
Three-Dimensional Transforms and Entropy Coders for a
Fast Embedded Color Video Codec

Vanessa Testoni and Max H. M. Costa
School of Electrical and Computer Engineering - State University of Campinas (UNICAMP)

(vtestoni,max}@decom.fee.unicamp.br

Abstract

This work compares the performances of two fast 3-D
transforms and two adaptive Golomb entropy coders
applied to a video codec system named FEVC (Fast
Embedded Video Codec). The compared transforms
are Hadamard (4x4x4 and 8x8x8) and H.264/AVC
integer DCT (4x4x4). The compared adaptive Golomb
entropy coders have different operation modes and
adaptation strategies. New 3-D implementation
methods for the transforms are presented. After the
scan procedure, the encoding of the 3-D coefficients is
done, bit-plane-by-bit-plane, by the entropy coders,
producing a fully embedded output bitstream. The
FEVC (also described here) was developed to be
implemented each of a large number of set-top boxes
used in a fiber optics network. For that reason, it is
focused on reduced complexity and execution time, not
on high compression rates. The use of meager
computational resources is also required. Even with
these constraints, good distortion versus rate results
were achieved.

1. Introduction

The comparisons between the two fast 3-D
transforms [1] [2] and between the two Golomb
entropy coders [3] [4] presented here are studies to
improve the performance of a color video codec named
Fast Embedded Video Codec (FEVC). The new
transform implementation method presented here is
also applied to the codec. The FEVC was developed in
C# language to be executed in a set-top box device
under development. A large number of these set-top
boxes will be the interface between a fiber optics
network and its users. This device will receive digital
signals, extract audio, video and data information and
send the processed information to an output device.
Among other functions, such as Internet accessibility
and voice over IP, the set-top box will be able to

receive and transmit video signals coming from, for
example, video on demand and video conference
applications.

Research on video coding systems typically looks
for techniques that can reach the highest possible
compression rate while not exceeding a given level of
distortion. This compression rate increase is generally
achieved by means of increased coding complexity,
which is supported by the availability of increasing
computational power. However, in some video coding
applications, the use of high capacity processors is not
the most convenient choice. These situations require
video codecs focused on reduced execution times and
reduced computational complexity, and less concerned
with high compression performance. This is the profile
of the FEVC. Also, in some cases, the codecs are to be
implemented by software only, as hardware
implementations may not be admitted.

In order to reduce the codec execution times, the
very simple Hadamard (8x8x8 and 4x4x4) transform
and the H.264/AVC integer DCT-like (4x4x4)
transform are used instead of the traditional DCT.
These transforms were chosen because they are able to
reduce the correlation between coefficients and their
implementations require only additions and bit shifts.
To further reduce execution times, motion estimation
(ME) and compensation (MC) techniques are avoided.
This are high performance techniques but time
consuming. Instead, 3D transforms are used to reduce
correlation in both spatial and temporal dimensions.

After transforming 3-D blocks of pixels, the codec
reads and reorders each coefficients block. It was
found that the probability distribution of the dominant
AC coefficients is spread along the major axes of the
3-D cubes, just as found for 3-D DCT cubes [5] [6]. It
was also found that the cube energy is concentrated
according to the coefficient sequency number, a
concept related to the notion of frequency, in the three
dimensions. To benefit from this energy distribution
pattern, a scan order [7] based on the multiplication of
the three sequency numbers of each coefficient is

adopted for the coefficient reading. This deterministic
scan order gives generally better results than the
traditional 3-D zig-zag scan.

The codec encodes the resulting reordered
coefficients in a bit-plane-by-bit-plane fashion,
refining their precision at each turn. This process
renders a completely embedded encoded video
bitstream. The encoding of each bit plane of the 3-D
Hadamard coefficients is accomplished using an
adaptive version of Golomb run length encoder. Two
Golomb entropy coders [3] [4] were considered and
the results obtained are presented here.

The entire implementation is designed to perform
only fast mathematical operations and to require little
computational memory. All multiplications are done in
powers of two and performed by variable bit shifts.
Moreover, the system is completely implemented using
16-bit integer arithmetic.

An overview of the codec stages is provided in
Section 2. Specifically, the fast 3-D transform
implementations are presented in Section 2.2, the 3-D
coefficients scan order is presented in Section 2.3 and
the entropy coders are described in Section 2.4.
Section 3 presents the obtained results.

2. Video codec overview

The FEVC structure is shown in Figure 1. The
video codec stages are described in this section in the
order they appear in the figure.

