
Shape Aware Deformation Using a Skeleton-Guided Scheme

Alvaro Cuno, Claudio Esperança and Antonio Oliveira
Federal University of Rio de Janeiro - COPPE/PESC

Abstract

This work presents a method for deforming meshes in a
shape-sensible way using Moving Least Squares (MLS) op-
timization. It is explained how an approach for space de-
formation [10] can be transformed into a skeleton-guided
deformation scheme, where more sensitivity to the mesh ge-
ometry is achieved. Given a mesh and its skeleton, for each
joint a minimization problem is solved subject to positional
constraints given by the user. The mesh geometry is then
modified by blending optimal transformations computed at
skeleton joints associated with each vertex of the mesh. Ad-
ditionally, it is shown how a small reformulation of the MLS
scheme makes it possible to affect the bending behavior of
the deformation.

1. Introduction

Interactive direct modification of 3D surface meshes,
specially in the context of character animation, can be de-
fined as a process where the shape of a model is altered
through constraints specified by the user. Traditionally, in-
verse kinematics techniques [11] are preferred for this task.
These, however, require that the character being animated
is attached to a very carefully designed skeleton data struc-
ture, where bone and joint movement restrictions are estab-
lished manually. In addition, the movement of a limb does
not usually propagate to the rest of the model, which makes
the authoring of a simple animation rather time consuming.

Recently, several techniques based on optimization
schemes have been proposed for this task [1, 8, 17]. Most
of these focus on obtaining a new pose for a given charac-
ter by means of a deformation process guided by the dis-
placement of a few points attached to the model. This type
of interaction can be effected by dragging a 2D mouse on
a window canvas, thus providing a very intuitive inter-
face for authoring animations. No restrictions are given
for mouse dragging, i.e., the constraints can be sepa-
rated or stretched freely and rotations need be not spec-
ified explicitly. However, it is required that the model
shape should be preserved as much as possible giv-
ing the user the idea he is manipulating a real object.

Deformation techniques that avoid unnatural shearing
and arbitrary scaling of the models are of special interest,
since the global shape and local details are preserved after
editing operations [17]. Recently, Schaefer et al. [16] used
this paradigm for performing interactive image deforma-
tion. In that work, the key solved problem was how to find
the rotation component for the optimal rigid-body transfor-
mation efficiently. They presented a closed-form solution
using the relationship between similarity and rigid transfor-
mations obtaining attractive results. Their algorithm use as
input a 2D image and a set of control points. After the user
drags some of these control points, the image is altered com-
puting a transformation restricted to be “as rigid as possi-
ble” for each element of the image (not necessarily a pixel).
They used a moving least squares optimization approach for
computing a varying solution for each image element.

An approach for deforming 3D models following Schae-
fer’s ideas has been presented in [10]. Although it presents
an efficient formulation for computing the rotation compo-
nent in 3D, non-natural results can be obtained when the de-
formation is applied on surface models, as the deformation
process is blind to the shape of the model. Figure 1 illus-
trates this problem.

The main contributions of this work are: (1) a proposal
for applying “as rigid as possible transformations” sensi-
ble to the model shape, (2) a reformulation of the MLS
scheme when applied to skeletons in order to provide bend-
ing control, and (3) a simplified skinning/rigging which
works well even for poorly designed or automatically con-
structed skeletons. We propose to solve the mesh deforma-
tion problem by adapting the method presented in [10] into
a skeleton-driven deformation scheme. Then, given a mesh
model and its associated skeleton, we perform the deforma-
tion on the skeleton joints and project the transformations
into the mesh. Sensitivity to shape is achieved by using a
distance metric defined over the skeleton bones. Figure 1(d)
shows more natural results when compared with results on
Figure 1(b).

2. Related Work

Interactive deformation methods have attracted much at-
tention in recent years, especially those which aim at pre-

(a) (b)

(c) (d)

Figure 1. MLS-based deformation ap-
proaches: (a) Initial model and control points.
(b) Standard MLS deformation based on op-
timal rigid transformations and the Euclidian
metric; (c) using a geodesic path metric de-
fined over the mesh; and (d) skeleton-guided
MLS deformation.

serving surface detail and which support intuitive user inter-
faces [1, 8, 17]. Another frequent requirement is that results
are predictable and physically plausible even when no phys-
ical properties are specified. Overall, such methods may be
divided into two broad classes: those that operate on some
representation of the model surface, and those which de-
form the space where the model is embedded.

