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Abstract

Image registration is an important problem with several
applications in Medical Imaging. Intra-subject rigid reg-
istration requires a minimal set of parameters to be com-
puted, and is sufficient for organs with no significant move-
ment or deformation, such as the human brain. Rigid reg-
istration has also been used as the first step before inter-
subject deformable registration. In this paper we present a
fast and automatic method for 3D rigid registration of mag-
netic resonance images of the human brain. The method
combines previous approaches for mid-sagittal plane loca-
tion and brain segmentation with a greedy-search algorithm
to find the best match between source and target images.
We evaluated the method on 200 image pairs: 100 with-
out structural abnormalities and 100 with artificially cre-
ated lesions, such that it was possible to quantify the regis-
tration errors. The method achieved very accurate registra-
tion within a few seconds.

1. Introduction

Image registration is the process that aligns two or more
images in a common reference system of spacial coordi-
nates [12]. This alignment is often done by taking one im-
age domain as reference, transforming corresponding points
from each of the other image domains into the reference
system, and then extending this transformation to the re-
maining pixels. The main problems are the choice of suit-
able point subsets in each image domain and the determina-
tion of their mapping functions onto the reference system.

We address both problems in the context of rigid regis-
tration between 3D magnetic resonance (MR) images of the
human brain, obtained from a same individual in different
time instants. Our goal is to register pre- and post-surgical
images from epilepsy patients (mostly children), who had
lesioned brain tissues removed to eliminate the foci of the

seizures. An additional challenge is that, due to tissue re-
moval, some points do not have correspondents in the refer-
ence subset. Some patients did not cease the seizures after
surgery [27]. Localization and quantification of the varia-
tions in the brain tissues for such patients can help neurolo-
gists to understand the phenomenon and develop new treat-
ments.

We propose a fast and automatic method for 3D rigid
registration, where the point subsets are obtained from the
surface of the brain through segmentation [2] and their cor-
respondence is found in two steps. The first step aligns the
images by the mid-sagittal plane (MSP) [3] and the second
step completes registration by using a greedy-search algo-
rithm to find the mapping function between the source (ref-
erence) and target point subsets. Indeed, the MSP location
already uses the brain segmentation proposed in [2], so we
are also taking advantage of a subproduct of the MSP loca-
tion approach for registration.

The literature of medical image registration is vast, but
our method presents several desirable characteristics simul-
taneously, which make of it an important contribution: It
is fully 3D, simple, fast, and automatic. It has been exten-
sively evaluated on 3D MR-T1 images of the human brain,
with very accurate results. The experiments involved 200
target images, 100 without structural abnormalities and 100
with artificially created lesions, such that it was possible to
quantify the registration errors.

This paper is organized as follows. Section 2 presents a
short review on medical image registration. The proposed
method is described in Section 3 and the experiments with
discussion are presented in Section 4. Finally, we state con-
clusions and future work in Section 5.

2. Related Works

Medical image registration has been useful to combine
data from the same and different imaging modalities, such
that it becomes possible to visualize changes in anatomy
and physiology along time and under different conditions,



and to assist image-guided surgery, radiotherapy, and other
treatments. The literature is vast and there are several books
and surveys about medical image registration methods [12,
5, 1, 13, 20, 29, 16].

In [20], the authors classify registration methods accord-
ing to the nature of the registration basis, nature of the trans-
formation, domain of the transformation, user-interaction
level, transformation search method, image modality, and
transformation subject. These seven criteria are further sub-
divided in some levels as follows. According to the nature
of the registration basis, a method can be further classi-
fied as object-based or image-based. Object-based methods
are those that consider image segmentation (objects, points,
lines) to find the transformation [11, 4], while image-based
methods avoid segmentation for registration [6, 21, 19]. The
nature of the transformation can be rigid or deformable.
Rigid registration methods allow only rotations and trans-
lations, while deformable registration methods may change
the shape and form of the structures in the image. Methods
can also be classified according to the domain of the trans-
formation as global or local. In global approaches, a same
transformation is applied to the whole image domain. When
different parts of the image have distinct transformations,
the method is said local. According to the user-interaction
level, we classify the methods in interactive and automatic
approaches. Interactive methods require user intervention
in one or more registration steps, such as for point selec-
tion or segmentation, point correspondence, and adjustment
of the registration parameters [15]. Otherwise, the user only
provides the input images and the method is said automatic
[18]. In [20], a distinction is made between interactive and
semi-automatic. There, interactive means manual registra-
tion — the user provides the transformation. Their con-
cept of semi-automatic is what we call interactive. There-
fore, interactive to us stands for manual and semi-automatic
registrations. The transformation search further divides the
methods in those based on parameter estimation and pa-
rameter search. The former estimates the registration pa-
rameters from given point correspondences and the latter
determine the parameters by finding an optimum of some
function defined in the parameter space [23, 25]. The meth-
ods can also be called mono-modal or multi-modal, depend-
ing on the imaging modalities of the source and target im-
ages being the same or not. Finally, if the images are from
a same subject, the methods are called intra-subject, and
inter-subject otherwise [7, 8, 11].

