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Abstract—Spiders often seek shelter in the heat and safety
of homes and although most of them are harmless, some can
represent a real danger. Since differentiating spider species can
be a challenge for individuals without prior knowledge, having
a method to identify them could be useful in order to avoid
potentially venomous ones. To address this question, this project
aimed to analyze and compare the performance of convolutional
neural networks (CNN) and vision transformers (ViT) regarding
the quantitative and qualitative performance in the task of clas-
sifying different species of spiders from their images. We utilized
publicly available images consisting of 25 Brazilian spider species
and around 25,000 images. We selected the models based on their
metrics and generalization performance in this classification task.
The preliminary results indicated that ConvNeXt emerged as
the most proficient among the examined Convolutional Neural
Networks, achieving a macro accuracy of 88.5%. As for the Vision
Transformers, MaxViT surpassed its counterparts, registering a
macro accuracy of 90.1%, and outperformed the models in a
direct comparison of their performance metrics. These results
may contribute to the development of applications aimed at
identifying spiders and providing information of interest about
the species.

I. INTRODUCTION

There are more than 48,000 known species of spider in
the world, of which more than 4,500 are found in Brazil [1].
They are predators responsible for a fundamental role in
controlling insect populations, which includes the biological
control of pests in homes, gardens and plantations. However,
because they can be found in places like closets, corners
of walls, basements, garages and backyards, they can come
into contact with humans and cause accidents. From 2017
to 2021, the Brazilian Ministry of Health’s epidemiological
bulletin [2] reported that there were more than 150,000 cases
of accidents caused by spiders, ranking them third in the
number of reported incidents involving venomous animals.
For instance, the Butantan Institute1 receives more than a
hundred spiders annually, captured by people in and around
their homes, who seek information about the type, the risks
and what to do in the event of bites.

Given that the traditional method of taxonomic classification
relies on specialized professionals, tools that can provide
information about the spider species, habitat, potential harm,
and other characteristics are an attractive alternative. This way,

1https://butantan.gov.br/

they could be useful for avoiding venomous species, possibly
reducing the number of accidents as well as reducing the
extermination of harmless spiders that are incorrectly thought
to be dangerous. In this context, machine learning can be
employed to automatically classify species, which could also
be disseminated to the general public through a mobile app
for example.

This idea is based on the success found in other applications
in the field of Machine Learning [3], especially deep neural
networks (Deep Learning) that have been proven to be efficient
in processing complex, unstructured data such as images,
video, text and audio [4]. In the case of image processing, we
can think of neural networks as ‘learning’ during the training
process to extract features and find suitable representations
of the images being processed, which gives them the ability
to generalize this knowledge to different images and distinct
scenarios that they have never observed before. In this regard,
many of the innovations in neural networks are architectural
modifications that aim to improve this information extraction
capacity. Currently, the two main architectures that stand out
for their performance in the field of image processing are Con-
volutional Neural Networks (CNN) and Vision Transformers
(ViT) [5], [6].

In our search, we have encountered only a limited number of
studies addressing the challenge of spider recognition through
these Deep Learning methods. In [7], authors consider 9
species and a dataset with 4478 samples, and report 90%
accuracy on the validation set. In [8], authors also consider
9 species, however of species specific of Australia, having
around 3,000 exemplars in each class. They report F1-score
that ranges from 0.85 to 0.94. In [9], authors address the prob-
lem of spider sex recognition. Their dataset comprises 3,133
exemplars and report an accuracy of 92,38% on the validation
set. However, it’s worth noting that the datasets used in these
studies are not publicly accessible. Therefore, we propose a
different approach by utilizing publicly available images and
restrict our attention to Brazilian spider species. Furthermore,
we focus on two main aspects related to the networks: firstly,
their ability to perform effectively in this task, and secondly,
the potential performance disparities among them.