Surface deformation methods try to meet deformation
specifications by preserving differential properties of the
surface and minimizing detail distortion. These techniques
express the deformation requirements as a non-linear opti-
mization problem which is then linearized and solved using
standard numeric tools [15, 3, 12]. In particular, the size of
the linear system depends not only on the size of the part of
the model subject to deformation, but also on the size of the
handles used to guide the process. In this respect, the work
of Sorkine and Alexa [17] is of special interest to us since
they are able to obtain convincing results using a small set
of points as handles.

Space deformation schemes, on the other hand, are able
to cope with a wider spectrum of model representations.
The idea is to express deformations as transformations of
the space in which the model is embedded. In this con-

text, the so-called as-rigid-as-possible transformations are
of special interest, since they tend to produce physically
plausible results by avoiding unnatural shearing and non-
uniform scaling of the model. By making use of a Moving
Least Squares approach, Schaefer et al. [16] have recently
presented a way of computing such deformations for 2D im-
ages. In order to produce as-rigid-as-possible deformations
in <3, it is necessary to obtain a rigid transformation which
best approximates a mapping f : <3 7→ <3, f(pi) = qi, for
given sets of points {pi}, {qi}. This problem is also known
as point registration, or, more specifically, the Absolute Ori-
entation Problem. Analytical solutions have been proposed,
for instance, based on SVD (Singular Value Decomposi-
tion) [2], quaternions [13, 14], orthonormal matrices and
dual quaternions [19]. Another related group of techniques
includes those based on iterative schemes such as the ICP
(Iterative Closest Point) algorithm [5] and its variants. In
[10] a solution is proposed where the axis and angular pa-
rameters of the rotation are obtained. That method requires
a smaller number of computations than matricial and even
quaternion-based approaches, but is still quite computation-
ally expensive, as it requires solving a depressed quartic
equation for every vertex of the mesh. Other types of trans-
formations can also be used for space deformation – Botsch
et al. [6], for instance, use Radial Basis Functions (RBFs)
for this purpose. The chief disadvantage of space deforma-
tion schemes is that their blindness to the model’s shape
may lead to inadequate results. Figure 1 illustrates this ef-
fect when using a MLS-based scheme [16, 10]. The main
goal of this work is to cope with such problems by apply-
ing MLS tools on a space spanned by a skeleton for the
model rather than its 3D embedding space.

3. Moving Least Squares Deformation

Let {pi} be a set of control points and x be a point in <3.
After new positions {qi} are defined for the control points,
the problem consists in finding the rigid-body transforma-
tion T that minimizes

∑
i wi|Tx(pi)− qi|2, where wi is a

weight function defined as wi(x) = |pi − x|−2 and | · | de-
notes Euclidian distance metric.

It was shown (see [16]) that the optimal MLS-based so-
lution is defined as

T (x) = R(x − p*) + q*, (1)

where R is a rotation matrix and

p* =
∑

i wi pi∑
i wi

, q* =
∑

i wi qi∑
i wi

. (2)

In [10], the rotation R in 3D is defined by an angle α and
an axis u, and it was shown that this rotation axis is given
by the solution of the 3× 3 system

(M + MT − λI) uT = VT,

(a) (b) (c)

Figure 2. (a) Model deformation with no bending control; (b) using decreasing bending weights on
joints from feet to head, and (c) using increasing weights.

where

M =
∑

i

wiq̂T
i p̂i, V =

∑
i wip̂i × q̂i,

q̂i = qi − q*, p̂i = pi − p*,

and λ is the largest root of the depressed quartic equation

y4 − 2‖M‖2 y2 − 8 det(M) y − E4 +2‖M‖2E2

−8 det(M)E+det(N)(2E − VN−1VT) = 0.

In the last equation, E is the trace of M and || · || denotes
the Frobenius norm. Additionally, expressions for comput-
ing angular parameters are given by

cos(α) =
1− ‖u‖2

1 + ‖u‖2
and sin(α) =

−2‖u‖
1 + ‖u‖2

.

Finally, if we substitute cos(α) and sin(α) in the axis-
angle rotation formula, then it can be seen that the optimal
rotation to be applied on vector v depends only on u:

R(v) = v − 2(u × (v × u) + (v × u))
1 + ‖u‖2

. (3)

The scheme described above produces a space deforma-
tion, i.e., it defines a <3 → <3 mapping. The modeling of
a particular deformation is influenced merely by a discrete
set of {pi, qi} pairs. As such, any model immersed in 3D-
space will be subject to the same deformation, with no con-
sideration to its shape. This is unfortunate in many impor-
tant applications – character animation, in special – where
the desired deformation must take into account model pe-
culiarities such as overall shape, bone structure and the po-
sition and geometry of articulations. As an illustration, con-
trast the unnatural deformation shown in Figure 1(b) with
the more reasonable deformation exhibited in Figure 1(d).