Figure 1. Block diagram of the FEVC structure.

2.1. Video codec color spaces

The FEVC is able to read color video sequences
stored in tri-stimulus color spaces, such as RGB and
YUV 4:2:0. Each color signal is separately encoded
and the allowed pixel bit-rate is divided among the
color signals according to its significance. Then, for
the YUV 4:2:0 sampling, approximately 10% of the
luminance signal rate is spent on the chrominance
signals. This simple weighted bit-rate division
procedure helps achieving higher compression rates.

In order to get the well-known advantages of the
L-C (Luminance - Chrominance) formats, the FEVC
offers the possibility to convert an original RGB video
sequence to a different internal color space (such as
YUV 4:2:0 and YCoCg) before beginning the coding
process. Other color spaces are also supported and the
conversions among them are described in [8].

2.2. Three-dimensional fast transforms

Two fast transforms are supported in the FEVC:
the Hadamard transform and the H.264/AVC integer
DCT-like transform. These transforms are applied in a
three-dimensional fashion. The video sequence being
encoded is partitioned into cubes and the transform is
separately applied to each cube dimension per
dimension (first to columns, then to lines and finally to
frames).

To evaluate the cube's size effect in coding
performance, the FEVC is executed with cubes of
4x4x4 or 8x8x8 sizes for the Hadamard transform and
only with cubes of 4x4x4 size for the H.264/AVC
integer DCT-like transform. The 8x8x8 cube was not
implemented for this transform because of its matrix
higher complexity [9].

These transforms were chosen because they can be
computed exactly in integer arithmetic, thus avoiding
inverse transform mismatch problems. Furthermore,
only additions and bit shifts are necessary, thus
minimizing computational complexity.

Although the use of the 3-D Hadamard presents no
innovation, this transform was chosen because it has
the simplest basis functions (composed only of +1 and
−1 elements), it is identical to its inverse, and it is easy
to extend results to larger transforms. As an example,
the NxN Hadamard matrix Hn (where N = 2n , for some
integer n) for N = 8 is

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−
−−−−

=

11111111
11111111
11111111
11111111

11111111
11111111
11111111

11111111

8
1

3H
 (1)

The Hadamard transform fast calculation method to
be used in the FEVC is based on the fact that the Hn
matrix can be written as a product of N sparse matrices
H~ [1]. In this method, the total number of operations
is of the order of N * log2 N.

0
7
3
4
1
6
2
5

Sequency

The H.264/AVC integer DCT-like transform [2] is
also a very simple transform as shown by its matrix H2
in Eq. (2). The H2 is not symmetric, and the inverse

transform INVH
~

 is also shown in Eq. (2). The
multiplications by ½ are implemented by 1-bit right
shifts.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

1221
1111
2112

1111

2H

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−
=

2
1111

11
2
11

11
2
11

2
1111

~

INVH

 (2)

Here INVH
~

 is related to the inverse of H, so that

{ } IHdiagH INV =∗∗ 5
1,4

1,5
1,4

1
~ (3)

2.2.1. Dynamic range gain. As the full
implementation with 16-bit integer arithmetic is a
FEVC prerequisite, the 3-D transform dynamic range
gain was adjusted to avoid loss of data.

The Hadamard matrix is composed only of +1 and
−1 values, and the one-dimensional transform has a
dynamic range gain of N / N = N . If N = 8, for
instance, the dynamic range gain is 8 . This division
by N (as in Eq. (1)) is done in each cube dimension
to preserve the signal energy in the transform domain.
For a three-dimensional transform, the total dynamic
range gain is 83 / (8)3 =8* 8 .

In order to avoid fractional coefficients (generated
by the N divisions) and the square root operation,
and to reduce the coefficient magnitudes on the three
Hadamard transform calculations, we modified the
calculation order in the FEVC [7]. In this modified
implementation, the divisions are grouped in a special
way, the first decoding division by N is carried out at
the encoder and the total dynamic range gain becomes
83 / (8)4 = 8, requiring only 3 additional bits to store
the transform coefficients than to store the pixel
values. This analysis for N = 8 is sufficient for the
Hadamard transform because the maximum supported
cube size in the FEVC is 8x8x8.

For the integer DCT, the maximum sum of absolute
values in any row of H2 in Eq. (2) equals 6, so the
maximum dynamic range gain increase for a 3-D
transform is log2 (63) = 7.75, requiring 8 additional bits
to store the transform coefficients.

