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Abstract

Recently, a new Pattern Recognition technique based on
straight line segments (SLSs) was presented. The key issue
in this new technique is to find a function based on dis-
tances between points and two sets of SLSs that minimizes
a certain error or risk criterion. An algorithm for solving
this optimization problem is called training algorithm. Al-
though this technique seems to be very promising, the first
presented training algorithm is based on a heuristic. In fact,
the search for this best function is a hard nonlinear opti-
mization problem. In this paper, we present a new and im-
proved training algorithm for the SLS technique based on
gradient descent optimization method. We have applied this
new training algorithm to artificial and public data sets and
their results confirm the improvement of this methodology.

1. Introduction

Recently, a new Pattern Recognition technique based on
straight line segments (SLSs) was presented [16]. Basically,
given a training data set, this technique estimates a function
where the value of this function is calculated based on dis-
tances between points and two sets of SLSs. The key is-
sue of this new technique is to find two sets of SLSs that
minimizes a certain error or risk criterion. An algorithm for
solving this optimization problem is called training algo-
rithm. Although this technique seems to be very promising,
the first training algorithm presented in [16] is based on a
heuristic. In fact, the search for this best function is a hard
nonlinear optimization problem. In this paper, we present
a new and improved training algorithm for the SLSs tech-
nique based on gradient descent optimization method. We
have applied this new training algorithm to artificial and

public data sets and their results confirm the improvement
of this methodology.

Following this brief introduction, Section 2 introduces
the Pattern Recognition problem. Section 3 recalls some
concepts of the SLS technique presented in [16]. Section 4
presents the new training algorithm. Section 5 shows the ex-
perimental results and, finally, Section 6 concludes this pa-
per and points some directions for future research in this
topic.

2. Pattern Recognition Problem Definition

In [17], Vapnik described a model for Pattern Recogni-
tion Theory for which the supervised classification prob-
lem can be briefly defined in the following way: (1) let
FΛ = {fα ∈ {0, 1}R

d

, α ∈ Λ} be a set of functions, where
Λ is a set of parameter vectors; (2) let Sn = {(xi, yi) ∈
Rd × {0, 1}, i = 1, 2, . . . , n} be a sample set with n exam-
ples (xi, yi), such that (2.a) each vector xi ∈ Rd is drawn
independently from a fixed but unknown probability distri-
bution P (x); (2.b) for each input vector xi a supervisor re-
turns an output value yi ∈ {0, 1} according to a conditional
probability distribution P (y | x), also fixed but unknown;
(3) it is desired to find the parameter α∗ ∈ Λ such that the
function fα∗ ∈ F minimizes a certain error or risk func-
tion in order to classify (that is, to give labels y ∈ {0, 1} to)
new query points x ∈ Rd.

3. Straight Line Segment Technique

It is important to observe that in the literature we can
find some works that use straight lines for solving Pattern
Recognition problems. The Nearest Feature Line Method
(NFL) was proposed by Li and Lu in [13]. This method
is similar to Nearest Neighbor (NN) proposed by Cover
and Hart in 1967 [4]. While NN compares distance from



the query point to training examples, NFL compares dis-
tance from the query point and straight lines defined by
pairs of examples. This method has shown good perfor-
mance [3, 9, 10, 12, 13]. However, it has some drawbacks:
(1) high computational complexity (O(N2

C), where NC
is the number of examples); (2) extrapolation inaccuracy;
and (3) interpolation inaccuracy. Many other authors have
proposed several methods improving the original idea of
NFL [7, 15, 19, 18]. Using a different approach from NFL
method, Ribeiro and Hashimoto [16] proposed a new Pat-
tern Recognition technique based on straight line segments
(SLS). The advantages of this new technique over the NFL
methods are that of it avoids extrapolation and interpolation
inaccuracy and has low computational complexity. In this
section, we recall some concepts of the SLS technique pre-
sented in [16].

Let p, q ∈ Rd+1. The straight line segment with extrem-
ities p and q, denoted pq, is the closed segment of a line in
Rd+1 with endpoints p and q. More formally,

pq = {x ∈ Rd+1 : x = p + λ · (q− p), 0 ≤ λ ≤ 1}. (1)

Given a point x ∈ Rd, the extension of x to Rd+1, de-
noted by xe ∈ Rd+1, is the point xe = (x, 0), that is, the
point x is extended to Rd+1 by adding one more coordi-
nate with zero value.