In an attempt to reduce such undesired artifacts we first
tried to simply replace the Euclidian metric of the MLS for-
mulation by a more “shape aware” metric. Figure 1(c) illus-
trates a deformation obtained with the MLS scheme using a

geodesic metric, i.e., the distance between any two points on
the surface of the model is measured in terms of the length
of the shortest curve connecting these two points which can
be drawn on the surface. Although this idea addresses some
of the problems, it is incapable of coping with some unde-
sired shrinking/stretching effects. Most of these problems
are overcome with a hybrid scheme combining as-rigid-as-
possible space deformations and skeleton-based animation
techniques, described below. Our goal is to obtain reason-
able model poses specified by suitably placing a small set
of control points.

4. Bending Control

The proposed method deviates from the standard space-
based scheme by applying MLS optimization on a skeleton
structure, rather than directly on the model points. The idea
is similar to the method based on geodesic distances dis-
cussed above, but, here, these are measured along the bones
and joints of a skeleton. Changes on the skeleton are propa-
gated to the mesh using standard linear blending skinning.

The advantages of using a skeleton are two-fold. Firstly,
the skeleton is very good representation of the overall shape
of the model, which means that changes to it are almost im-
mune to small detail present on the surface of the model.
Secondly, in addition to the use of control points which the
method tries to interpolate, it is possible to influence the be-
havior of the method by altering the distances traveled along
bones and joints, making some parts more “rigid” than oth-
ers.

The idea of influencing the bending behavior of the de-
formation arises from the analysis of the translation com-
ponent of the scheme. Observing Equations 1 and 2, one
notices that merely changing the values for wi does not al-
ter the shape of the set of q* values. In other words, let A, B
and C be three collinear joints on a given skeleton; then al-
tering the bone lengths between them may cause their rel-
ative distance to vary, but they will still be collinear, if we
ignore rotation components. This suggests that the compu-

(a)

(b)

Figure 3. With no bending control, the move-
ment of the head influences the feet (a). The
use of constant bending weights isolates the
legs from movement of the torso (b).

tation of q* values is based on different wi values than those
used for p*. Let us then rewrite the equation for q* as fol-
lows

q* = p* +
∑

i w′
i (qi − pi)∑

i w′
i

. (4)

Notice that when w′
i = wi, this is identical to Eq. 2. All

it remains is to establish convenient values for w′
i in or-

der to obtain the desired bending behavior. By using in-
creasing / decreasing values along a sequence of joints be-
tween two control points, it is possible to obtain parabolas
of different concavities. Figure 2 illustrates this effect on
the “Homer” model. On the other hand, the use of constant
bending weights in a sequence of joints does not alter the
overall shape of the skeleton curve, but diminishes its de-
formation influence on the remaining joints. This is shown
in Figure 3.

5. Skeleton-Driven Mesh Deformation

The scheme is divided into two phases: the setup (rig-
ging) phase, performed only once, and the deformation
phase, performed once for each desired pose.

In a nutshell, the rigging phase first extracts from the
model an approximate skeleton, i.e., a tree-like structure
composed of joints and bones (Figure 4(a)). Next, each
mesh vertex is associated with a skeleton joint (Figure 4(b)).
Lastly, a weight distribution process establishes the relative
influence of each joint in the deformation of any given mesh
vertex (Figure 4(c)).

In the deformation phase, the user first defines a set
{pi} of control points on the skeleton (red dots in Figure
4(d)). These, in turn, are interactively moved to target po-
sitions {qi} which will cause the joints to be modified fol-
lowing the MLS scheme introduced in Section 3, but with
the distances along the skeleton measured in terms of path
lengths rather than using the Euclidian norm (Figure 4(e)).
For each joint j, centroids {p*j} and {q*j} as well as rota-
tion vectors {uj} are cached. Observe that, unlike skeleton-
based character animation, our scheme does not guarantee
that each bone will be transformed rigidly. Finally, a linear
blending of transformations is computed for each mesh ver-
tex using the cached values (Figure 4 (e)).

5.1. Skeleton Extraction

Almost any automated method for skeleton extraction –
see [9] for a survey – may be used in our scheme since, un-
like skeletons used in traditional animation schemes, it re-
quires no particular topology or strict correspondence be-
tween skeleton and mesh. In fact, the skeleton may even be
quickly sketched manually, since – the examples shown in
this paper, for instance, were obtained in this fashion.