Because of these additional 8 bits in the coefficient
values, the FEVC performance with the integer DCT
was not as satisfactory when compared to the

performance with the Hadamard transform. The reason
was that as much as 16 bit planes could have to be
entropy encoded with the integer DCT, while only a
maximum of 11 bit planes have to be encoded in the
Hadamard transform case.

In order to control the 3-D integer DCT dynamic
range gain, a modified calculation was used, in which a
scaling factor of ¼ was extracted from the inverse
transform, as shown in Eq. (3). Then, since the inverse
transform is applied three times, two of the scaling
factors were grouped, and applied at the end of the
coding process, as 4-bit right shifts. Finally, the last
scaling factor was implemented at the end of the
decoding process by 2-bit right shifts.

When the scaling factors were applied together at
the end or during the coding/decoding process, the
coefficient values became too small and lost precision.
With the modified computation method, enough
coefficient precision could be preserved and the
number of additional bits needed to store the
coefficient values was reduced by 4, resulting in a
maximum of 12 bit planes being entropy encoded.

2.2.2. Transform coding gain. From a compression
standpoint, for a stationary Gauss-Markov input with
correlation coefficient ρ = 0.9, the one-dimensional
transform coding gain of the DCT is 5.387 dB, of H2 in
Eq. (2) is 5.376 dB [2] and of H3 in Eq. (1) is 5.034
dB. As the transforms are applied in three-dimensional
fashion and, in practice, the empirical correlation
coefficients tend to be in the neighborhood of 0.9, the
Hadamard and integer DCT performances can be quite
comparable. This can be seen in Section 3, where the
results for both transforms with different video
sequences are presented.

2.2.3. Energy concentration. The DCT provides
better energy concentration than the Hadamard
transform. This DCT advantage can also be perceived
when the transforms are applied in cubes [5] [6], as
depicted in Figure 2. The reason is that in the
Hadamard matrix, the row vectors are not sequency
ordered, as shown in Eq. (1) by the column named
“Sequency”. The sequency number is the number of
transitions (zero crossings) in the Hadamard transform
basis vector. This is similar to the concept of
frequency, defined for sinusoidal signals in terms of
zero crossings.

Thus, a special scan order, presented in Section 2.3,
was developed for the cube reading. The Hadamard
matrix cannot be reordered before the transformation
process because, in this way, the fast implementation
using the product of sparse matrices could not be
applied. Therefore, for the Hadamard cube, the

sequency numbers are assigned to real cube
coordinates during the scan process.

Figure 2. Coefficients energy distribution in
(a) Hadamard and in (b) DCT cubes.

2.3. Coefficients scan order

With the energy concentration achieved by the 3-D
transform, the cube's energy is not any more spread
among its values and becomes concentrated in some
cube coefficients, as shown in Figure 2. The cube
coefficient reading in a decreasing (or “decreasing in
the average”) order is important because it increases
the entropy coding efficiency and produces a
progressive (embedded) encoder.

To determine an efficient and fixed reading order
(independent of the cube's information content), such
that the coefficients with higher energy values tend to
be scanned first, we take into account the three
sequency numbers of the coefficients (one in each
dimension), each incremented by one (to avoid the
zeros). We order the product of the three incremented
sequency numbers. Also, we explore the correlation
between coefficients of adjacent cubes located in the
same position through a spiral curve reading of
coefficients. This scan method is presented in [7]. The
multiplication values are obtained just once, at the
beginning of the coding process (according to the cube
size chosen), and associated with all the three
incremented sequency numbers of possible
combinations that multiply to the same value.

The product of incremented sequency numbers is
motivated by the observation that the regions of equal
coefficient energy tend to be shaped as hyperbolic
surfaces [6].

The graph presented in Figure 3(a) corresponds to
the “Hall Monitor” AC coefficients of the luminance
frames in the range #264 to #271, read by a column-
line-frame scan order. Comparing this sequence with
the one in Figure 3(b), which corresponds to the FEVC
scan order result, one can notice that a better grouping
of AC coefficients with similar values is in fact
achieved.

Figure 3. AC coefficients reading by (a) column-
line-frame order and in (b) FEVC’s scan order.

2.4. Entropy coding

Most video codecs perform quantization of the
coefficient values before the entropy coding stage. The
FEVC does not perform this explicit quantization and,
thus, can be used in a lossless manner. In fact, the
FEVC performs an implicit coefficient quantization
because encoding is applied to bit planes, which
generates an embedded and progressive encoded
bitstream. Thus, decoding can be done aiming at a
specific desired bit rate. Another possibility is to
control the bit rate during the encoding process,
generating the bit stream at the desired bit rate.