Given a point x ∈ Rd and a SLS pq, with p, q ∈ Rd+1,
we define the pseudo-distance between x and pq as

pdist(x, pq) =
dist(xe, p) + dist(xe, q)− dist(p, q)

2
,

(2)
where dist(a, b) denotes the Euclidean distance between
the points a ∈ Rd+1 and b ∈ Rd+1.

Note that if xe ∈ pq, then pdist(x, pq) = 0. In addi-
tion, the larger is the distance between xe and one extrem-
ity of pq, the greater is pdist(x, pq). Besides, if p = q, then
pdist(x, pq) = dist(xe, p) = dist(xe, q).

Let L denote a collection of SLSs, that is, L = {piqi :
pi, qi ∈ Rd+1, i = 1, . . . , n}. Given L0 and L1, two col-
lections of SLSs in Rd+1, let us define two functions. The
first is called balance function and the second one classifi-
cation function.

The balance function TL0,L1 : Rd → R is defined as

TL0,L1(x) =

 ∑
pq∈L1

1
pdist(x, pq) + ε

−

∑
pq∈L0

1
pdist(x, pq) + ε

 ,

(3)

where ε is a small positive real constant in order to avoid
division by zero.

The classification function yL0,L1 : Rd → [0, 1] is de-
fined as

yL0,L1(x) =
1

1 + e−g·TL0,L1 (x)
, (4)

where g is a positive real number for scale purposes (see
Section 4.2). The classification of a point x ∈ Rd by the
classification function is obtained by thresholding its out-
put in the following way: label x as the class 0 if and only if
yL0,L1(x) ≤ 0.5.

In order to give an intuition of what these functions do,
let us analyze their behavior in a particular situation. Given
a point x ∈ Rd, let dL0(x) = min{pdist(x, pq) : pq ∈ L0}
and dL1(x) = min{pdist(x, pq) : pq ∈ L1}. For all
piqi ∈ L0 and for all pjqj ∈ L1, let d(L0,L1) =
min{dist(pi, pj), dist(pi, qj), dist(qi, pj), dist(qi, qj)}.
Consider the case where d(L0,L1) ≫ 0 is large suffi-
cient in order to have the following situation: as dL0(x)
tends to 0 (denoted by dL0(x) → 0), dL1(x) tends to a
very big positive real number d(L0,L1). In this case, as
ε → 0 and dL0(x) → 0, the function TL0,L1(x) → +∞
and thereby yL0,L1(x) → 0. This means that query points
that are “near” to at least one SLS in L0 are classi-
fied as class 0. Similarly, as ε → 0 and dL1(x) → 0, the
function TL0,L1(x)→ −∞ and thereby yL0,L1(x)→ 1.

Now, before ending this section, let us give some intu-
ition why the extremities of SLSs are placed in Rd+1 while
query points are in Rd. Fig. 1 illustrates a situation where
query points are in R2 and SLSs are in R3. If the SLSs are
placed in a space with one more dimension than the feature
space, we increase the possibilities for placing the extremi-
ties of the SLSs, and therefore, obtaining a richer set for bal-
ance functions. Therefore, we have more flexibility for the
classification function in the sense that this approach pro-
vides more complex classification boundaries.

4. Training Algorithm

The key issue in the technique presented in [16] is to
find two collections of SLSs L0 and L1 such that the clas-
sification function minimizes a certain error or risk crite-
rion. An algorithm for solving this optimization problem
is called training algorithm. Although the technique given
in [16] seems to be very promising, its training algorithm is
based on a heuristic. In fact, the search for this best function
is a hard nonlinear optimization problem. The main contri-
bution of this work is to present a new and improved train-
ing algorithm for the SLS technique based on gradient de-
scent optimization method.