5.2. Mesh Segmentation and Rigging

Once the skeleton is known, all mesh vertices are parti-
tioned into skin sets Sj , where each set Sj contains all ver-
tices primarily influenced by the transformation of a given
joint j. A skin set Sj is defined as the union of two sets of
mesh vertices (see Figure 5): a primary skin Pj and a sec-
ondary skin Qj .

The primary skin Pj is the set of mesh vertices v such
that, among all joints of the skeleton which are visible to v,
j is the closest. By visible, it is meant that a line segment
from v to joint j does not intersect the mesh. The secondary
skin Qj of a joint j is the set of vertices for which joint j is
the solution of the problem

min
j∈joints

g(v, Pj),

where g(a,X) is the geodesic distance between a point a
and a set of points X . Recall that the geodesic distance be-
tween two points of a surface is the length of the shortest
path on the surface which connects them.

It should be mentioned that exact algorithms to compute
these sets are fairly costly. Thus, rather than computing ex-
act geodesic path lengths, we only consider paths composed
of mesh edges. This makes it possible to employ Dijkstra’s
path length algorithm starting from vertices on the border
of primary skin sets to find secondary skin vertices.

Similarly, visibility determination using, say, a ray-
casting algorithm is unduly expensive for the task at hand.

(a) (b) (c) (d) (e)

Figure 4. Skeleton-guided deformation process. In the setup phase, (a) a skeleton is embedded into
the mesh. (b) Mesh is segmented in clusters. (c) Influence of joints defined for each vertex. Ver-
tices on dark regions will be influenced by one only joint and vertices on other regions will be in-
fluenced by more than one joint. In the deformation phase, (d) control points (red) are defined over
some skeleton joints (black). (e) After moving one control point the skeleton is deformed and posi-
tions of mesh vertices are modified projecting transformations computed on associated joints.

Figure 5. The primary skin Pj of joint j is the
border of the red region, and the secondary
skin Qj is the border of the yellow region.

Rather, we use a visibility propagation algorithm which em-
ploys a “local” visibility property. A joint j is locally visible
to a vertex v if the angle between the (inwards-facing) nor-
mal at v and the vector from v to joint j is smaller than
90 degrees (we assume that skeleton is always placed in-
side the mesh). Let L(j) be the set of mesh vertices lo-
cally visible to j and which are closer to j than to any other
joint k to which it is also locally visible. Then, the algo-
rithm for finding the primary skin of joint j is the follow-
ing:

1. Initialize P (j) with {seed}, where seed is the mesh
vertex in L(j) which is closest to j.

2. Let V = L(j) − P (j). Search V for a vertex v′ such
that v′ is an edge neighbor of some vertex v ∈ P (j).

3. If such a vertex is found, place it in P (j) and repeat
step (2).

4. If V 6= ∅, select another seed ∈ V by making sure that
seed is globally visible using ray-casting. If none can
be found, stop. Otherwise, include seed in P (j) and re-
peat step (2).

This algorithm is very quick, as finding edge neighbors and
testing for local visibility are constant-time operations. If
other seeds have to be found by ray-casting (step 4 above),
the process is constrained to a neighborhood of j. In our ex-
perience, even if a vertex that should belong to a primary
skin is not found, most of the time the algorithm to com-
pute secondary skins assigns that vertex to the correct joint.
Moreover, it should be stressed that the skinning process
used for deforming the model is fairly robust to vertex as-
signment errors. Figure 6 shows the segmentation results for
a few selected models.

5.3. Skin Weight Determination

Despite the fact that each mesh vertex is assigned to
a single skin set Sj , joints other than j may also influ-
ence its deformed position. One must, therefore, determine
a weighting1 scheme capable of ascertaining the smooth-
ness of the deformed mesh. Recent approaches to this prob-
lem (see, for instance, [4]) emulate a heat diffusion process
from the skeleton to the mesh, which occurs only within its
interior as if the mesh surface were a perfect thermal insu-
lator. To avoid the complexity of solving a 3D heat diffu-
sion problem constrained to a polyhedron, it is considered
that the heat emitted by joint j is totally directed to set Sj .
From Sj that heat is diffused to the whole mesh. Now, as-
sume that joint j has temperature 1 whereas all other joints
have temperature 0. Let wv represent the current tempera-
ture of a mesh vertex v. Then, since it is considered that
energy is radially spread from the joints to the mesh (and
vice-versa), the heat flow between a vertex v ∈ Sk and
joint k is given by α(1 − wv)/||v − k||2 if k = j, and

1 Not to be confused with the weights used in the MLS formulation.

Figure 6. Segmentation results.

