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Abstract—Deep learning (DL) has revolutionized various fields
through its remarkable capacity to learn from raw data. However,
in uncontrolled environments like in the wild, the performance
of these systems might degrade to some extent, especially with
unlabeled datasets. Naive approaches train DL models on labeled
datasets (source domains) that resemble the unlabeled test dataset
(target domain), but nonetheless, this approach may not yield
optimal results due to domain and category-shift problems. These
issues have been the primary focus of Unsupervised Domain
Adaptation (UDA) and Open Set Recognition research areas.
To address the domain-shift problem, we introduced the Multi-
Source Domain Alignment Layers (MS-DIAL), a structural solu-
tion for multi-source UDA. MS-DIAL aligns the source domains
and the target domain at various levels of the feature space,
individually achieving competitive results comparable to the
state-of-the-art, and when combined with other UDA methods,
it further enhances transferability by up to 30.64% in relative
performance gains. Subsequently, we tackled the demanding
setup of Open Set Domain Adaptation (OSDA), where both
domain and category-shift issues coexist. Our proposed approach
involves dealing with negatives, extracting a high-confidence set of
unknown instances, and using them as a hard constraint to refine
the classification boundaries of OSDA methods. We assessed our
proposal in an extensive set of experiments, which achieved up
to 5.8% of absolute performance gains.

I. INTRODUCTION

In recent years, Deep Learning (DL) methods have yielded
revolutionary outcomes in various computer vision research
domains, mainly because of the Convolutional Neural Net-
works (CNNs). Nonetheless, most of these approaches have
excelled in controlled environments, based on unrealistic as-
sumptions of fully labeled data distributed into a Closed Set
(CS) of categories [1]. For this reason, when such CNNs are
posed to real-world problems, it is often needed to undertake
expensive, time-consuming, or even impossible data labeling
procedures [2], [3]. Another challenge arises during inference,
where the model encounters unrestricted data instances, requir-
ing the predictor to handle examples from unknown/unseen
categories [1].

To tackle the reduced level of supervision, the common
approach involves utilizing labeled datasets (source domains)
similar to the unlabeled target dataset (target domain) to train
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a predictor. However, this strategy is not optimal. At first,
the existence of domain-shift between the source and target
domains might compromise the results, requiring the use of
Unsupervised Domain Adaptation (UDA) methods to address
this challenge [4]. Additionally, the use of unrestricted data
during inference can introduce the problem of category-shift
between the source and target domains, in which Open Set
(OS) recognition methods are leveraged to discard unknown
examples while accurately classifying examples that belong to
known classes [1].

In this work, we address the practical and challenging
scenario where both problems occur simultaneously. Specif-
ically, we must deal with the recognition of unknown classes
during inference (OS problem), while transfer knowledge from
a label-rich source domain to an unlabeled target domain
(UDA problem). This challenging problem was first observed
by Busto and Gall [5], who termed it as Open Set Domain
Adaptation (OSDA). Since then, this scenario has gained
moment as a new research area with various contributions. For
instance, researchers have proposed approaches based on Ex-
treme Value Theory modeling techniques [6], self-supervised
learning schemes [7], and adversarial learning [8], [9].

Historically in the literature on OSDA approaches [2], [7],
it has been a common practice to divide the framework
into separate parts that handle the domain-shift (i.e., UDA)
and category-shift (i.e., OS) tasks individually. Following this
convention, our investigation also comprises two main parts:
the development of a UDA approach and an OSDA approach.

a) Part 1: Former UDA approaches attempted to adapt
a single labeled source domain to a single unlabeled target
domain by incorporating various regularization terms into the
final loss function [10]. However, in cases where multiple
correlated datasets are available for the target task (e.g., digit
recognition), each source domain can contribute with comple-
mentary information to enhance knowledge about the target
domain [11], [12]. To address this, Multi-Source Unsupervised
Domain Adaptation (MSDA) has been proposed, aiming to
reduce domain-shift by adapting multiple source domains to
a single target domain using loss terms that penalize feature
discrepancies across domains [11]–[14].