According to Vapnik [17], the risk criterion to be mini-
mized can be defined as

R(α) =
∫
Loss(y, fα(x)) · dP (x, y), (5)



Figure 1. A Representation of SLS Tech-
nique. The isolated points represent the
query points. While query points are in R2,
SLSs are in R3.

where Loss(y, f(x, α)) is a function that represents the loss
in case of misclassification. Although it is possible to use
many types of loss function, we choose the classical least
square function. In this case, the loss function is known as
mean square error (MSE) and it is defined as

Loss(y, fα(x)) = (y − fα(x))2. (6)

In our case, fα(x) = yL0,L1(x) and the parameter vector α
is defined by the SLSs in the collections L0 and L1. Since
the probability distribution P (x, y) is not known, it is not
possible to calculate the value of the risk function R(α) an-
alytically. So we have to estimate it from the sample set
Sn = {(xi, yi) ∈ Rd × {0, 1}, i = 1, 2, . . . , n} with n ex-
amples. The estimated value for the risk function is called
empirical risk and it is calculated as

R̂(L0,L1) =
1
n

n∑
i=1

[erri(yL0,L1)]2 (7)

where

erri(yL0,L1) = yL0,L1(xi)− yi (8)

In [17], Vapnik studied the necessary and sufficient con-
ditions for which the empirical risk minimization leads a
good generalization for the classification function. In fact,
this is a key problem in Supervised Pattern Classification
field.

4.1. Placing the First Straight Line Segments

The first step for the training algorithm consists of plac-
ing some SLSs in L0 and L1 . These SLSs will be adjusted

later by the second step of the training algorithm. This first
step is called placing algorithm.

The placing algorithm is based on the fact that regions
in the feature space near to the SLSs in L0 lead the classi-
fication function yL0,L1(x) to 0 and the regions near to the
SLSs in L1 lead the classification function yL0,L1(x) to 1.

The first step of the placing algorithm splits the points
xi ∈ Rd of sample set Sn = {(xi, yi) ∈ Rd × {0, 1}, i =
1, 2, . . . , n} into two groups,X0 andX1 (see Lines 4 and 5
of the placing algorithm). The points inX0 are used to form
the SLSs that will be placed into the set L0. Similarly, the
points in X1 are used to form the SLSs that will be placed
into the set L1.

The second step of the placing algorithm is to find the
extremities of the SLSs. For this, each group Xj (j = 0, 1)
will be split into k = 2 ·MaxSLS clusters (subsets), where
MaxSLS denotes the number of SLSs in each class (that
is, |L0| = |L1| = MaxSLS). The centroids of these clus-
ters (say, cj,i ∈ Rd, i = 1, . . . , k) will be used to compute
the extremities of the SLSs in Lj . In this way, each set Lj
will haveMaxSLS SLSs. These centroids cj,i ∈ Rd can be
computed by using clustering techniques [5, 11]. Although
any clustering algorithm could be used in this step, in our
case, we choose the k-means clustering algorithm (Line 12
of the PLACING procedure), since it is simple to implement
and usually converges quickly [5, 11].

For a fixed group Xj , let Cj the set of k = 2 ·MaxSLS
centroids of Xj , that is, Cj = {cj,i ∈ Rd : i = 1, . . . , k},
repeat the following process until there are no more cen-
troids in Cj : (1) select the two nearest centroids c0 and c1

of Cj to be used to form a SLS in order to put it into the set
Lj ; (2) take the centroids c0 and c1 out from Cj .

In the following, we present the PLACING procedure.
The function k-means(Xj) returns the set Cj with k =
2 ·MaxSLS centroids. The function Nearest(Cj) returns
the two nearest centroids in the set Cj .

1: PLACING (Sn,MaxSLS)
2: Input: A sample Sn = {(xi, yi) ∈ Rd × {0, 1}, i =

1, 2, . . . , n} and MaxSLS (number of SLSs
in L0 and L1).

3: Output: Two sets of SLSs L0 e L1 (with MaxSLS in
each one).

4: X0 ← {xi ∈ Rd : (xi, yi) ∈ Sn and yi ≤ 0.5};
5: X1 ← {xi ∈ Rd : (xi, yi) ∈ Sn and yi > 0.5};
6: σ0 ← standard deviation of X0;
7: σ1 ← standard deviation of X1;
8: desl← |σ0|+ |σ1|;
9: k ← 2 ·MaxSLS;

10: for j ← 0 to 1 do
11: Lj ← ∅;
12: Cj ← k-means(Xj);
13: repeat
14: [c0, c1]← Nearest(Cj);



Figure 2. Sigmoid Curve. The proposed
method selects g in order to have the most
part of the training examples in sigmoid tran-
sition curve. In this way, this method avoids
very large or small values for g.

