when using this technique for example-based noise removal
or geometry texture insertion (Figure 8). We finally merge
the geometry by replacing the overlap region in the model
by the high-resolution detail geometry.

V. ON THE EXEMPLAR DETAILS

The exemplar details can be obtained through three dif-
ferent means. The best one is to acquire it at high resolution
during the scanning process. However, this is limited to
applications where the user has access to the scanning
device, and when this device allows for zooming until the
desired resolution, which is the case of laser or structured
light on specific materials. The second way is to synthesize
the detail or to retrieve it from an external data base. This
case is useful for geometry texture insertion.

In the case where the user has access only to the low-
resolution scan, it is possible to gradually generate an ex-

Figure 9. Filtering of the accumulated geometry for the keyboard example:
from the aligned detail occurrences (left) are projected in a smooth manifold
surface (right).



Figure 10. Generation of a high-resolution exemplar by accumulation: from an initial user selection of a window (left), the registration process identifies
other occurrences of windows and copy their geometry back onto the initial detail (on the illustration with 2, 4 and 6 windows copied). The accumulated
geometry is then filtered using a variation of MLS (right).

emplar, borrowing ideas from super-resolution from multiple
samples: Instead of using a super-resolution detail scanned
in high quality, which is not always available, we can use
the detail occurrences in the model as multiple samples to
reconstruct a super-resolution detail.

The user can select part of the low-resolution scan as
input, creating the initial detail. We register this detail
with the model, forcing a different location, and copy the
geometry of the overlapped region. We generate a new
detail by merging the point sets of the initial detail and the
copied geometry, aligned back onto the detail. We smooth
the merged point set using an MLS variation similar to
the work of Weyrich et al. [21] (Figure 9). We repeat the
operation, accumulating geometry to increase the resolution
of the initial detail (Figure 10).

Figure 11. Superresolution on two groups of windows from the rathaus
model: identified windows at low resolution (left) and the obtained super-
resolution model (right), displayed as a raw point set.

VI. RESULTS

We implemented the above procedure into a fully auto-
matic algorithm that takes two or three group of meshes

or point sets as input: the low resolution models, the high-
resolution details and eventually geometric textures to merge
instead of the details. We used a kd-tree for neighborhood
searching for the spin-image neighborhoods, the correspon-
dence groups creations and to compute overlapping regions.
The mean curvature used for the noise estimation and the
reference points selection was computed according to the
work of Meyer et al. [22] for the mesh case, and using the
work of Pauly et al. [17] for point sets. Finally, we use again
Poisson reconstruction [20] on the merged points to display
our results as surfaces.

A. Experiments

We apply our method on synthetic and real objects. The
synthetic models are cylinders with small meshes manually
placed on it, and reconstructed at low resolution (Figures 2,
8 and 5). The details are small perturbations of the small
meshes. The real case comes from a laser scan of a keyboard,
with one of its key scanned at high resolution (Figures 1 and
14). For this experiment, we used a Minolta VIVID 910
scanner with a telephoto lens. The complete keyboard was
scanned at a distance of 2.5m, while the single key detail at
a distance of 0.5m.

We further test our technique in other context: geometry
texture insertion on the real scan of the keyboard, changing
the key detail by an edited one (Figure 13).
We also tested it on real data with no scanned high-resolution
exemplar, but generating this super-resolution by geometric
accumulation. On the keyboard of Figure 1(bottom), we
manually selected one key as initial detail. We can observe
that the mixed registration process worked as well as with
the high-resolution scan, e.g. failing on the same keys of the
numeric keypad.

We applied the same technique on the rathaus1. In that
case we selected two different windows as initial details,
and detected all their occurrences in the models (Figure 11).
Observe that this is a point set model. The timings of the
super-resolution steps are reported in Table I.

1Altes Rathaus Hannover from the Institute of Cartography and Geoin-
formatics of the Leibniz University of Hannover



Model detail low model detail ref. total spin image filtering validation insertion total
ocurr. points points points corresp.