According to the above criteria, our registration method
is classified as object-based, since the brain is segmented to
define the point subsets for registration; rigid, mono-modal
and intra-subject, since we are interested in aligning MR
images from a same patient; global, since the transforma-
tion for the point subsets is the same for the rest of the im-
age domain; automatic, given that the user only provides the

input images; and based on parameter search.
Due to the size of the literature and the lack of detailed

information in most papers, it is impossible to affirm that
our method is the best option for rigid registration of MR-
T1 images. However, we have observed in recent works that
several approaches are not efficient for 3D images or have
only been demonstrated for 2D images [30, 26, 17, 28], are
not automatic [22, 15], have often been presented with no
quantitative evaluation [15, 24, 9, 30], and seem to be lim-
ited to some applications [18, 14]. Our method is fully 3D,
fast, simple, automatic, and has been extensively evaluated
with abnormal images. Currently, it is limited to MR-T1 im-
ages, since the algorithms used for image alignment [3] and
segmentation [2] are modality-specific, but the main idea
can be used with other methods which are independent of
imaging modality.

A recent approach [18], for instance, uses a similar strat-
egy for 3D rigid registration of MR-T1 images. Instead of
pre-aligning images by the mid-sagittal plane (MSP), it es-
timates the equivalent meridian plane (EMP), which con-
tains the first and second principal axes computed by prin-
cipal component analysis (PCA). The process is then com-
pleted by searching for the transformation within a small
neighborhood, using Powell’s approach [23] and maximal
mutual information as optimization criterion. The authors
claim 100% acceptable registrations with a mean execution
time of 221 seconds (3.69 minutes, P4 3.0 GHz). However,
brain alterations due to brain asymmetries can modify the
EMP location and cause failure in registration. MSP loca-
tion [3], using the corresponding brain segmentation [2],
has been successfully evaluated for patients with lesions and
surgical cavities.

Another recent approach for registration of MR images
of the brain addresses a similar problem, where the match-
ing is partial between source and target images [14]. It uses
a probabilistic search algorithm over the parameter space
in order to find a rigid transformation. Initially, the entire
space is divided into a number of candidate parameter sets
with uniform distribution. The results of rigid registration
for each set are used to rank another number of the best can-
didate parameter sets with normal distribution. The authors
claim that the method converges to the optimal rigid regis-
tration in a finite number of iterations, and they further re-
fine registration using a deformable approach. The authors
evaluated the 2D case, where their method took from 57 to
101 seconds to register a single 2D slice to a 3D volume
(Athlon 2.2 GHz).

3. Method

A 3D MR image Î is a pair (DI , I), where DI ⊂ Z3

is the image domain and I(v) is the intensity of a voxel
v = (x, y, z) ∈ DI . Let Î = (DI , I) and Ĵ = (DJ , J)



be the source (reference) and the target images of the brain
for registration. The point subsets in DI and DJ are de-
fined as SI and SJ , respectively. We assume that Î and Ĵ

are aligned by the mid-sagittal plane (MSP), using the ap-
proach proposed in [3], which in turn segments the brain by
automatic tree pruning [2] (Sections 3.1– 3.3). These meth-
ods have been designed for MR-T1 images, but any other
approach to align images based on the MSP and to segment
the brain can be used to extend our method to other modali-
ties. We provide two options to define the subsets SI and SJ

from the surface of the brain and provide a greedy-search al-
gorithm to find the transformation T (SJ) ≈ SI that maps
SJ into their correspondent points in SI . This last step is
described in Section 3.4, and the registration process com-
pletes by applying T to the remaining voxels of DJ .

3.1. Automatic Brain Segmentation

Some steps of our method requires the segmentation of
the brain. We use the automatic tree pruning, a graph-based
segmentation approach that is fast, does not rely on tem-
plates and performs well regardless of age and anatomic
variations [2]. It employs automated histogram analysis and
mathematical morphology to select a set of markers in-
side the brain. An optimum path forest [10] is computed
from these markers, and the tree pruning technique evalu-
ates the forest automatically to detect the edges that cross
the object’s border, and then prunes the subtrees at these
edges. The resulting forest is a reasonable segmentation of
the brain. This method takes about 55 seconds to compute
the segmentation of a typical MR volume [2, 3], using a
2.0 GHz desktop PC. Figure 1 shows sample results from
this segmentation technique.