The entropy coding is performed in FEVC by two
choices of Golomb run length encoders (RLE) with
adaptive parameter adjustment [3] [4]. The results
comparisons between these are given in Section 3. The
first entropy coder considered [3] uses concepts
extracted from wavelet scalable video compression
[10] and the SPIHT encoder [11] and has a single
operation mode. Letting M be the Golomb encoder run
length parameter, the incomplete zero runs (runs of
length M) are mapped to a one-bit codeword (“0”) and
the complete zero runs (runs of length 0 ≤ x ≤ M – 1)
are mapped to codewords of length ⎣ ⎦M2log , when

⎣ ⎦ Mx M −< +1log22 , (4)
and to codewords of length ⎣ ⎦ 1log2 +M , otherwise.

(a)

(b)

(a) (b)

The adaptation strategy presented in [3] adjusts the
coder length in two situations:

- In the middle of a run of zeros, the length
parameter M is incremented by ⎣ ⎦2/)1(+M .

- After the end of the run, a new estimate of the
average run of zeros

__
Χ is calculated and the

parameter M is set to ⎣ ⎦2/)1(+X . The new
__
Χ

is calculated by a first-order auto-regressive
model given by

nnn X)1(
__

1

__
αα −+Χ=Χ + , (5)

 where]1,0[∈α is the memory factor.
The second Golomb entropy coder considered [4]

has four operation modes: a mode where the input
symbol is passed uncoded to the output, a mode with a
particular Huffman code, a mode with a Rice coder (as
described in [3], with kM 2=), and a “half-mode”
code with 123 −⋅= kM . This Golomb entropy coder
has a complexity nearly identical to that of popular
adaptive Rice coders. However, this encoder has an
excess rate of less than 2% with respect to the source
entropy for binary sources with unknown statistics.
The adaptation is based on the last N previously
encoded strings and is done by the simple rule

)(0

__
1

__
nN

N
nNN +Χ⋅−←Χ⋅ , (6)

where 0n and 1n are, respectively, the number of “0”
symbols and the number of “1” symbols, read from the
input to produce the output codeword. This adaptation
rule is nearly maximum likelihood (ML) and can be
implemented using only additions and bit shifts.

3. Results

In order to achieve a multi-platform code, the codec
computational system is implemented in C# language
within the Microsoft Visual C# .NET environment.
The encoding and decoding processes, as well as all
other supported operations, are controlled by the user
through graphical interfaces [7].

To evaluate the FEVC computational efficiency,
the encoding and decoding times of some video
sequences were measured. All execution times were
obtained with a Pentium-4 3.20 GHz processor and
3GB of memory, running exclusively the codec.

For comparison, we used the H.264/AVC official
reference software obtained in [12]. Although the
codecs are different, this performance reference is
interesting because it is the video codec with the best
performance nowadays. It is important to emphasize

that there are H.264/AVC optimized implementations
that run much faster than the official reference
software. We chose to use the official reference
software because this is a publicly available
implementation and is always enabled without
restrictions. We note that the FEVC implementation is
also not optimized for the hardware where it is being
executed, since C# is interpreted and a compiled code
version was not generated.

Most H.264/AVC parameters were set as "default",
according to the software official manual developed by
the Joint Video Team (JVT). The parameters not set as
"default" are: Main profile, level 2.0, GOP of size 15,
5 reference frames, and CABAC entropy coding.

Fig. 4 presents the PSNR versus bit-rate curves
obtained with H.264/AVC and FEVC for three QCIF
video sequences in the YUV 4:2:0 format, with
different motion and background characteristics.
Approximately 300 frames of each sequence were
used. One can notice that the Hadamard 8x8x8
transform has superior performance when compared to
the integer DCT 4x4x4 for sequences with high spatial
and temporal correlations, as the “Hall Monitor”
sequence (Figure 4 (a)). For the “Akiyo” sequence
(Figure 4(b)), which also presents high temporal
redundancy but has more color variations, the
transforms performances are more similar. The
comparison between the 4x4x4 transforms shows that
the integer DCT is slightly better than the Hadamard,
which is expected due to the greater transform coding
gains, as discussed in Section 2.2.2. The coding and
decoding times shown in Table 1 indicate that the
integer DCT 4x4x4 is faster than the Hadamard 4x4x4
transform. This difference is due to the DCT simpler
scan order, since the transforms complexities are
comparable. For the “Foreman” sequence, which has
significant motion content, the transform results are
very similar, as shown in Figure 4(c).

