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Centro Federal de Educação Tecnológica de Minas Gerais
Av. Amazonas, 7675, Belo Horizonte, MG, Brasil

{darlan,cardeal}@lsi.cefetmg.br

Rodrigo L. Carceroni
Depart. de Ciência da Computação

Universidade Federal de Minas Gerais
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Abstract

This paper describes a method to estimate the tempo-
ral alignment between N unsynchronized video sequences
captured by cameras with non-overlapping fields of view.
The sequences are recorded by stationary video cameras,
with fixed intrinsic and extrinsic parameters. The proposed
approach reduces the problem of synchronizing N non-
overlapping sequences to the robust estimation of a sin-
gle line in RN+1. This line captures all temporal relations
between the sequences and a moving sensor in the scene,
whose locations in the world coordinate system may be es-
timated at a constant sampling rate. Experimental results
with real-world sequences show that our method can accu-
rately align the videos.

1. Introduction

In this work we consider the problem of temporal syn-
chronization (temporal alignment) of multiple video se-
quences, captured from distinct viewpoints by cameras with
non-overlapping fields of view. Normally, the temporal mis-
alignment between video sequences occurs when the in-
put sequences have different frame rates, or when there is
a time shift between the sequences (e.g. when the cam-
eras are not activated simultaneously). Examples of appli-
cations where video synchronization is essential include
three-dimensional photogrammetric analysis [16], periodic
motion detection and segmentation [12], multi-sensor align-
ment for image fusion [4] and video metrology from televi-
sion broadcasts [18].

Figure 1. A 3D scene is viewed simultane-
ously by N stationary cameras located at
distinct viewpoints, whose fields of view do
not necessarily overlap. A moving sensor
crosses the fields of view of all cameras.

Unfortunately, even though synchronization can be per-
formed in hardware, for example, by embedding a times-
tamp in the video stream or sending a synchronization sig-
nal to cameras [11], this can be costly and must be set up
prior to recording. Alternatively, software algorithms can
be used to recover synchronization from visual cues and this
strategy is used in the present work. A reliable algorithm for
the solution of the asynchronism problem between multiple
video sequences should be able to handle cases like [2]:

• unknown frame rates of the cameras;

• arbitrary time shift between the sequences;



• arbitrary object motion and speed;

• presence of tracking failures, that is, individual scene
points cannot be tracked reliably over many frames;

• computational efficiency should degrade grace-
fully with increasing number of video sequences;

• unknown user-defined camera set-up;

These requirements have directed us during the develop-
ment of our approach, which operates under all of the
above conditions except the last one. In particular, we as-
sume that the camera set-up is composed by stationary cam-
eras, whose intrinsic and extrinsic parameters are known a-
priori.

Our method is derived from the method presented in [2]
and is based on the concept of a timeline. Consider the sce-
nario illustrated in Figure 1. Given N non-overlapping se-
quences, the timeline is a line in <N+1 that completely de-
scribes all temporal relations between the sequences and a
moving sensor in the viewed scene. A key property of the
timeline is that even though knowledge of the timeline im-
plies knowledge of the sequences’ temporal alignment, we
can compute points on the timeline without knowing this
alignment [2].

Using this property as a starting point, the temporal
alignment problem for N sequences is reduced to the prob-
lem of estimating a single line of N + 1 dimensions from a
set of appropriately-generated points in <N+1.

Video alignment algorithms can be divided in two main
groups: the feature–based methods and the direct methods.
Feature–based methods [1, 5, 12–17, 23–27] extract all in-
formation needed to perform temporal alignment from de-
tected features, for example, frame–to–frame object motion,
or object trajectories throughout an entire sequence. On the
other hand, direct methods [3, 4, 6, 7, 19, 21, 22] extract that
information from the intensities and intensity gradients of
all pixels that belong to overlapping regions.

Therefore, direct methods tend to align sequences more
accurately if their appearances are similar, while feature–
based methods are widely prescribed for sequences with
dissimilar appearance such as those acquired with wide
baselines, different magnifications, or by cameras with dis-
tinct spectral sensitivities. Our approach belongs to group
of feature–based methods.