3.2. MSP Location

We use the MSP location method described in [3]. The
MSP matches the longitudinal fissure that separates the
brain hemispheres, which is filled with cerebro-spinal fluid
(CSF). In MR-T1, CSF appears as low intensity voxels. The
method requires brain segmentation, and locates an initial
MSP candidate aligned with the sagittal plane of the acqui-
sition. The mean intensity of the voxels in the intersection of
the candidate plane with a brain segmentation mask is used
as score. From the initial MSP candidate, the method per-
forms a greedy heuristic search that minimizes the score.
Given a brain segmentation (which can be computed as per
Section 3.1), this method takes about 5 seconds to locate the
MSP in a typical MR volume, using a 2.0 GHz desktop PC,
and is applicable to children and patients with structural ab-
normalities, such as lesions and surgical cavities. Figure 2
shows examples of MSPs located by this method in patients
with large surgical cavities.

(a) (b) (c)

(d)

Figure 1. Automatic brain segmentation by
tree pruning: (a), (b), (c): object borders on
sample 2D slices. (d): 3D rendition of the
brain object.

(a) (b)

Figure 2. Computed MSPs in MR images of
patients with large surgical cavities.

3.3. Image alignment based on MSP

After the MSP has been located in each of the input im-
ages, we apply a transformation to reformat the images such
that their MSP (xy-plane) will be located at a same coordi-
nate along the z-axis. In this reference system, the new im-
ages Î and Ĵ must be registered as described next.



3.4. Greedy Transformation Search

For given point sets SI ⊂ DI and SJ ⊂ DJ , al-
ready aligned by the MSP, let Îs = (SI , I) and Ĵs =
(SJ , J) be the respective subimages of Î and Ĵ . We need
to search only for a rigid transformation T , which per-
forms rotation θz around the z-axis and translations tx and
ty along x and y axes. Considering all possible combina-
tions of θz ∈ {0◦,±0.5◦,±1◦,±5◦} rotations and tx, ty ∈
{0mm,±1mm,±5mm} translations, we define a basis Φi,
i = 1, 2, . . . , n, of n = 175 transformations. The optimum
transformation T is computed as a sequence of transforma-
tions Φi, which produces strictly decreasing matching er-
rors.

We have evaluated SI and SJ as the voxels on the re-
spective brain surfaces, called border sets, and as the voxels
within a 3D band of 3mm around the brain surfaces, called
band sets. For a given T , a subimage Ĵ ′

s = (S′
J , J) is cre-

ated by applying T (SJ) = S′
J , and the registration error

is measured by a distance/similarity function D(Îs, Ĵ
′
s). We

define the following measures for evaluation: D1 – the to-
tal absolute error between voxel coordinates, D2 – the total
square error between gradient values, D3 – the mutual in-
formation based on the voxel intensities and D4 – the mu-
tual information based on the voxel gradient values. The
distance functions D1 and D2 are minimized for registra-
tion, while the similarity functions D3 and D4 are maxi-
mized. We label the evaluated possibilities M1 . . .M4, as
shown in Table 1.

More formally, let δ(u − v) = 1 if u = v for u ∈ SI

and v ∈ S′
J , and δ(u − v) = 0 otherwise. Consider also

the complementary function δ̄(u − v) = 1 − δ(u − v).
Let x1 = I(u) and x2 = J(v) be the intensities of voxels
u ∈ SI and v ∈ S′

J , respectively. The probability density
functions p(x1) and p(x2), and the joint probability den-
sity function p(x1, x2) are computed as follows.

p(x1) =
∑

∀u∈SI

δ(I(u) − x1)

|SI |
(1)

p(x2) =
∑

∀v∈SJ

δ(J(v) − x2)

|SJ |
(2)

p(x1, x2) =
1

|S′
J |

∑

∀u∈SI ,v∈S′

J

δ(u − v)δ(I(u) − x1)δ(J(v) − x2)

+ δ̄(u − v)δ(K − x1)δ(J(v) − x2) (3)

where K is the maximum value of Îs plus one. This sec-
ond part of Equation 3 is used to penalize the mismatching
between SI and S′

J in the computation of the mutual infor-
mation M(Îs, Ĵ

′
s).