II. MATERIALS AND METHODS

A. Spiders Dataset

As a first step to begin the image classification process,
we created a collection of spider photos from the iNaturalist
website2, which is an online platform supported by a global
community dedicated to recording species observations. For
the purposes of this work, we collected images of Brazilian
spider species (order Araneae) with more than 100 photos
and only those classified as research grade, a status obtained
only when the community agrees with the identification, which
ensures the consistency of our labels . Once the data collection
stage was complete, we had 65 species with approximately
30,500 images. Naturally, there is a significant imbalance,
influenced by a variety of factors including geographical and
environmental conditions, human activity, visibility, among
others. Because of this, we decided to utilize only a subset
of our dataset, consisting of 25 species and 24,570 images,
which make up roughly 80% of the total collected data (Fig.
1). Subsequently, we randomly partitioned 80% of the data
into the training set and the remaining 20% into the validation
set. It is worth mentioning that the application of the same
training and validation sets across diverse networks ensures a
consistent method for comparing the networks performance.

Fig. 1. Distribution of images in the selected subset of spider species.

Despite the substantial quantity of images, there exists
significant variability in the dataset, encompassing aspects
such as picture size, zoom, color, brightness and blur as well
as natural factors like backgrounds and anatomical differences
(Fig. 2). To address this variability, we execute a series of
operations: resizing to ensure consistent input sizes; central
cropping, which focuses on spiders, often found near the center
and simultaneously removes background noise; and lastly,
normalization to standardize pixel values in the image for
consistent scale and distribution.

To further enhance the capabilities of our networks, we set
up two methods to tackle the imbalance of species. Firstly, we

2https://www.inaturalist.org/

Fig. 2. Example of variations in images of Trichonephila clavipes spiders.

apply a series of image augmentation transformations in the
training set such as random cropping, flipping and rotation,
which increases the diversity of the dataset by generating
new samples (exemplified in Figure 3) and helps the model
generalize better. Particularly, since spiders have a wide range
of orientations given their specialized anatomy, this strategy
can prove to be even more effective as the network learns
to recognize them from various angles. Secondly, we used a
weighted random sampler so that the data is sampled in a
weighted way, which helps reducing bias in favor of majority
classes and improves performance in the minority classes.

(a) Original image. (b) A random transform.

Fig. 3. Example of a random transform for data augmentation.

B. The Neural Networks

To begin our analys, we selected architectures with modern
design and proven effectiveness, evidenced by their perfor-
mance on benchmark datasets such as the ImageNet dataset
[10]. Specifically, we selected a set of state-of-the-art models
that include ResNet, ResNeXt and ConvNeXt for the Convo-
lutional Neural Networks and ViT, MaxViT and Swin for the
Vision Transformers [6], [11]–[15].

As a starting point for training them, we employed an
approach known as transfer learning, where a model that has
already been pre-trained on another dataset is used as a basis
for training a model on a related task. In the scope of this
project, we used models pre-trained on millions of images
from the aforementioned ImageNet dataset, which include a



variety of classes such as objects, vehicles, plants and even
some spiders.

However, two modifications were required in order to make
use of these models: the first one was to modify the network
classifier and change the output to match the number of spider
species classes that constitute the content of our data. The
second one was to define which of the parameters would
remain frozen and which ones would be trainable so that the
model would be able to adapt to the specific characteristics of
the new dataset. In the context of utilizing pre-trained models,
features extracted from earlier layers tend to be more general,
whereas those from later layers are more task-specific and
the choice of whether or not to fine-tune the layers of the
networks depends on the size of the target dataset and the
layers’ number of parameters [16]. Based on this, while using
ImageNet as backbone, we unfreeze some of the parameters
in the last layers while maintaining the remainder of the
layers unaltered, given the constraint of our dataset’s size
relative to the network’s scale and the limited common features
shared with the original dataset. For all of our networks tested,
we kept the number of trainable parameters about the same
(≈ 15.5M) to analyze generalization performance. In order
to accomplish this, we utilized PyTorch framework which
enabled us to use pre-trained models, adapt, train and validate
our networks.

C. Hyperparameters

Before starting effectively the training phase, it was nec-
essary to define some hyperparameters that, unlike the model
parameters which are learned during the training process, they
dictate the network’s traits and learning behavior throughout
the learning process, impacting its ability to generalize and
thereby affecting its overall performance. Considering this, we
employed random search to explore a predefined hyperparame-
ter space, aiming to identify the optimal set of hyperparameters
for each model within reasonable computation time [17].