Most existing feature-based techniques [5,12,14,17,23–
28] were developed for overlapping video sequences. More-
over, most of these works conduct an explicit search in the
space of all possible alignments and are aware of use con-
straints based on correspondences between points of ob-
ject trajectories. The combinatorial nature on that search re-
quires several additional assumptions to make it manage-
able [2]. These include assuming known frame rates; re-
stricting N to be two; assuming that the temporal misalign-
ment is an integer; and assuming that this misalignment falls

Figure 2. Illustration of the temporal mis-
alignment between a moving sensor s and
two cameras c1 and c2. The location sample
120 of the moving sensor s correspond in
time to the frames 57 and 185 of cameras
c1 and c2, respectively. In this case, we have
∆T1 = 63, ∆T2 = 65 and ∆T12 = 128.

within a small user-specified range (typically less than fifty
frames). Hence, efficiency considerations greatly limit the
applicability of these solutions [2].

Unlike these techniques, the proposed approach aligns
N non-overlapping video sequences, can handle arbitrarily-
large misalignments, and does not require any a priori in-
formation about their temporal relations.

A few works have also proposed feature-based meth-
ods for temporally aligning a general number of video se-
quences [1, 16]. Raguse and Heipke [16] propose a method
where the temporal misalignment is modelled by a 2nd or-
der polynomial and is converted to an interpolation factor
in image space. Through the use of the interpolation fac-
tor, temporal correction terms for the image coordinates are
calculated and introduced in the functional model of a bun-
dle adjustment. Unlike the method proposed in this paper,
the technique developed by Raguse and Heipke works with
overlapping sequences, requires a reliable tracker and if the
acquisition network consists only of two cameras, it is nec-
essary that the object motion does not occur in an epipolar
plane, because otherwise the temporal misalignment results
in a systematic point shift in that plane since the two im-
age rays still intersect.

Anthony et al. [1] present a method that uses a two stage
approach that first approximates the synchronization by
tracking moving objects and identifying inflection points.



Their method is closely related to the technique proposed
by Carceroni et al. [2] and proceeds to refine the estimate
using a consensus based matching heuristic to find moving
features that best agree with the pre-computed camera ge-
ometries from stationary image features. However, unlike
our approach, it was developed to work with overlapping
sequences, requires the presence of at least three cameras
monitoring the scene and the use of a reliable tracker.

Finally, there are only a few works based on direct meth-
ods to align sequences without any overlap [4,19]. The most
relevant work was developed by Caspi and Irani [4], and,
unlike our approach, it does not work with stationary cam-
eras. Specifically, it only works with sequences acquired by
pairs of cameras that remain rigidly attached to each other
while moving relative to a mostly rigid scene.

2. Problem Formulation

Suppose that a dynamic scene is viewed simultaneously
by N stationary cameras located at distinct viewpoints,
whose fields of view do not necessarily overlap. Moreover,
consider the presence of a moving sensor in the 3D scene,
whose locations in the world coordinate system may be esti-
mated with a constant sampling rate. Suppose also that this
sensor crosses the fields of view of all cameras, as illus-
trated in Figure 1.

We assume that each camera captures frames with a con-
stant, unknown frame rate and that the cameras as well as
the moving sensor are unsynchronized, i.e., they began cap-
turing frames and location samples at a different time with
possibly-distinct sampling rates. In Figure 2, for example,
we illustrate the temporal misalignment between a mov-
ing sensor and two cameras. In that example, the location
sample 120 of the moving sensor s correspond in time to
the frames 57 and 185 of cameras c1 and c2, respectively.
Therefore, the temporal misalignment between camera c1
and sensor s is ∆T1 = 63, while the temporal misalign-
ment between camera c2 and sensor s is ∆T2 = 65. Anal-
ogously, the temporal misalignment between the cameras is
∆T12 = 128.

The constant sampling rate assumption for the video
cameras and the moving sensor implies that the tempo-
ral coordinates (time stamps) of the sensor samples and
the temporal coordinates (frame numbers) of all video se-
quences are related by a onedimensional affine transforma-
tion [2]:

ti = αi ts + βi, (1)

where ti and ts denote the temporal coordinates of the i-th
video sequence and the temporal coordinates of the moving
sensor, respectively. The parameters αi, βi are unkown con-
stants describing the temporal dilation and temporal shift,
respectively, between the sensor and the i-th sequence. In
general, these constants will not be integers [2].