In this first step, we argue that solely relying on loss



function is insufficient to tackle domain-shift effectively, thus
feature alignment at various levels of the network plays a cru-
cial role in domain adaptation. To address this, we introduce
the Multi-Source version of DomaIn Alignment Layers (MS-
DIAL) [4]. These layers are integrated at different levels of any
given DL model to enhance the network’s transferability by
redesigning its architectural components. Our experimental re-
sults demonstrate the significant effectiveness of this approach,
showing relative gains of up to +30.64% in classification
accuracies compared to state-of-the-art MSDA methods.

b) Part 2: The conventional strategy for OSDA methods
involves drawing high-confidence known and unknown sets
of samples from the target domain and attempting to align the
known set with the source domain, while using the unknown
set as negative supervision [2], [7], [9].

However, recent studies by Liu et al. [15] and Baktashmot-
lagh et al. [16] highlighted that examples from unknown cat-
egories from the target domain contains valuable information
with complex semantics and potential correlations to known
classes, are usually oversimplified by OSDA approaches. In
light of this, we hypothesize that using an unknown set of
examples of the target domain might refine the boundaries
of the closed-set classifier and lead to improved classification
performance. To address this hypothesis, we propose three
different approaches:

1) Original approach: In which the high-confidence un-
known set of target domain is simply used to refine the
OSDA CS Classification boundaries.

2) Augmentation approach: Applying data augmentation
techniques to randomly transform negatives before using
them as the classification constraint.

3) Generation approach: Creating negative/adversarial
examples through a Generative Adversarial Network
(GAN) model trained with such negatives.

We compared all three approaches, observing performance
gains in most OSDA tasks, with accuracy improvements of up
to 5.8% in the Office-Home benchmark.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. Section III describes the first
step of our work, showing the MS-DIAL method and how it
can be used for improving the transferability of any MSDA
model. Section IV describes the second step of this work, re-
garding how we dealt with negative samples to improve OSDA
methods. Finally, we offer our conclusions and directions for
future work in Section V.

II. RELATED WORKS

This section presents relevant works from the literature re-
garding the first part of UDA, summarizing both single-source
methods and multi-source approaches for domain adaptation,
and the second part of OSDA, describing works directed to
known samples and unknown samples from the target domain.

UDA methods for DL often involve adversarial training to
transform a single source of samples towards target samples
or overpower the feature extractor to fool the classifier by pro-
ducing features closer to the target domain, as seen in Domain-

Adversarial Neural Networks (DANN) [17] and Weighted
Maximum Mean Discrepancy (WMMD) [18]. Alternatively,
methods like DIAL [10] and AutoDIAL [19] aim to align
feature distributions by using domain-specific normalization
layers in a neural network. In Multi-Source setup, most MSDA
methods adopt multi-flow models [20], [21] with a single
feature extraction model shared by different domain-individual
classifier heads [11]–[13], or multiple feature extraction and
classifiers [14] to approximate the target distributions through
joint optimization with proper loss-functions.

On the other hand, OSDA aims to tackle two main chal-
lenges: handle irrelevant categories in the target domain that
do not appear in the source domain (the OS problem) and
deal with potential data distribution misalignment between
the source and target domains (the UDA problem). Despite
abundant research on OS [22]–[24] and UDA [4], [25]–[27],
OSDA has been less explored.

The concept of OSDA was introduced by Busto and Gall [5]
and further developed by Saito et al. [8]. Existing techniques
in the literature range from simple adversarial methods [9] to
more complex approaches involving self-supervision [2] and
combinations of contrastive learning, style transfer, and proto-
type hyperspherical learning [7]. Recently, novel studies have
shed light on the complexity of unknown examples, which are
often overlooked when simply added to the classifier as new
logits. UOL [15] proposed a multi-unknown detector backed
by gradient-graph annotations to design an unknown oriented
feature space, while [16] suggested to generate source-like
negative instances using a GAN and employing them as source
closed/target supervision.