M(Îs, Ĵ
′
s) =

∑

∀(x1,x2)

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
(4)

Similarly, we compute the morphological gradients Ĝ =
(DI , G) and Ĥ = (DJ , H) of both images, Ĝs = (SI , G),
Ĥs = (SJ , H), Ĥ ′

s = (S′
J , H), and finally, the mutual in-

formation M(Ĝs, Ĥ
′
s). Therefore, the above measures are:

D1(SI , S
′
J) =

∑

∀u∈SI ,v∈S′

J

δ̄(u − v) (5)

D2(Ĝs, Ĥ
′
s) =

∑

∀u∈SI ,v∈S′

J

δ(u − v) (G(u) − H(v))2

+ δ̄(u − v) (L − H(v))2 (6)
D3(Îs, Ĵ

′
s) = M(Îs, Ĵ

′
s) (7)

D4(Ĝs, Ĥ
′
s) = M(Ĝs, Ĥ

′
s) (8)

where L is the maximum gradient value in Ĝs plus 1.
Algorithm 1 presents the proposed greedy search to find
the transformation T which minimizes a distance measure
D(Îs, Ĵ

′
s). It is not difficult to modify it to either min-

imize/maximize any of the measures Di, i = 1, 2, 3, 4,
above.

Algorithm 1 GREEDY TRANSFORMATION SEARCH

INPUT: Images Îs = (SI , I) and Ĵs = (SJ , J), dis-
tance function D, transformation basis Φi, i =
1, 2, . . . n.

OUTPUT: The best transformation T .

1. Set T = I and Dmin ← D(Îs, Ĵs).
2. Repeat
3. Set k ← nil.
4. For i = 1 to n do
5. Set T ′ ← T × Φi and Ĵ ′

s ← (T ′(SJ), J).
6. Set d← D(Îs, Ĵ

′

s).
7. If d < Dmin then
8. Set Dmin ← d, k← i.
9. If k 6= nil then Set T ← T × Φk.
10. Until k = nil.
11. Return T .

Clearly, the above algorithm does not guarantee the
global optimum. However, as we will see, it has produced
very accurate results in all evaluated cases. Starting from
the identity transformation T = I, which produces a dis-
tance Dmin = D(Îs, Ĵs) (Line 1), each iteration of the al-
gorithm looks for the next local transformation Φk, 1 ≤
k ≤ n, which minimizes Dmin among all possible cumula-
tive transformations T × Φi, i = 1, 2, . . . , n (Lines 2–10).
By these local minimization steps, we expect to converge to
the desired minimum after a finite number of iterations. In-
deed, it is guaranteed that the algorithm will finish because
it computes a sequence of cumulative transformations with
strictly decreasing distances.

We have evaluated the algorithm over border and band
sets according to Table 1. These sets are obtained from the
surface of a segmented brain, as the one shown in Figure 1.



Method Set Measure Image Feature
M1 Border Total absolute error (Eq. 5) Voxel coordinates
M2 Band Total square error (Eq. 6) Voxel gradient intensities
M3 Band Mutual information (Eq. 7) Voxel intensities
M4 Band Mutual information (Eq. 8) Voxel gradient intensities

Table 1. Point subsets, distance/similarity measures and image features evaluated.

The border set with the voxels of the brain surface and the
band set with the voxels within a 3mm band around the
brain surface. The basic difference between them is illus-
trated in Figure 3.

(a)

(b)

Figure 3. (a) Match A and mismatch B be-
tween border pixels. (b) Match A and mis-
match B between band pixels.

3.5. Visualization

The transformation T computed by Algorithm 1 is then
applied to the entire target image domain. We compose a vi-
sualization that alternates the source and registered target in
a checkerboard pattern, allowing the user to inspect the reg-
istration for correctness, coherence and continuity. Figure 4
shows examples of this visualization with a registration ob-
tained with the proposed method.

4. Experimental Results

We performed tests with two sets of images. In the first
set, the source and target images differ only by a known
rigid transformation (rotations and translations). In the sec-
ond set, we created synthetic lesions in the target images,
and then applied known rigid transformations to them.

Both sets were based on 20 MR-T1 volumes of the brain,
each acquired with a voxel size of 0.98× 0.98× 1.00mm3.
All volumes were interpolated to an isotropic voxel size of
0.98mm3. After applying the MSP location method, all im-
ages were reformatted to align the MSP to the sagittal plane
of the reference coordinate system.

For each aligned source image, we generated 5 trans-
formed targets, by applying known compositions of random
translations (−20mm ≤ tx, ty ≤ 20mm) and random ro-
tations (−20◦ ≤ θz ≤ 20◦). Therefore, we had 100 source-
target image pairs in the first set.