−αwv/||v − k||2 otherwise, where α is a global constant.
When an equilibrium state is reached, that flow must be
equal to the flow between v and its neighbors, which can
be estimated by

∑
u∈N(v) (wu − wv)∆uv, where N(v) is the

set of edge neighbors of v and ∆uv is the weight assigned
to edge (u, v), which in our prototype is given by the cotan-
gent form of the Laplace-Beltrami operator [8]. Steady state
temperatures determined by the heat emitted by j, are, then,
obtained by solving a system of n equations (one for each
vertex v) of the form

α(Rj(v)− wv

||v − k||2
) +

∑
u∈N(v)

(wu − wv)∆uv = 0

where Rj(v) is the characteristic function of Sj , i.e., equal
to 1 if v ∈ Sj and 0 otherwise. Each vertex temperature wv

thus obtained, is taken as the weight of joint j in the lin-
ear blending of transformations applied to v. In order to de-
termine all weights, a similar system must be solved for all
joints.

It should be mentioned that this formulation has several
interesting properties. First of all, the weights obtained for
each joint j minimize a discretization of a functional of the
form

∫
v∈M

(∇(wv)2 +α(Rj(v)−wv)2dv. In other words, it
not only yields smooth values of wv, but also makes it fol-
low the information given by the rigging. Besides, it ensures
that the sum of joint weights is 1 at every vertex and makes
the “amount of blending” at a vertex be regulated by its dis-
tance to the skeleton.

6. Results

Figure 7 shows four poses of armadillo model obtained
with the tecnhique. Since the mesh is deformed in a nearly
rigid way, local detail tends to be preserved (notice, for
instance, the wrinkles and bumps on the hands, legs and
hump). More deformation results can be seen in Figure 8.
These examples were obtained setting four or five control
points only. The time for computing these deformations is
directly dominated by the setup phase, that is, the construc-
tion of the rigging structure. In contrast, the deformation
phase must compute the MLS optimal transformations for
joints positions only, while the mesh deformation proper is
achieved using a cheap linear blending skinning. Deforma-
tions in Figure 8 were obtained interactively at around 15
FPS in a PC equipped with a Pentium Core 2 Duo proces-
sor running at 2 × 2.13 GHz and a NVidia GeForce 8300
GTS graphics card. The size of models, number of joints
and control points are presented in Table 1.

Model Vertices Joints Control Points

Armadillo 165K 33 5
Elephant 185K 29 5
Hand 195K 32 6
Dragon 247K 26 5

Table 1. Data size of models in Figure 8.

6.1. Limitations.

The use of positional constraints may be cumbersome or
insufficient for expressing certain poses. For instance, the
rotation of a hand around the axis of the forearm can not be
expressed if the hand bones are not transversal to the fore-
arm bone.

Figure 7. Several poses of the Armadillo
model obtained with the proposed scheme.

Although the proposed scheme is very cheap compu-
tationally, the results are somewhat inferior to other more
sophisticated surface deformation approaches such as
Laplacian-based techniques (e.g., [8]) or non-linear meth-
ods (e.g., [7]). In order to address this, we are currently in-
vestigating the introduction of other types of restrictions
such as those described in [18] in the MLS minimiza-
tion process.

Another important issue is the fact that transformations
are computed only at joint positions and propagated along
the bones. This may lead to unnatural bending such as that
shown in Figure 9, which may be alleviated with a care-
ful authoring of the blending weights. Alternatively, the
scheme could be modified so that the transformations are
computed for bones and blended at joints. It should be
stressed, however, that this limitation is inherited from the
classic skeleton-based linear blending scheme.

7. Conclusions

In this work, we propose a skeleton-driven “as-rigid-
as-possible” deformation scheme, transforming the original
space-deforming algorithm into one which is more sensible
to the geometry of meshes. Deformed poses are obtained
by dragging control points and joint weights can be used
to affect the bending behavior. The method employs a rig-
ging procedure which requires a very simple set of opera-
tions – essentially, the computation of distances from ver-
tices to joints and a progressive expansion process in the
mesh graph.

(a)

(b)

(c)

(d)

Figure 9. Deformations obtained using differ-
ent weights distribution. (a) A bar model and
its skeleton. (b) Segmentation of mesh ver-
tices. Each vertex is associated with the clos-
est joint. (c) and (d) illustrate two weight dis-
tributions and the corresponding deforma-
tions.