III. UDA: DOMAIN ALIGNMENT LAYERS

Let S = {S1,S2, . . . ,SM} be a finite set of labeled
source domains sharing the same set Y of categories with
an unlabeled target domain T . Each source domain Si =
{(xj

i ,y
j
i )}

Ni
j=1 refers to a set of tuples composed of Ni samples

xj
i and their respective labels yj

i . Since we do not know the
labels of the target domain beforehand, the set T = {xj

T }
NT
j=1

comprises the target samples only. The final goal is to learn
a function f(xT ; θ) defined by a set of parameters θ, that
diminish the domain-shift problem and better classify the
target samples xT ∈ T ,

To address this problem for a single source domain (M =
1), Carlucci et al. [10] proposed a solution involving the
alignment of feature distributions at various levels of a neural
network using DomaIn Alignment Layers (DIAL). DIAL
requires only one shared model across all domains, and each
layer aims to bring all domain distributions to a common
superposed distribution. Minor adjustments are then made
through a jointly applied linear transformation on all distri-
butions. In our study, we extend the applicability of DIAL
to handle multiple source domains (M > 1), introducing an
approach called MS-DIAL [25] that can be used in conjunction
with any off-the-shelf MSDA methods.

MS-DIAL comprises a collection of domain-specific Batch
Normalization (BN) layers [28] without individual affine trans-



formations that aim to bring all domain distributions closer to
a canonical distribution. Each domain’s samples pass through
a dedicated domain-wide BN. In sequence, the normalized fea-
tures are grouped again and undergoes a linear transformation
to further refine the alignment of data distributions following
the optimized α and β linear scaling/stretching parameters.

However, MS-DIAL consists of a DL building block that
expects feature vectors as inputs, thus requiring it to be
embedded into off-the-shelf DL method before execution. For
this, we follow the procedure detailed in Algorithm 1 to
include MS-DIAL in state-of-the-art MSDA approaches1.

Algorithm 1: Automatic MS-DIAL Insertion [4]
Input: DL model without MS-DIAL
Output: DL model with MS-DIAL

/* The loop below iterates through
all layers to verify if they
contain BN layers. */

if backbone model has BN layers then
foreach layer l of the backbone model do

if l is BN Layer then
Replace it by MS-DIAL;

end
end

else
foreach layer l of the backbone model do

if l is a convolutional layer then
Replace it by a building block formed by

the same convolutional layer but now
followed by MS-DIAL;

end
else if l is a fully-connected layer then

Replace it by a building block formed by
the same fully-connected layer but now
followed by MS-DIAL;

end
end

end
/* The affine parameters of the

original BN layers, if present,
are copied to MS-DIAL. */

a) Training: During the training process, MS-DIAL ex-
pects a joint mini-batch containing samples from all source
domains and samples from the target domain. These mini-
batches are passed through the deep learning model, and when
reaching an MS-DIAL layer, the incoming mini-batch is split
into domain sets, which are normalized by the domain-specific
BN layers. Subsequently, the normalized features of all the
domains jointly undergo a linear transformation using the α
and β parameters and are forwarded to next DL layers. At the
end, we calculate the loss function as a weighted combination
(λ in Equation 3) of a classification term (Equation 1) and a

1state-of-the-art methods of MSDA in 2021

distribution alignment term (Equation 2). The classification
term involves the widely used cross-entropy loss function,
while the distribution alignment refer to minimizing a Shannon
Entropy of target samples in order to force the model to decide
more confidently.

LS(θ) = −
M∑
i=1

Ni∑
k=1

yk
i log fi(x

k
i ; θ), (1)

LT (θ) = −
NT∑
k=1

fT (x
k
T ; θ) log fT (x

k
T ; θ), (2)

L(θ) = LS(θ) + λLT (θ) (3)

b) Inference:: During inference, our focus is solely on
classifying samples from the target domain. Therefore, we
disable the source domain-specific BN layers, and directly
forward the target instances to their respective BN layer,
effectively utilizing MS-DIAL as a simple BN layer.