15: Cj ← Cj \ {c0, c1};
16: d0 ← (c0, desl); /* Extending c0 to Rd+1 */
17: d1 ← (c1, desl); /* Extending c1 to Rd+1 */
18: Lj ← Lj ∪ d0d1;
19: until (Cj = ∅);
20: end for
21: return L0, L1;

The computational complexity of k-means when applied
to a set with n elements isO(n ·d ·k · t), where t is the num-
ber of iterations, typically lower than n. The computation
complexity of Nearest(Cj) is O(k2 · d), since |Cj | = k. So,
the computational complexity of the PLACING procedure is
O(n2 ·d ·k +k3 ·d). Since topically n2 · k � k3 (assum-
ing n� k), we can consider its complexity asO(n2 · d· k).

4.2. The Value of Constant g

The constant g fits the scale factor of the sigmoid
yL0,L1(x). Fig. 2 shows a sigmoid curve (in this exam-
ple, yL0,L1(x)×g ·TL0,L1(x)). In the sigmoid curve, we call
the sigmoid transition curve the domain points g ·TL0,L1(x)
for which yL0,L1(x) ∈ [0.1; 0.9]. In Fig. 2, the sigmoid tran-
sition curve is marked in bold.

The aim of this part of the training algorithm is to
select the value for g such that the most part values of
g · TL0,L1(xi), i = 1, 2, . . . , n, are in the sigmoid transi-
tion curve. For this, consider the function Θ : Rd → {0, 1}
defined as:

Θ(x) =

{
1 g < ln ((2− η)/η)/|TL0,L1(x)|
0 g ≥ ln ((2− η)/η)/|TL0,L1(x)|.

(9)

In order to have approximately 1 − η values of
g · TL0,L1(xi), i = 1, 2, . . . , n, in the sigmoid transi-
tion curve, the objective is to select g such that

1
n

n∑
i=1

Θ(xi) ∼= 1− η. (10)

Taking a careful look at Eqs. 9 and 10, the parameter η
(0 < η < 0.5) defines the percentage (that is, 1 − η) of the
training examples that will be placed into the sigmoid tran-
sition curve.

To find a initial value for g, we need first to compute
ln ((2− η)/η)/|TL0,L1(xi)|) for each example xi; second,
select the bη · nc-th value of these numbers; third, set up g
as this value. The following algorithm describes this proce-
dure.

1: COMPUTEG (L0,L1, Sn, η)
2: Input: two set of SLSs L0 and L1, a sample set

Sn and η (0 < η < 0.5).
3: Output: the constant g.
4: for each xi ∈ Sn do
5: vg[i]← ln ((2− η)/η) /|TL0,L1(xi)|;
6: end for
7: return the bη · nc-th element of vg.

The computational complexity of the algorithm COM-
PUTEG(L0,L1, Sn) is O(n ln(bη · nc)). Depending on the
implementation of the algorithm to find the i-th element,
the computational complexity of COMPUTEG(L0,L1, Sn,
η) can be O(n).

For our experiments we choose η = 0.2, therefore, we
consider approximately 80% of samples will be in the train-
ing in the transition curve.

4.3. Gradient Descent Method

The criterion to find the best positions for the extrem-
ities of the SLSs needed for the classification function is
to minimize the empirical risk (Eq. 7) with respect to the
SLSs in L0 and L1. In [16], Ribeiro and Hashimoto pre-
sented a training algorithm for finding these positions. How-
ever, their training algorithm is based on a heuristic. In fact,
the search for this best function is a hard nonlinear opti-
mization problem. In this section, we present a new and im-
proved training algorithm for the SLSs technique based on
gradient descent optimization method [6].

In order to find the best classification function, we need
to minimize the empirical risk (Eq. 7) with respect to the
SLSs in L0 and L1. In our case, the parameter vector α of
Eq. 7 is defined by:



α =


pj,kh

...
qj,kh

...

 ,
j = {0, 1};
k = {1, . . . , |Lj |};
h = {1, . . . , d+ 1};

(11)

where pj,kh and qj,kh are the values of the h-th coordinate of
the k-th SLS (pq)k ∈ Lj . The function VETORIZE(L0,L1)
in the TRAINING procedure returns a vector α as described
by Eq. 11.

The gradient of the empirical risk with respect to the
SLSs extremities,5αR̂(α), gives the direction in which the
parameter vector α (that is, the extremities of the SLS in L0

and L1) must be displaced in order to get the most risk vari-
ation.