Figure 3. A sensor moves along a trajectory
Q(·) in a 3D scene, viewed by a camera. Let
q(·) be the trajectory traced by the sensor’s
projection in the image plane, computed by
a tracking algorithm. Consider that q(tc) rep-
resents the sensor’s instantaneous position
in the image plane at frame tc and Q(ts) rep-
resents the 3D sensor’s instantaneous posi-
tion at the temporal coordinate ts, whose pro-
jection in the image plane, computed by us-
ing the projection matrix P , is given by q̃(ts).
If q(tc) and Q(ts) correspond in time, the vec-
tor [tc ts] retrieves the temporal alignment be-
tween the sensor and the camera.

The pairwise temporal relations captured by Equation (1)
induce a global relationship between the frame numbers of
the sequences and the sample numbers of the moving sen-
sor. We represent this relationship by a line L of N + 1 di-
mensions, that we call the timeline:

L =
{[
α1 ... αn+1]>t+ [β1 ... βn+1

]> | t ∈ <} . (2)

Observe that the timeline captures all temporal relations
between the video sequences. Therefore, the problem ad-
dressed in this work consists in to obtain an accurate esti-
mate for such a line.

3. Temporal Synchronization Algorithm

Even though knowledge of L implies knowledge of
the temporal alignment of the sequences, we can com-
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Figure 4. (a) Voting Space for the camera c1 and the moving sensor s. (b) Voting Space for the cam-
era c2 and the moving sensor s. Each point in (a) and (b) represents candidate temporal alignments.
The reconstructed lines tc1 = 3.9979ts − 269.8932 and tc2 = 4.0028ts + 21.6761 describe the temporal
alignments between the sensor and cameras c1 and c2, respectively. From those equations we ob-
tain the new equation tc2 = 1.0011tc1 +291.8797 that retrieves the temporal alignment between the two
video sequences.

pute points on the timeline without knowing the sequences’
alignment [2]. This observation leads to a simple algorithm
for reconstructing the timeline by using a moving sensor in
the scene that crosses the fields of view of all cameras.

Specifically, consider Figure 3 where a sensor moves
along a trajectory Q(·) in a 3D scene, viewed by a cam-
era. Suppose that the 3D sensor’s trajectory in the world co-
ordinate system may be estimated by using a localization
system as the one proposed by Garcia et al. [9]. Let q(·)
be the trajectory traced by the sensor’s projection in the im-
age plane, computed by an object tracking algorithm [10].

Assuming that the camera is calibrated, we may estimate
for each 3D sensor’s position its corresponding projection
in the image plane. In Figure 3, for example, Q(ts) repre-
sents the 3D sensor’s instantaneous position at the tempo-
ral coordinate ts and its projection q̃(ts) in the image plane
was computed by using the projection matrix P , obtained
during the calibration of the camera.

Our key observation is that, by determining correspon-
dences between 2D sensor positions in the image plane,
computed by the tracking algorithm and by the projection
matrix P, we may also determine correspondences between
the temporal coordinates of the frame numbers of the video
sequence and the sample numbers of the moving sensor.

Consider, for example, that q(tc) in Figure 3 represents
the sensor’s instantaneous position in the image plane at
frame tc, computed by the tracker. Assuming that q(tc) and

Q(ts) correspond in time, the projection q̃(ts) of Q(ts)
should coincide with q(tc) or stay at a distance of e pix-
els, due to errors in the camera calibration and tracking al-
gorithms. From this observation, we may also establish cor-
respondence between the temporal coordinates tc and ts of
q(tc) and q̃(ts), respectively, since they represent the same
3D instantaneous position Q(ts) of the sensor. In fact, we
may estimate for each camera c and the moving sensor s
a set V of 2D points with coordinates [tc ts] that repre-
sent “candidate” temporal alignments for the camera and
the sensor. Specifically, the set V defines a voting space that
is built as follows:

V =
{

[tc ts]> | D (q(tc), q̃(ts)) ≤ ε,
}
, (3)

where D(·) denotes the euclidean distance between the
points q(tc) and q̃(ts), and ε denotes a tolerance in pix-
els, whose value is given by the average of the errors in the
camera calibration and tracking algorithms.