• Loss Function: Cross Entropy Loss
• Learning Rate: [10−4, 10−1] (log-uniformly)
• Batch Size: 32, 64, 128, 256
• Optimizers: Adam, AdamW
• Learning Rate Scheduler: Step Decay, Exponential Decay,

Reduce On Plateau, Cosine Annealing

To ensure uniform evaluation across all models, we set the
number of training epochs to a constant value of 30.

D. Experiment Metrics

To evaluate the performance of our networks, we uti-
lized three key metrics: Micro Accuracy, Macro Accuracy,
and Macro F1 Score. These metrics are able to provide a
comprehensive understanding of model efficacy, while also
functioning as reliable means of comparison. In light of this,
we select the epoch that yields the highest macro accuracy
on the validation set as the representative metric for model
performance.

III. RESULTS AND DISCUSSION

Following the implementation of the methodologies de-
scribed, the results were tabulated and are summarized in Table
I.

TABLE I
ACCURACY AND F1-SCORE PERFORMANCE METRICS ACROSS MULTIPLE

MODELS.

Model Micro Acc (%) Macro Acc (%) Macro F1 (%)
Resnet50 87.30 87.77 85.71
ResNeXt 89.85 88.24 88.85
ConvNeXt 88.60 88.50 87.10
ViT 84.65 83.50 82.10
MaxViT 90.54 90.10 88.74
Swin 89.91 89.00 88.32

From this data, we can observe that Resnet50 has the lowest
performance metrics among the tested CNNs, and the same
can be observed on ViT for the Vision Transformers, although
its metrics are significantly lower than any of the other models.
By excluding these two lowest-performing models, we can
obtain a more accurate representation of general performance
through the mean analysis of the metrics, as illustrated in
Table II. From it, two main observations can be drawn. Firstly,
both architectures are able to perform effectively on this task.
Secondly, the three metrics are closely aligned for all models,
which suggests that the techniques we’ve applied to mitigate
the class imbalance problem are effective and the models are
able to perform consistently across the multiple classes.

TABLE II
SUMMARY OF BEST PERFORMANCE METRICS FOR DIFFERENT MODEL

CATEGORIES.

Metric Category Mean (%) SD (%)
Micro Acc CNNs 89.22 0.625

ViTs 90.22 0.315
Macro Acc CNNs 88.37 0.130

ViTs 89.55 0.303
Macro F1 CNNs 87.98 0.875

ViTs 88.53 0.210

Given that both architectures have good general capability,
we can compare their individual models (Table I). In the CNN
group, the ResNeXt model outperforms ConvNeXt in terms
of validation performance. However, there is a substantial
discrepancy of 10% between the training and validation met-
rics for ResNeXt, which suggests the presence of overfitting,
even with regularization techniques. In contrast, the ConvNeXt
model demonstrates a smaller generalization gap of 2%. The
same phenomenon happens in the ViT group, where MaxViT
outperforms Swin, and the generalization gap values are 4.5%
and 4%, respectively. Given that the validation set might not be
fully representative of the complete range of variance expected
in real-world image data (especially for the classes with fewer
images), choosing the models with a smaller generalization
gaps could be more adequate as they are likely to have better
generalization capabilities.



IV. CONCLUSION

The preliminary results indicated that both CNN and ViT are
effective in the challenge of classifying spider species. Among
the studied models, we take into consideration overall metric
performance and generalization capabilities. In this regard,
ConvNeXt (CNN) and MaxVit (ViT) have shown notable
promise with macro accuracies of 88.5% and 90.1%. While the
MaxVit outperforms the ConvNeXt in our tests, it would be
premature to definitively state that one model is superior to the
other. Experiments with a larger volume of data are needed
to reach a more categorical conclusion. Further analysis is
being conducted to broaden the dataset to encompass a greater
number of spider species and employ other techniques such
as ensemble methods to enhance network performance. This
could yield more accurate outcomes, with implications for
diverse real-world applications, including ecological studies,
pest management, and other socially relevant fields.
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