If | 5α R̂(α)| = 0, the empirical risk will not change
for any infinitesimal extremities displacement in any direc-
tion. Therefore, this point may be a maximal point, minimal
point or saddle point.

The adjustment of the extremities of the SLSs L0 and
L1 is done by using the gradient descent method. In this
methodology, the parameter vector is displaced gradually in
the gradient direction for minimizing the empirical risk.

Each displacement is proportionally to γ, where γ ∈ R
and γ > 0. If the γ is very large, then the displacement
may be exaggerated making the empirical risk increasing
(instead of decreasing). On the order hand, if the value of γ
is very small the rate of the minimization of empirical risk
may be very slow.

We use a dynamic value for γ. At each iteration, if the
displacement of the SLSs decreases the empirical risk, the
value of γ is increased by the factor γinc (Line 14 of the
TRAINING procedure); and, conversely, if the empirical in-
creases, then the value of γ is decreased by the factor γdec
(Line 18 of the TRAINING procedure). So, in order to im-
prove the rate of convergence, we can increase the value of
γ when the displacement of the SLSs decreases the empir-
ical risk and, on the other hand, we can decrease γ by half
when the displacement of the SLSs increases the empiri-
cal risk avoiding exaggerated displacements.

1: TRAINING (Sn, nSLS, imax, γmin, γinit, γinc, γdec,
η)

2: Input: A sample set Sn = {(xi, yi) ∈ Rd × {0, 1}, i =
1, . . . , n}; the number nSLS ≥ 1 of SLSs in L0

andL1; the maximum number of iterations imax;
the minimum value γmin for γ (with 0 < γinit <
γinc); the initial value γinit (with γinit > 0) for
γ; constant γinc (with γinc > 0) to increase γ;
the constant γdec (with 0 < γdec < 1) to de-
crease γ and the parameter for the sigmoid tran-
sition curve.

3: Output: two sets of SLSs L0 and L1.

4: [L0,L1]← PLACING(Sn, nSLS);
5: g ← COMPUTEG(L0,L1, Sn, η);
6: α← VETORIZE(L0,L1);
7: R0← compute R̂(α);
8: i← 0; αbest ← α; γ ← 0.1;
9: repeat

10: dR← compute5αR̂(α);
11: α← α− γ · dR;
12: R1← compute R̂(α);
13: if R0 ≥ R1 then
14: γ ← γ · (1 + γinc) ;
15: αbest ← α;
16: R0← R1;
17: else
18: γ ← γ · γdec ;
19: α← αbest;
20: end if
21: i← i+ 1;
22: until (i > imax) or ( γ < γmin);
23: return L0 e L1 extracted from αbest;

The computational complexity of TRAINING proce-
dure is the sum of the computational complexity of PLAC-
ING(Sn, nSLS), COMPUTEG(L0, L1, Sn, η) and the
loop repeat. . . until (Lines 10 through 23) for the gra-
dient descent method. Thus, the time complexity is
O(n2· d· nSLS)+O(n ln(b η·nc))+O(n·d·nSLS ·imax).

5. Experimental Results

We conducted three experiments. In the first one, we
used artificial datasets. There are two main purposes for this
experiment: 1) to assess the behavior of SLS technique us-
ing this new training algorithm and 2) to compare this new
training algorithm against the previous training algorithm
described in [16]. To improve this comparison, we con-
ducted a second experiment using the same public datasets
used in [16]. For the third experiment, we used the public
datasets used by Hsu and Lin used in [8] in order to evalu-
ate the SLS method using real data and compare it to SVM
method.

5.1. Artificial Datasets

The artificial datasets were created using the space R2

as the feature space to make possible a better analysis and
visualization of the results. Considering the purpose of this
experiment, we applied the SLS technique to two-class clas-
sification problem.

The probability distributions used in this experiment are
defined by rectangular regions. Each region is associated
to one class. Inside of each region, the probability density
function is uniform. Since we known the probability distri-



bution, we can use the Bayes classifier [5] to compute the
best rate of correct classification for each artificial dataset.

Fig. 3.a represents the probability distribution called
Simple. The intersection region has 50% probability for
each class, therefore, this region has 50% probability of
misclassification error. Thus, since 11.11% of examples are
in the intersection region, the ideal classification function
(or Bayes classifier [5]) will reach 94.44% of correct classi-
fication rate.