In Figures 4(a)-(b), we illustrate two examples of voting
spaces obtained in the real experiment described in the next
section. In general, the set V described in Equation (3) will
contain outliers. To reconstruct the timeline in the presence
of outliers, we use the RANSAC algorithm [8]. RANSAC
can be regarded as an algorithm for robust fitting of mod-
els in the presence of many data outliers. Since it gives us
the opportunity to evaluate any estimate of a set of parame-
ters no matter how accurate the method that generated this



solution might be, the RANSAC method represents an in-
teresting approach to the solution of many computer vision
problems [2].

The algorithm randomly chooses a pair of candidate tem-
poral alignments to define the timeline, and then computes
the total number of candidates that fall within an δ-distance
of this line. These two steps are repeated for a number
of iterations. Provided sufficient repetitions are performed,
RANSAC is expected to identify solutions computed from
outlier-free data. Therefore, the two critical parameters of
the algorithm are the number k of RANSAC iterations and
the distance δ. To determine k, we use the formula

k =
⌈

log(1− p)
log(1− r2)

⌉
, (4)

where p is the probability that at least one of our random se-
lections is an error-free set of candidates and r is the proba-
bility that a randomly-selected candidate is an inlier.

Equation (4) expresses the fact that k should be large
enough to ensure that, with probability p, at least one
randomly-selected pair of candidates is an inlier. We used
p = 0.99 and r = 0.05 (k = 1840 iterations) for our ex-
periments, which are conservative values that lead to accu-
rate results in our experiments. To compute the distance δ,
we observe that δ can be thought of as a bound on the dis-
tance between tracked sensor locations in the input cameras
and their associated projections.

After the use of RANSAC, the last step consists in to ap-
ply the least-squares method over the data set estimated to
compute the timeline parameters. By combining the com-
puted equations ti = αits + βi with parameters αi and
βi, i = 1, ..., N , we may obtain new equations that capture
the temporal relation between any two arbitrary sequences i
and j, as well as the line L that captures the global relation-
ship between the sequences.

4. Experimental Results

To demonstrate the applicability of our algorithm,
we present experimental results with real-world se-
quences. Specifically, we tested our approach on a
two-view dataset of an indoor scene. Image dimen-
sions in both datasets were about 720 × 480 pixels. The
data were acquired by two cameras Sony DCR-SR62 with-
out significant overlap between their fields of view and
that worked with identical frame rate of 30fps, im-
plying a unit ground-truth temporal dilation (α = 1).
The ground-truth temporal shift between the video se-
quences was β = 292 ± 0.5 frames. The values of the
main parameters used in our temporal alignment algo-
rithm are listed in Table 4.

The moving sensor that crossed the fields of view of both
cameras was a robot Pioneer 2 AT, produced by Active Me-

Parameters Meaning Values

ε
Tolerance used during
the construction of the
voting space

10

p

RANSAC parameter:
probability that at least

one of our random
selections is an error-free

set of candidates
0, 99

r

RANSAC parameter:
probability that a

randomly-selected
candidate is an inlier

0, 05

δ

RANSAC parameter:
tolerance for the distance

between a candidate
temporal alignment and

the timeline
0, 5

Table 1. Values of the main parameters of our
temporal alignment algorithm.

dia. The 3D localization data of the sensor were estimated
at a rate of 7.5 samples per second by using the visual lo-
calization system proposed by Garcia et al. [9]. The frames
in the resulting video sequences contain a single rigid ob-
ject (sensor) moving over a static background, along a fairly
smooth trajectory, as illustrated in Figures 5(a)-(b). We used
the WSL tracker [10] to track the sensor (blue trajectories in
Figures 5(a)-(b)). WSL was initialized manually in the first
frame of each sequence.

The cameras were calibrated according to the algorithm
implemented by Strobl et al. [20]. In Figures 5(a)-(b) we
show the projections of the 3D sensor locations in the im-
age planes of both cameras (red trajectories). Observe that
those projections defined very noisy trajectories in the im-
age planes.