It is shown in Fig. 4, that the FEVC uses
approximately 3 times the bit rate of H.264 for the
luminance signals. This rate-distortion result can be
justified in applications where high capacity is
available (as in optical links). It is also noticed that this
difference in codecs performance is inferior in the
chrominance signals for sequences with less color
variations (“Hall Monitor” and “Foreman”).

Fig. 5 shows that the Golomb adaptive entropy
coders [3] [4] described in Section 2.4 have similar
performances when the parameters are well adjusted.
The two entropy coders are only applied to the most
significant bit plane of each coefficient because the
other bits (after the first most significant bit “1”) of
each coefficient present an approximately uniform
distribution, and are thus left uncoded.

Figure 4. PSNR versus bit-rate curves for luminance and chrominance signals of the
(a) “Hall Monitor” sequence, (b) “Akiyo” sequence, and (c) “Foreman” sequence.

Table 1. Encoding and decoding times for
"Akiyo" sequence.

In fact, when the entropy coders were also applied
to the least significant bit planes, the differences in
terms of encoding times and PSNR versus bit rate
curves were negligible, as shown in Fig. 5. The entropy
coder in [3] has a fast adaptation strategy that is well
adjusted to non-stationary data, just as the bit planes
values of the video data. It uses an empirical adaptation
strategy. On the other hand, the entropy coder in [4] was
originally designed to adapt to i.i.d. Bernoulli data with
slowly varying statistics. By making the backward
adaptation buffer size as small as N=2, the reasonable
performance shown in Fig. 5 was achieved. This
indicates that the speed of adaptation is more important
than the precision of the data statistical analysis.

(a)

(b)

(c)

Figure 5. PSNR versus bit-rate curves of the

luminance signal of “Hall Monitor” using
(a) Golomb’s RLE [3], (b) Golomb’s RLE [3] with

least significant bit planes coded and (c) Golomb’s
RLE [4] with least significant bit planes coded.

Visual quality comparisons with the H.264 standard
are presented in Figs. 6, 7, and 8. As expected, due to
the curves shown in Fig. 4, the lowest bit rates are
obtained with the sequences “Hall Monitor” and
“Akiyo”, possibly because they have more spatial and
temporal redundancies. Also, as expected from these
curves, when compared at the same bit rate, the
performance of the Hadamard 8x8x8 transform is very
similar to the integer DCT 4x4x4 performance for the
“Foreman” sequence (Figs. 8(c) and 8(d)), and slightly
superior in the chrominance signals coding for the
“Akiyo” sequence (Figs. 7(c) and 7(d), respectively).

We note that the FEVC visual performance can be
considered satisfactory for highly compressed pictures.
In Fig. 6(b), the bit rate is 0.12 bit/pixel (which implies
a compression by a factor of 100). The same good
performance is shown in Figs. 7(c) and 8(c).

Figure 6. "Hall Monitor" frame #264 encoded by

(a) H.264 at 0.12 bit/pixel and by FEVC (Hadamard
8x8x8) at (b) 0.12 bit/pixel, and at (c) 0.33 bit/pixel.

Figure 7. "Akiyo" frame #160 encoded by (a) H.264 at
0.16 bit/pixel, by FEVC (Hadamard 8x8x8) at (b) 0.16

bit/pixel and at (c) 0.30 bit/pixel, and by
(d) FEVC (Integer DCT 4x4x4) at 0.30 bit/pixel.

Figure 8. "Foreman" frame #128 encoded by (a)

H.264 at 0.25 bit/pixel, by FEVC (Hadamard 8x8x8) at
(b) 0.25 bit/pixel and at (c) 0.55 bit/pixel, and by
(d) FEVC (Integer DCT 4x4x4) at 0.55 bit/pixel.

Table 2. Encoding and decoding times for the "Hall
Monitor" sequence with (b) and (c) as in Fig. 5.

(c)

(b)

(d)

(c)

(b)

(d)

(a)

(c)

(b) (a)

(a)

The encoding and decoding times of H.264/AVC
and FEVC (measured at the same bit rates) are shown
in Table 2. Although the two FEVC entropy coders had
similar performances, as shown in Fig. 5, Table 2
shows that the entropy coder in [3] is approximately 4
times faster than the entropy coder in [4]. The main
bottleneck of the entropy coder in [4] is the frequent
change of operation mode.

Based on Table 2, it is clear that the FEVC (b) is
considerably faster than the H.264/AVC official
reference software, being approximately 180 times
faster in encoding and 8 times faster in decoding. As
the FEVC is a symmetric codec, the encoding and
decoding times are almost equal, unlike H.264/AVC,
where the decoding is 23 times faster, in average.