Using the same approach, we built three more probabil-
ity distributions named DistX, DistS and DistF (Fig. 3.b, 3.c
and 3.d, respectively). These probability distributions have
ideal classification functions that reach at most 72.22% of
correct classification rate for distX, 84.85% for distS and
80.00% for distF.

From each probability distribution, we have generated
five samples with the following numbers of examples: 25,
50, 100, 200, 400, 800, 1600, 3200, making 40 samples in
total. Then, for each sample, we applied the SLS technique.
Since the probability distribution is known, we can use nu-
merical integration to compute the classification rate of the
classifiers obtained by the SLS technique.

In this experiment, we used as parameters for the train-
ing algorithm the following values: imax = 1000, γmin =
10−5, γinit = 0.1, γinc = 0.1, γdec = 0.5 and η = 0.2.
By empirical observations, we noted that the training algo-
rithm achieves a minimal local solution with these parame-
ters values.

In order to show the classification regions obtained by
the SLS technique, we use a graphic representation that
exhibits the value of function yL0,L1(x) for all values of
x ∈ R2 in the square domain [(0, 0)..(1, 1)]. The values of
function yL0,L1(x) are represented by a grayscale image.
Since the SLSs are in R3, only the projection of the SLSs is
shown on the graphic representation. Figs. from 3.e to 3.h
are examples of this graphic representation.

The experiments were conducted as follow: (a) one
using probability distribution called Simple with 1 SLS;
(b) another one using probability distribution DistX with
2 SLSs for each class; (c) another one using distribution
DistS with 1 SLS for each class and finally (d) three exper-
iments using probability distribution DistF with 2, 3, and
SLSs for each class.

In order to evaluate our training algorithm, we also ap-
plied the previous algorithm presented in [16], but, instead
of using their placing algorithm [16], we used ours with a
fixed number of SLSs. So, the comparisons were done us-
ing always the same output of the placing algorithm for both
algorithms.

Table 1 shows all results with artificial datasets. The
columns labeled “Heur.” (“Grad.”, respectively) indicate the
results obtained by the previous (our, respectively) training
algorithm. All the results on this table are average of five run

tests. The boldface numbers indicate the best classification
rates. Note that all results are very close to the ideal classi-
fication rate and the training using gradient descent usually
obtains the best performance.

5.2. Public Datasets

In order to have a systematic comparison to the previous
training algorithm, we did experiments with the same public
datasets used in [16]. Thus, we applied the SLS technique
using leave-one-out estimation error to wine and breast-
cancer datasets obtained from [1]. For this experiment, as
we did with the artificial datasets, we used the same out-
put of placing algorithm for both training methods (the pre-
vious one and the gradient descent). In this experiment, we
used from 1 to 4 SLSs for each class. The obtained results
are shown in Table 2. Note that, for both training algorithms,
we have comparable performances, but, again, the training
algorithm using gradient descent usually provides the best
performance.

To compare the SLS classification technique using this
new training algorithm to another one (Support Vector Ma-
chine -SVM- method), we used the same datasets that Hsu
and Lin used in [8]. The datasets are from Statlog [14] and
from UCI Repository [1]. All these datasets are accessible
at LIBSVM website [2]. Table 3 shows the characteristics
of these datasets. Since all these datasets have more than
two class, we have used the method One-Against-All [8] for
classification. In this method, we solve one two-class clas-
sification problem for each class: one class against the other
ones. Some of these datasets have separated training and test
data; in this case, we used cross-validation in order to esti-
mate the classification rate. For the others, which have just
training data, we used 10-fold-cross-validation, as Hsu and
Lin used in their work [8]. We always select a value to imax
large enough to guarantee convergence of the empirical risk
to a local minimum. All other input parameters for the train-
ing algorithm have the same values that we used in the ar-
tificial data experiments. The comparison of our results to
the ones obtained by Hsu and Lin [8] for the one-against-all
classification are summarized in Table 3.

The datasets vehicle, segment, satimage and letter are ap-
plications from Image Processing and Computer Vision ar-
eas. The experiment using vehicle dataset is an application
to identify the model of vehicles by inspection 2D images;
the first aim of this experiment is to identify 3D objects from
2D images. The objective of the experiment using segment
database is to classify seven different types of textures. The
purpose of the experiment using satimage dataset is to pro-
cess multispectral satellite images. Finally, the experiment
using letter database is the classical problem of handwrit-
ing recognition.