We use the average temporal alignment error as our basic
measurement for evaluating the accuracy of our approach.
Specifically, its value is given by the average of the abso-
lute values of the differences between the temporal coordi-
nates computed by the estimated line and the temporal coor-
dinates computed by the “ground-truth” affine transforma-
tion in Equation (5):

tgc2
= tc1 + 292, (5)

where tc1 represents the temporal coordinate of the se-
quence acquired by camera c1 and tgc2

represents its corre-
sponding temporal coordinate in the sequence acquired by



camera c2, computed by the “ground-truth” affine transfor-
mation.

Therefore, if tec2
represents the corresponding temporal

coordinate of tc1 , computed by using the line estimated
by our method, the average temporal alignment error εt is
given by:

εt =
1
M

M−1∑
tc1=0

∣∣tec2
(tc1)− tgc2

(tc1)
∣∣ . (6)

where M is the number of frames in the video sequence ac-
quired by camera c1 (in this case, M = 756).

In Figures 4(a)-(b), we show the estimated voting spaces
for the moving sensor s and the two cameras c1 and c2 used
in our experiment. The reconstructed lines tc1 = 3.9979ts−
269.8932 and tc2 = 4.0028ts + 21.6761 describe the tem-
poral alignments between the sensor and cameras c1 and c2,
respectively. From those equations we obtain the new equa-
tion tec2

= 1.0011tc1 + 291.8797 that retrieves the tempo-
ral alignment between the two video sequences. According
to Equation (6), the reconstructed line gives an average tem-
poral alignment error of 0.9764 frames or 32.5 miliseconds.

Therefore, our results show that our method may work
successfully even when the video sequences have large tem-
poral misalignments (in this example, 292 frames). This
scenario may be critical for most of the current tempo-
ral alignment methodologies. Figures 5(c)-(d) confirm that
the computed temporal alignment between the video se-
quences was effectively retrieved. In Figure 5(c), the be-
fore alignment image was created by superimposing the
green band of a frame tc2 with the red and blue bands
of frame tc1 = (tc2 − βg)/αg , using ground truth timeline
coefficients αg and βg . Observe the temporal misalign-
ment between the video sequences. In Figure 5(d), the after
alignment image was created by replacing the green band
of frame tc2 with that of frame tc1 = (tc2 − βe)/αe, with
αe, βe computed by our algorithm. Note that the sequences
were aligned quite well and the “double exposure” artifacts
disappeared.

5. Conclusions

This paper presents an approach to estimate the tempo-
ral alignment between N unsynchronized video sequences
captured by cameras with non-overlapping fields of view.
The results suggest that timeline reconstruction provides a
simple and effective method for temporally aligning multi-
ple video sequences that do not have spatial overlap.

Additional theoretical investigations need to be consid-
ered for future work. Firstly, the methodology proposed as-
sumes that all cameras acquire frames at constant (albeit
not necessarily identical) temporal sampling rates. Based
on that assumption, the approach model the temporal mis-

alignment between a pair of video sequences as an one-
dimensional affine transformation. The pairwise temporal
relations modelled by that transformation induce a global
relationship between the frame numbers of the input se-
quences and the sample numbers of the moving sensor.
However, such a kind of mathematical modelling is not ap-
propriate when some sequences work with variable frame
rates. Therefore, the development of an alternative mathe-
matical model, which can couple with this problem repre-
sents an important topic for future research.

Another important direction for future work is 3D scene
reconstruction. By combining the temporal alignment ap-
proach with multi-view stereo techniques, important ad-
vances could be achieved in the development of robust sys-
tems for reconstructing 3D dynamic scenes.

We are currently investigating the problem of esti-
mating the temporal synchronization in wireless sen-
sor networks, by adapting the methodology proposed by
Carceroni et al [2]. Unlike existing methods, which are fre-
quently based on adaptations of techniques originally de-
signed for wired networks with static topologies, or even
based on solutions specially designed for ad hoc wire-
less sensor networks, but that have a high energy consump-
tion and a low scalability regarding the number of sensors,
we are developing an approach that reduces the prob-
lem of synchronizing a general number N of sensors to the
robust estimation of a single line in RN+1. In this new sce-
nario, we consider that the moving sensors are distributed
in an environment that is viewed by one or more cam-
eras.
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