In the second set, for each source image we created 5
target images by adding random rigid transformations and
synthetic lesions, using the Phantom Lesion filter in the IVS
software 1. Therefore, this set also had 100 source-target im-
age pairs. Figure 5 shows an example of synthetic lesion.

In the first experiment, we performed registrations of the
100 image pairs in set 1 (no lesions) using the 4 methods
M1 . . .M4 of Table 1. We computed the mean error and
standard deviation of the error for each parameter. We also
measured the mean time required to perform the search with
Algorithm 1 running on an Athlon64 X2 3800+ (2.0 GHz).
Table 2 shows the results.

The registration method is quite accurate for rigid regis-
tration of MR images of the brain with no lesions. The same
evaluation was performed on the 100 image pairs in set 2
(with synthetic lesions). The results for this set are shown
in Table 3.

The registration error is not significantly affected by the
presence of the synthetic lesions. These results show that
the proposed method can be applied for rigid registration of
MR images of the brain even in the presence of lesions. Fig-
ure 4 shows slices from an image pair in this set. In that par-
ticular example the translation error was about 1 voxel (0.98
mm).

1 http://www.liv.ic.unicamp.br/˜bergo/ivs



(a) (b) (c)

(d) (e) (f)

Figure 4. Checkerboard display of source and registered (target) brain masks: (a) coronal view, (b)
sagittal view, and (c) axial view. White squares come from the target and gray squares come from the
source. This target has a synthetic lesion not present in the source image. (d), (e), (f): checkerboard
display of source and target MR images. The visible squares represent the lesion.

(a) (b) (c)

Figure 5. Sample slices of an MR volume with a synthetic lesion: (a) coronal, (b) sagittal and (c) axial.



Method RZ Mean Error TX Mean Error TY Mean Error Search Time
M1 0.12 ◦ (σ = 0.21) 1.00 mm (σ = 0.86) 0.85 mm (σ = 0.85) 19 s
M2 0.13 ◦ (σ = 0.22) 1.06 mm (σ = 0.86) 0.93 mm (σ = 0.86) 117 s
M3 0.09 ◦ (σ = 0.20) 1.19 mm (σ = 0.74) 1.04 mm (σ = 0.85) 358 s
M4 0.15 ◦ (σ = 0.23) 0.41 mm (σ = 0.62) 0.71 mm (σ = 0.77) 359 s

Table 2. Evaluation of the registration method on the first image set (100 image pairs, no lesions):
Mean error (with standard deviations σ) for the 3 registration parameters and mean search time.

Method RZ Mean Error TX Mean Error TY Mean Error Search Time
M1 0.17 ◦ (σ = 0.28) 1.09 mm (σ = 0.96) 0.96 mm (σ = 0.98) 23 s
M2 0.12 ◦ (σ = 0.21) 0.91 mm (σ = 0.93) 0.80 mm (σ = 0.83) 105 s
M3 0.20 ◦ (σ = 0.36) 1.26 mm (σ = 0.62) 1.26 mm (σ = 1.01) 341 s
M4 0.19 ◦ (σ = 0.36) 1.38 mm (σ = 0.92) 1.33 mm (σ = 1.34) 324 s

Table 3. Evaluation of the registration method on the second image set (100 pairs, with synthetic
lesions): Mean error (with standard deviations σ) for the 3 registration parameters and mean search
time.

It is important to note that M1 is the simplest and fastest
method in our registration approach. The results with M1
do not present significant differences in accuracy with re-
spect to M2 . . .M4.

5. Conclusions and Future Work

Image registration is an important task that enables com-
parative analysis of images acquired at different occasions
(different modalities, before and after a significant clinical
event such as a surgery, or for comparison between dis-
tinct individuals in a population) [12]. Rigid registration is
simple and directly applicable to organs without significant
shape change, such as the human brain.

We presented a simple and fast rigid registration method
that can be applied to 3D MR images of the brain. It is based
on automatic brain segmentation [2], automatic mid-sagittal
plane location [3], image alignment, and a greedy transfor-
mation search. Our method performs 3D-3D registration in
under 90 seconds for typical brain MR volumes with 1-mm3

voxels. Most of this time (60 seconds) is used for the pre-
processing (brain segmentation and MSP location), while
the registration itself takes about 20 seconds. This is a con-
siderable speed improvement over recent works that require
about 220 seconds for 3D-3D registration [18] and up to
100 seconds for a single 2D-3D registration [14].

As future work, we intend to test the method in clinical
data with actual lesions (pre- and post-surgical images).
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