c) Experiments: We conducted a rigorous and exten-
sive experimental evaluation to determine whether aligning
domains in the feature space can enhance existing MSDA
methods. For this, we followed the experimental protocol used
by Wen et al. [13] and replicated all their results for DARN
and all other reimplemented MSDA approaches, namely:
DANN [17], MDAN [21], M3SDA [11], and MDMN [20].
Subsequently, we minimally modified the original code to
incorporate MS-DIAL into each of the aforementioned meth-
ods and re-evaluated the results. Especially, this experimental
evaluation was performed on a small-scale digit recognition
task (MNIST, MNIST-M, SVHN, and Synth) and a large-scale
object recognition task (Office-31 and Office-Home).

d) Results: Table I summarizes the relative gains be-
tween the method w/o MS-DIAL and the method w/ MS-
DIAL evaluations for each benchmark. Roughly speaking, We
could clearly notice that MS-DIAL is complementary to all
the other MSDA methods, since for all the evaluated tasks
its combination yielded superior results to those obtained
by each method in isolation. Particularly, M3SDA presented
the highest gains on the Digit recognition task. For object
recognition with Office-31, in all cases the use of MS-DIAL
improved the performance by a consistent margin, reaching
on average, approximately, +3% of relative gains on the
classification accuracy. For Office-Home, on the other hand, it
showed up to 30.64% of relative gains when MS-DIAL was
used alongside DANN and almost +5% when used alongside
DARN, the state-of-the-art method.

IV. OSDA: DEALING WITH NEGATIVES

Conventional OSDA techniques simply use thresholding
strategies for rejecting unknown examples, while newer ones
try aligning the target domain distribution with the source
domain by incorporating target domain potentially known in-
stances in the source-domain and unknown instances to super-
vise an extra logit associated to the unknown category [2], [7],
[9]. Differently, our proposed approach concentrates solely on



TABLE I
RELATIVE GAINS (%) AMONG THE USE/DON’T USE OF MS-DIAL.

Methods Digit Recognitions Office-31 Office-Home

DANN [17] +5.71% +2.37% +30.64%

M3SDA [11] +7.07% +4.54% +25.81%

MDAN [21] +3.04% +2.39% +7.49%

MDMN [20] +4.14% +2.69% +7.20%

DARN [13] +0.58% +2.59% +4.84%

the unknown categories. We extract highly confident unknown
target instances and leverage them to enhance the classification
boundaries of known categories for the OVANet approach.

OVANet, a recent Universal Domain Adaptation (UNDA)
approach [27]2, has presented promising results in all closed-
set, partially aligned for closed-set, partially aligned for open-
set, and completely open-set UNDA contexts. This method
utilizes a shared feature extractor G for either a closed-set
classifier C and a set O of open-set binary classifiers to
effectively learn precise class boundaries for known samples.
Particularly, C is a linear model trained with cross-entropy
loss, which enables it to accurately classify samples into
one of the known categories Ls of the source domain based
on softmax probabilities pc(y

k|xi), where xi refers to the
incoming instance and yk to the model output for the k-th
category. Conversely, the set O = {Bi}|Ls|

i=1 consists of |Ls|
one-vs-all binary classifiers B, with each classifier Bi focused
on determining the softmax probability of whether instances
belong to the i-th category (po(ŷk|xi)) or not (1−po(ŷ

k|xi)).
To achieve this, the method employs Hard Negative Classifier
Sampling and Open-set Entropy Minimization loss functions,
as described in Equation 2 of the paper [27].

a) Training: To enhance the known/unknown classifica-
tion boundaries, our approach proposes a multi-step training
process for OVANet. In the first half of the expected epochs,
we train OVANet conventionally. In sequence, we employ a
strengthened inference technique in order to extract a subset
of highly probable negative samples X from the target using
an elevated threshold (1 − po(ŷ

k|xi) > 0.9) and the actual
knowledge of OVANet to label them as “unknown” (Figure 1).
Sequentially, as depicted on Figure 2, these instances are
then used to impose a novel negative supervision to fine-
tune the binary classifiers in O for the remaining epochs in
three different ways: original, augmentation, or generation. In
the end, we enforce this desired effect by minimizing a new
constraint that is added to the loss function (Equation 4).