×103 ×103 ×103 secs. secs. secs. secs. secs.
max planck 3 53.4 19.3 110.4 2.7 1.9 1.7 1.4 6.2
textured cylinder 48 25.3 9.2 442.3 1.5 0.9 0.9 14.0 15.5
s cylinder 48 25.3 9.2 442.3 1.9 1.4 1.4 13.8 18.7
keyboard 86 88.1 11.6 1,237.8 28.9 15.4 84.3 39.2 128.7
+ flower keyboard 86 88.1 23.6 2,087.3 0.0 0.0 0.0 177.2 177.2
rathaus window #1 7 1,063 17 1,460 256.7 25.3 10.4 30.1 322.5
rathaus window #2 6 1,460 14 1,821 190.5 22.1 9.7 32.6 254.9

Table I
SOME EXPERIMENTS ON SYNTHETIC MODELS AND ON REAL OBJECTS (KEYBOARD, RATHAUS). THE TIMINGS OF EACH STEP OF OUR METHOD
REPORTED WITH THE SIZE OF THE ORIGINAL MODEL, THE NUMBER OF DETAIL OCCURRENCES AND THE NUMBER OF INSERTED POINTS AFTER

REGISTRATION. EXCEPT FOR THE FLOWER KEYBOARD, WHICH CORRESPONDS ONLY TO THE TEXTURE INSERTION, MOST OF THE TIME IS SPENT
ONTO THE SPIN IMAGE CORRESPONDENCE, SINCE THE MIXED RESOLUTION IS MORE DELICATE AT THIS STEP.
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Figure 12. Curvature distributions of the original keyboard model (left
green bars) and of the super-resolution keyboard after Poisson Reconstruc-
tion (right purple bars): The method removes the noisy keys, represented
mostly by middle-valued curvature points in the histogram, and inserts keys
with flat regions, which are represented mostly by very low curvature points
in the histogram.

B. Discussion

We evaluated the method in terms of robustness and final
detail level. For all models, the method was robust in regis-
tering all detail occurrences. On synthetic data, it correctly
identified all the occurrences of the detail, and aligned them
with a very high precision even at low resolution (Figure 8
and Table II). The textured cylinder of Figure 5 shows that
the method works well in the border of the details, even
when there is no deformation between the detail occurrences.

In the 86 buttons keyboard case (Figure 1), only one extra
invalid registration occurred in a bigger button from the
numerical pad. This limitation is due to the similar features
of the lower corners of the key. Looking more carefully, the
scan noise leads to small misalignments of each key, which
the simple iterative closest point (ICP) algorithm we used
is not able to adjust. These limitations can be reduced by
using advanced ICP algorithms, in particular incorporating
non-rigid transformations [23].

We finally checked that the proposed super-resolution
method actually increases the resolution of the final model,
even after the reconstruction method used to generate the
final result. To do so, we computed the mean curvature

Resolution M(T1) M(T2) M(T3) average
L 6 0.41 % 0.28 % 0.25 % 0.31 %
L 7 0.07 % 0.19 % 0.33 % 0.19 %
L 8 0.16 % 0.12 % 0.21 % 0.16 %
L 9 0.15 % 0.11 % 0.20 % 0.15 %

Table II
ACCURACY OF THE 3 DETAIL ALIGNMENTS IN THE SYNTHETIC MODEL
OF FIGURE 4. THE RESOLUTION CORRESPONDS TO THE OCTREE LEVEL
USED FOR THE MODEL CREATION, AND THE ERRORS ARE RELATIVE TO
THE TRANSFORMATION APPLIED FOR THE SYNTHESIS, IN PERCENTAGE

OF THE DETAIL BOUNDING BOX DIAGONAL.

distribution before and after the super-resolution process on
the keyboard model. We can check on Figure 12 that the
super-resolution did remove the noisy keys with middle-
valued curvature.

VII. CONCLUSIONS

We proposed a geometry super-resolution by example for
generating high quality meshes out of a rough model and
exemplars of its details. Our method works by matching
medium frequencies between the model and the detail, and
then incorporating high frequencies geometric information.
This method is effective to speed up the process of high-
resolution scanning, and may also serve in other contexts as
example-based noise removal and geometry texture inser-
tion. The proposed method is limited to models which have
repeated occurrences of a shape, and restrict the resolution
increase to the regions of those occurrences. Increasing the
resolution of other parts would require inpainting-like tools
to extrapolate the geometry [24], together with a super-
resolution scheme as an extension of the one proposed here.
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Figure 13. The transformations obtained by our mixed-resolution registration can be used for inserting geometric textures by simply changing the exemplar
before the insertion process, here on the keyboard of Figure 1.

Figure 14. All the 86 keys are correctly matched, and an extra key (“enter”
of the numerical pad) has been inserted, although smaller than the real key.
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