The experiments with the public datasets show that the



Figure 3. On top, probability distribution called: a) Simple, b) DistX, c) DistS and d) DistF.
On bottom, representation of classification regions obtained by the SLS technique using training
sets drawn from probability distribution called: e) Simple, using 1 SLS for each class and a sample
with 3200 examples; f) DistX, using 2 SLSs for each class and a sample with 1600 examples; g) DistS,
using 1 SLS for each class and a sample with 3200 examples and h) DistF, using 3 SLSs for each
class and a sample with 1600 examples.

Simple (1) DistX (2) DistS (1) DistF (2) DistF (3) DistF (4)
# of examples Heur. Grad. Heur. Grad. Heur. Grad. Heur. Grad. Heur. Grad. Heur. Grad.

25 93.99 93.27 65.09 68.82 79.42 79.71 69.53 69.49 72.50 69.21 70.51 70.69
50 94.09 92.85 64.95 69.29 80.70 83.10 67.95 71.47 69.01 73.25 70.30 71.96

100 94.21 92.95 64.43 71.87 80.83 83.57 71.46 76.76 73.80 76.70 75.24 75.83
200 93.97 94.24 71.82 72.11 82.34 83.15 70.27 73.98 74.09 77.41 75.77 78.19
400 94.28 94.23 71.35 72.22 82.14 83.67 72.06 77.69 73.36 76.55 77.26 78.03
800 94.37 94.36 71.76 72.22 82.13 84.09 73.91 76.83 74.48 78.80 73.81 79.43

1600 94.41 94.43 72.21 72.22 82.96 84.20 74.88 77.32 72.63 78.27 76.17 79.23
3200 94.36 94.43 71.99 72.22 82.96 84.55 75.85 75.64 72.40 78.09 75.24 79.33

Ideal Classification Rate (%) 94.44 72.22 84.85 80.00

Table 1. Experimental results using artificial datasets.

SLS technique has a good classification rate in comparison
to the SVM method. Many classification rates obtained by
SLS technique were close to the SVM ones obtained by Hsu
and Lin [8].

6. Conclusion

This paper presents a new training algorithm for the SLS
technique presented in [16]. In fact, the key issue in this
technique is to find two collections of SLSs such that the
classification function minimizes a certain risk function.
The search for this best classification function is a hard non-
linear optimization problem. The main contribution of this

work is to present a new and improved training algorithm
for the SLSs technique based on gradient descent optimiza-
tion method. Besides, this training algorithm is easier to im-
plement compared to the one presented in [16]. Both algo-
rithms have good results for classification, but usually, the
new algorithm uses less SLSs, and thereby, leading to lower
computational complexity for evaluating new query points.
The experiments using public datasets show the viability of
the SLS technique. For the most datasets, we achieved very
good classification rates similar to SVM method, even when
the training algorithm does not guarantee the best classifi-
cation function. For future work, we will research a training
algorithm that guarantees the optimum position for SLSs



Database training test class features SVM [8] 1-SLS 2-SLS 3-SLS k-SLS
iris 150 − 3 4 96.66 96.25 95.00 93.75

wine 178 − 3 13 98.87 97.78 98.33 97.78
glass 214 − 6 13 71.93 69.55 73.18 70.00

vowel 528 − 11 10 98.48 82.08 85.47 86.79
vehicle 846 − 4 18 87.47 74.82 73.53 73.88

segment 2310 − 7 19 97.53 93.45 93.15 93.23
satimage 4435 2000 6 36 91.70 89.33 90.21 91.27

letter 15000 5000 26 16 97.88 73.73 82.33 82.33 82.92 (k=8)
shuttle 43500 14500 7 9 99.91 99.60 99.56 99.71 99.68 (k=6)

Table 3. Datasets features and obtained results.

Wine Breast-Cancer
# of examples 178 682

# of classes 3 2
# of SLSs Heur. Grad. Heur. Grad.

1 96.07 98.32 96.34 96.78
2 97.75 97.76 96.34 96.92
3 97.75 98.32 96.63 96.34
4 99.44 98.32 96.49 96.78

Table 2. Experimental results for Wine and
Breast-Cancer datasets for the training algo-
rithms using leave-one-out estimation error.

and modify the SLS machine learning to a more general
method.
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