Lneg
ova = − 1

|Ls|

|Ls|∑
k=1

log(1− po(ŷ
k|xi)) (4)

Each of the three proposed approaches is performed as
follows:

2https://github.com/VisionLearningGroup/OVANet
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Fig. 1. The depicted procedure leverages a strengthened threshold of 0.9
to identify high-confidence unknown instances from the target domain. These
instances are further used to enhance the classification boundaries of OVANet.

1) Original (Figure 2b): We simply use the negative sam-
ples in X to adjust the binary classifiers in O.

2) Augmentation (Figure 2c): Before using the samples
to fine tune the binary classifiers, we firstly apply data
augmentation techniques to create new negative samples
in X.

3) Generation We propose to use a GAN in order to
generate synthetic samples resembling the negative sam-
ples of X. First, we suspend the training of OVANet
after half of the epochs. Next, we train a GAN for a
specific number of epochs, using X as the training data.
Once the GAN training is complete, we resume training
OVANet, but this time, using the synthetically generated
samples to fine-tune the binary classifiers in O. During
this setup, we drive the fake samples to deceive both the
discriminator and OVANet’s current state, resulting in
examples that align with some category in Ls according
to the classifier C and are identified as “known” by the
binary classifiers in O.

b) Inference: We adhere to OVANet’s original inference
procedure. At first, we assign an incoming instance to a
pseudo-label ŷti based on the maximum probability obtained
from the classifier C. Subsequently, we determine whether
the pseudo-label corresponds to “known” or “unknown” by
utilizing the binary classifiers in O. If po(ŷ

t
i |xt

i) ≥ 0.5, then
ŷti is considered the correct label; otherwise, the instance is
deemed “unknown” and is rejected.

c) Experiments: We initially analyzed the probability
distribution of OVANet’s binary classifiers (O) for unknown
and known instances from the training set of the target domain,
finding that a threshold of 0.9 ensures that X exclusively
contains high-confidence unknown instances. Subsequently,
we evaluated the Original, Augmentation, and Generation
approaches on the Office-31 [29] and Office-Home [30]
datasets, following the same experimental protocol as Saito
and Saenko [27]. Specifically, the original approach simply
forward the instances; augmentation employed random affine
transformations (as proposed in [31]) and Gaussian blur with
σ = 0.1; and the generation approach implemented the
DCGAN proposed by Chen et al. [23]. In the end, we reported
the Accuracy and H-Score [2] performance measures for each
domain-shift scenario.



d) Results: Overally, although the results are highly
dependent on the task, the use of unknown exploitation
showed promising results. We highlight some results in Ta-
bles II and III from challenging domain-shifts like DSLR
and Webcam for the Office-31 dataset and Clipart for the
Office-Home dataset (refer to Section IV of [32] for a more
in-depth discussion). Notably, in the original approach, we
observed a 1% increase in both Accuracy and H-score for
the task Amazon→DSLR on Office-31, and a 1.6% abso-
lute gain in Accuracy for the Real-world→Clipart task on
Office-Home. The augmentation approach showed the most
favorable outcome for the Webcam→DSLR task, exhibiting
absolute gains of 1.3% for both Accuracy and H-Score. and
the Clipart→Product task on Office-Home showed a 1% im-
provement over the baseline. Lastly, the generation approach
demonstrated enhancements of up to 1% in both Accuracy
and H-score compared to the baseline on Office-31, while
for the Office-Home it achieved notable progresses on Real-
World→Product task, with 5.8% increase in Accuracy and
4.7% in H-score.

TABLE II
CLASSIFICATION ACCURACY (%) ACHIEVED BY OUR UNKNOWN

EXPLOITATION STRATEGIES.

Benchmark Domain-Shift Reproduced Improvement

Office-31
Amazon→DSLR 86.8 87.8 (Original)
Webcam→DSLR 97.7 99.0 (Augmentation)

Amazon→Webcam 86.9 87.8 (Generation)

Office-Home
Real World→Clipart 62.5 64.1 (Original)

Clipart→Product 66.7 67.5 (Augmentation)
Real World→Product 66.1 71.9 (Generation)

TABLE III
CLASSIFICATION H-SCORE (%) ACHIEVED BY OUR UNKNOWN

EXPLOITATION STRATEGIES.