Results show a more plausible deformation of models
when compared with the original formulation. The pro-
posed method is fairly simple making it an attractive alter-
native to standard inverse kinematics in the sense that it de-
pends less drastically on skeleton constraints, making it pos-
sible to employ automatically constructed skeletons.

The approach is also more efficient than other more
involved mesh deformation schemes, since only skeleton
joints must be transformed directly by the MLS formu-
lation, making it possible to interactively deform models
composed of up to a few hundred thousand vertices.

Acknowledgement. The first author is supported by a
CAPES/CNPq fellowship - IEL Nacional - Brasil. All mod-
els in this paper were obtained from AIM@SHAPE reposi-
tory.

References

[1] M. Alexa. Interactive shape editing. ACM SIGGRAPH
Courses, 2006.

[2] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares
fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Mach.
Intell., 9(5):698–700, 1987.

Figure 8. Deformation examples.

[3] O. K.-C. Au, H. Fu, C.-L. Tai, and D. Cohen-Or. Handle-
aware isolines for scalable shape editing. ACM Trans.
Graph., 26(3):83, 2007.

[4] I. Baran and J. Popović. Automatic rigging and animation of
3d characters. ACM Trans. Graph., 26(3):72, 2007.

[5] P. J. Besl and N. D. McKay. A method for registration of 3-D
shapes. IEEE Transactions on Pattern Analysis and machine
Intelligence, 14(2):239–258, Feb. 1992.

[6] M. Botsch and L. Kobbelt. Real-time shape editing using ra-
dial basis functions. Computer Graphics Forum, 24(3):611–
621, 2005.

[7] M. Botsch, M. Pauly, M. Wicke, and M. Gross. Adaptive
space deformations based on rigid cells. Computer Graph-
ics Forum, 26(3):339–347, Sept. 2007.

[8] M. Botsch and O. Sorkine. On linear variational surface de-
formation methods. IEEE Transactions on Visualization and
Computer Graphics, 14(1):213–230, 2008.

[9] N. D. Cornea and P. Min. Curve-skeleton properties, appli-
cations, and algorithms. IEEE Transactions on Visualization
and Computer Graphics, 13(3):530–548, 2007.

[10] A. Cuno, C. Esperança, A. Oliveira, and P. R. Cavalcanti.
3D as-rigid-as-possible deformations using MLS. In Pro-
ceedings of the 27th Computer Graphics International Con-
ference, pages 115–122, Petropolis, RJ, Brazil, May 2007.

[11] M. Fêdor. Application of inverse kinematics for skeleton ma-
nipulation in real-time. In SCCG ’03: Proceedings of the
19th spring conference on Computer graphics, pages 203–
212, New York, NY, USA, 2003. ACM.

[12] H. Fu, O. K.-C. Au, and C.-L. Tai. Effective derivation of
similarity transformations for implicit laplacian mesh edit-
ing. Computer Graphics Forum, 26(1):34–45, Mar. 2007.

[13] B. K. P. Horn. Closed form solutions of absolute orienta-
tion using unit quaternions. Journal of the Optical Society of
America, 4(4):629–642, Apr. 1987.

[14] K. Kanatani. Analysis of 3-d rotation fitting. IEEE Trans.
Pattern Anal. Mach. Intell., 16(5):543–549, 1994.

[15] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or. A
sketch-based interface for detail-preserving mesh editing.
ACM Transactions on Graphics (Proceedings of ACM SIG-
GRAPH), 24(3):1142–1147, 2005.

[16] S. Schaefer, T. McPhail, and J. Warren. Image deformation
using moving least squares. ACM Trans. Graph., 25(3):533–
540, July 2006.

[17] O. Sorkine and M. Alexa. As-rigid-as-possible surface mod-
eling. In SGP’ 07: Proceedings of the fifth Eurographics
symposium on Geometry processing, pages 109–116, Aire-
la-Ville, Switzerland, Switzerland, 2007. Eurographics As-
sociation.

[18] R. W. Sumner, J. Schmid, and M. Pauly. Embedded deforma-
tion for shape manipulation. ACM Transactions on Graph-
ics, 26(3):80:1–80:7, July 2007.

[19] M. W. Walker, L. Shao, and R. A. Volz. Estimating 3-D lo-
cation parameters using dual number quaternions. CVGIP:
Image Understanding, 54(3):358–367, Nov. 1991.