The H.264/AVC codec requires 2,855.75 ms per
frame for encoding at 0.12 bit/pixel. The FEVC
requires 17.51 ms per frame for encoding at 0.33
bit/pixel, which produces frames with comparable
visual quality to those of the H.264/AVC, as shown in
Fig. 6(c). Thus, we can be conclude that, at the cost of
reducing the H.264/AVC compression rate by a factor
of about 2.75, a significantly faster encoding can be
achieved with the FEVC. We also note that, with
encoding times of 17.51 ms per frame, it is possible to
have real time video sequences encoded by software
with the FEVC, at 30 fps.

4. Conclusions

We presented a comparison of two fast three-
dimensional transforms and two entropy coders applied
to a codec named FEVC. New implementations were
proposed in order to have 16-bit integer
implementation and to ensure fast and simple
operations (using only additions and bit shifts).

For high bit rate applications (around 0.9 bpp), the
PSNR degradation with respect to H.264 is less
pronounced (around 3 dB for sequences with high
spatial and temporal correlations) than for low bit rate
applications (around 0.1 bpp), where this degradation
may be in excess of 6 dB.

The use of the FEVC is best directed to video
streaming and video conferencing, and systems with
complexity and storage limitations, possibly using fixed
point processors, but enjoying high bit rate network
connections (low cost codecs making use of high
performance links). An added advantage is the
exception of intellectual property restrictions.

The performance results for the video sequences
shown indicates that, at the cost of a reduction in
H.264/AVC compression rate by a factor of 2 to 3, it is
possible to get encoding times that are significantly
smaller (around 160 times) with the FEVC.

5. References

[1] A. K. Jain, Fundamentals of Digital Image Processing.
Prentice Hall, Englewood Cliffs, NJ, USA, 1989.

[2] H. Malvar, A. Hallapuro, M. Karczewicz, and L.
Kerofsky, “Low-Complexity Transform and Quantization
with 16-bit Arithmetic for H.26L”, Proceedings of the
International Conference on Image Processing - ICIP, pp.
489-492, 2002.

[3] F. C. Oliveira, and M. H. M. Costa, "Embedded DCT
Image Encoding", International Telecommunications
Symposium – ITS-2002, Natal, Brazil, Sept. 2002.

[4] M. H. M. Costa, and H. S. Malvar, “Efficient Run-Length
Encoding of Binary Sources with Unknown Statistics”,
Proceedings of the Data Compression Conference, Snowbird,
UT, USA, pp. 534-44, 2004.

[5] R. K. W. Chan and M. C. Lee, "3D-DCT Quantization as
a Compression Technique for Video Sequences”, Proceedings
of the International Conference On Virtual Systems And
Multimedia, Geneva, Switzerland, pp. 188-196, 1997.

[6] R. K. W. Chan and M. C. Lee, “Quantization of 3D-DCT
Coefficients and Scan Order for Video Compression”,
Journal of Visual Communication and Image Representation,
v. 8, n. 4, pp. 405-22, 1997.

[7] V. Testoni, and M. H. M. Costa, “3D-Hadamard
Coefficients Sequency Scan Order for a Fast Embedded Color
Video Coded”, Proceedings of the International Conference
on Signal Processing and Communication Systems, Gold
Coast, Australia, pp. 75-82, 2007.

[8] G. Sullivan and S. Estrop, Video Rendering with 8-bit
YUV Formats, Microsoft Digital Media Division, 2003.

[9] G. Sullivan, P. Topiwala, and A. Luthra, “The H.264/
AVC Advanced Video Coding Standard: Overview and
Introduction to the Fidelity Range Extensions”, Conference
on Applications of Digital Image Processing, 2004.

[10] K. Shen, and E. J. Delp. “Wavelet Based Rate Scalable
Video Compression”, IEEE Transactions on Circuits and
Systems for Video Technology, v. 9, n. 1, pp. 109 – 22, 1999.

[11] B. Kim, Z. Xiong, W. A. Pearlman, “Low Bit Rate
Scalable Video Coding with 3D Set Partitioning in
Hierarchical Trees (3D SPIHT)”, IEEE Transactions on
Circuits and Systems for Video Technology, v. 10, n. 8, pp.
1374 – 87, 2000.

[12] H.264/AVC reference software version JM 11.0,
http://iphome.hhi.de/suehring/tml/. Downloaded in Dec. 2006.