Benchmark Domain-Shift Reproduced Improvement

Office-31
Amazon→DSLR 88.4 89.3 (Original)
Webcam→DSLR 97.8 99.0 (Augmentation)

Amazon→Webcam 87.4 88.4 (Generation)

Office-Home
Real World→Clipart 58.6 58.3 (Original)

Clipart→Product 65.1 65.7 (Augmentation)
Real World→Product 66.4 71.1 (Generation)

V. CONCLUSION

DL models have excelled in various tasks in recent years,
but their performance often suffers in uncontrolled real-world
environments due to the lack of supervision. To mitigate
this, one approach is to train DL models on source domains
similar to the unsupervised target domain. However, this alone
may not be sufficient as it does not account for potential
domain-shift and category-shift problems. In this dissertation,
our focus was on addressing both these issues. We divided
our development into two main stages: (1) Investigating and
tackling the domain-shift in isolation using a proposed UDA
approach, and (2) Handling the more challenging scenario

OVANet

OVANet

OVANet

OVANet

Original

Generation

Augmentation

(a) High-level picture

(b) Original

Random 
Affine

Gaussian Blur

(c) Augmentation

Noise

Gen

D
isc

OVANet

(d) Generation

Fig. 2. Subfigure (a) shows the high-level strategy of our approach. Each
of the three (b) (c) and (d) ways were evaluated in order to minimize
the Lneg

ova novel loss function term. Particularly, (b) original, directly uses
negative instances during the final training steps of OVANet. (c) augmentation,
apply two affine transformations before continuing the OVANet training. (d)
generation trains a DCGAN to replicate unknown instances while deceiving
the actual OVANet. In this approach, the Gen module is optimized using
errors calculated from both Disc and OVANet structures, as depicted by the
red arrow in (d).

where both domain-shift and category-shift problems occur
simultaneously through an OSDA approach.

In the initial stage, we discover that aligning domains in
different feature spaces yields better results compared to solely
performing domain alignment on the output representations of
deep models. To enhance the transferability of DL models,
we propose embedding MS-DIAL [25] to align the source
and target distributions in various levels of feature spaces.
These layers can be seamlessly integrated into the network
backbones of existing MSDA methods, leading to a substantial
improvement in performance, with relative gains of up to
+30.64% observed in their classification accuracies.

In the second step, we assessed three different approaches to
leverage knowledge from high-confidence negative instances
and enhance the boundaries of the closed-set classifier. These
approaches include the original, augmentation, and generation
negative instance techniques that were used alongside a novel
disalignment loss function constraint. By employing these
approaches, we observed performance improvements in most
OSDA tasks, achieving absolute gains of up to 1.3% in both
Accuracy and H-Score on Office-31, and 5.8% in Accuracy
and 4.7% in H-Score on Office-Home.

For future work, in the first step, concerning the UDA
approaches, we plan to investigate the significance of data
balancing for enhancing MS-DIAL performance; the impact



of using various reference distributions in MS-DIAL [10],
and the assessment of transferability measures [33] before
the fine-tuning procedure in DL models. In the second stage,
we particularly envisage evaluating newer and more robust
GANs [34] to generate higher-quality examples, visualize the
classification feature space, and investigate the use of other
OSDA approaches. Additionally, it would be relevant to eval-
uate both methods on new datasets, such as DomainNet [11].

SCIENTIFIC PUBLICATIONS

Two scientific papers, both as first author, were published
on renowned conferences. They are directly related to the
contributions introduced by this dissertation, one presenting
the MS-DIAL was published in [4] and another improving
OSDA tasks through unknown exploitation was accepted for
publication at SIBGRAPI 2023 [32]. The latter is the result of
an international collaboration with the University of Trento,
Italy, where a research internship was carried out. During the
MSc, two other works we co-authored were developed by our
research group and published in [35] and [36].
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