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Abstract—3D Instance Segmentation (3DIS) of Point Clouds
(PCs) is valuable for applications like autonomous vehicles,
robotics, and Building Information Modeling (BIM). Current
work on this topic is guided mainly by global metrics like
mAP, which arguably do not support a deep, informed analysis
of technique tradeoffs and, more importantly, directions for
improvement. Qualitative analysis is widely adopted to provide
such guidance, but it is generally implemented ad-hoc. This
is true across many tasks in Deep Learning, but PC 3DIS
is especially challenging to visually analyze due to the many
variables involved: three spatial dimensions, colors, semantic
labels, and instance IDs. We propose REIS, a visual analytics
tool for Rendering and Exploring Instance Segmentation results.
It supports qualitative analysis in two ways: first, through PC
renderings targeted at efficient investigation of 3DIS results;
second, by providing a systematic way to explore these results
via the interactive Instance Detection Matrix- a confusion matrix
analog that summarizes error and success cases, and allows the
user to navigate through them. To show the efficacy of REIS,
we use it to evaluate a state-of-the-art 3DIS approach on the
S3DIS dataset. Our code is available at https://github.com/pedro-
sidra/pcloud explorer.

I. INTRODUCTION

Point Clouds (PCs) are a natural representation of acquired
data for many sensors, such as LiDAR and stereo/depth
cameras. With the rising usage of these data sources for
many applications, such as autonomous vehicles, robotics, and
Building Information Modeling (BIM) [1], intelligent systems
that can process PCs have also become more valuable.

Processing and interpreting PCs typically involve two prob-
lems: semantic and instance segmentation. Semantic segmen-
tation aims to predict a label l ∈ K for each point, where K
is a finite set of classes. In 3D Instance Segmentation (3DIS),
the goal is to classify each point in this way and further isolate
each object instance. This goal is achieved by associating each
point in the scene with a unique instance identifier (instance
ID). In this case, the semantic label is often described instance-
wise, i.e., points within the same instance have the same label.

A standard metric to evaluate and compare 3DIS methods
is the mean Average Precision (mAP ), which summarizes the
compromise between precision and recall considering a given
Intersection-over-Union (IoU ) threshold (typically 0.25 or
0.5) [2]. Since 3DIS is a superset of semantic segmentation, the
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mean Intersection-over-Union (mIoU ) can also be reported to
represent the semantic-level segmentation quality [3].

Although these metrics provide a way to analyze results at
large scales and quantify progress, recent works have been
critical to the blind use of mAP [4], [5]. In particular, some
argue that focusing on global mAP might hide important
aspects of the results, such as tradeoffs between different
categories of errors [6]. It has also been shown that mAP can
be “gamed” to increase the metric by essentially “hedging”
predictions, a characteristic of mAP that can mislead the
community into optimizing for the wrong objective [5].

As an alternative, recent works proposed more detailed
result measurements. The TIDE framework introduced in [6]
breaks down the mAP into different components, each relat-
ing to a type of detection mistake and allowing a more in-depth
analysis of object detection metrics. Regardless of the chosen
quantitative metric, qualitative analysis is still paramount for
identifying error cases. However, simultaneously analyzing
many variables creates challenges to this type of in-depth anal-
ysis in 3DIS. The user must inspect three spatial dimensions,
plus colors, semantic labels, and instance IDs (the latter two
having predicted and ground truth variations).

This work proposes a visual analytics tool for Rendering
and Exploring Instance Segmentation (REIS) of PCs that sup-
ports qualitative analysis of inference results. We introduce a
Instance Detection Matrix that supports highlighting, locating,
and visualizing different types of errors. The core of the system
is the 3D rendering view, which renders a PC augmented with
instance segmentation results, mapped into visual cues. We use
REIS to study the performance of a state-of-the-art (SOTA)
3DIS approach [2] on the S3DIS dataset, summarizing the
pros and cons of the method.

II. RELATED WORK

Data in Point Cloud 3DIS Datasets: a comprehensive review
about PC datasets is given in [7] and [3], which highlight the
main datasets used for the 3DIS problem - S3DIS [8], Scan-
netV2 [9] and, more recently, STPLS3D [10]. We represent
PCs in a tabular format with n lines and m columns, where
n is the total number of points and m is the number of point
attributes. Each column is represented as a vector with size n,
and common attributes among all datasets are: the coordinate
values X,Y ,Z; the point colors R,G,B; the semantic labels
L, with Li ∈ K, and K is the dataset-dependent set of classes;
and the set of instance ID’s I .

https://github.com/pedro-sidra/pcloud_explorer
https://github.com/pedro-sidra/pcloud_explorer


Output Data Produced by Point Cloud Instance Segmenta-
tion: PC instance segmentation methods generate the predicted
columns L̂ and Î , where the former is the predicted semantic
label, and the latter is the predicted instance ID. Particularly,
Î does not need to numerically match the ground truth (GT)
instance IDs in I , but should instantiate objects in such a way
that they have significant IoU with the GT objects.

Current SOTA approaches for PC 3DIS generate different
kinds of output data, depending on the chosen strategy for gen-
erating the instances. The two main variants of these strategies
are currently the “Top-Down” and “Bottom-Up” paradigms
[11]. Top-down methods start with an object detection or
instance proposal strategy, and process them to generate the
instance IDs Î along with the corresponding instance-level
categories [12], which are propagated to obtain the point-
level semantic labels. Bottom-up methods obtain the per-point
semantic labels L̂ and then cluster them, along with other
point-level features, to obtain object instances [13], for which
the semantic label is recomputed/refined. Hence, bottom-up
methods might generate both point-wise and an instance-wise
semantic label, which might not be the same [2].
Related visualization/rendering systems: since PCs are a

ubiquitous format, general-purpose software can be used for
visualization [14], [15]. These tools can be used to investigate
3DIS results through features such as color mappings, but
are not targeted to this task. On the other hand, the robotics
and autonomous driving communities have developed many
targeted tools to visualize PC results [16], [17]. These are,
however, scoped at specific applications, reducing their utility
on other domains, e.g., indoor PCs.

To the best of our knowledge, no work is dedicated to the
interactive exploration of 3DIS results for PC datasets like
Scannetv2 and S3DIS in the current literature. As examples
of methods that explore PCs, we mention the work of Qin
and He [18], who developed a system for analyzing human
skeleton detection from PCs aimed at a specific deep learning
algorithm. They propose an interesting “segmentation error”
view, which we also adopt, but do not provide a general-
purpose interface. Zoumpekas and colleagues [19] focused
on examining 3D PC part segmentation results, a problem
similar to 3DIS, and provided an interface to compare metrics
from different models. However, they provide only a single
plot for qualitative inspection, a standard 3D scatterplot with
categorical features (labels). SOTA 3DIS publications use PC
rendering with semantic or instance color mapping to show
qualitative results, which are often limited to a small set of
scenes [20] [21]. Further, each work uses its tool of choice,
which leads to visual incoherence and possible re-work for
authors (e.g., compare [11] and [2]).

III. OVERVIEW OF REIS

We follow the visual analytics design triangle methodology
proposed in [22] to guide the construction of REIS. The design
triangle requires outlining the three main components of a
visual analytics system: the data, the users, and the tasks
the users apply to the data. In our case, the data are static

PCs, which are highly spatial, quantitative, multivariate, and
represent a single state of the environment. The user can be
anyone familiar with the 3DIS problem, like industry engineers
and computer vision researchers. Finally, the users’ task is the
evaluation and validation of an instance segmentation model,
outlining its positive and negative aspects.

We designed REIS to support a variety of datasets contain-
ing PC instance segmentation data. Since each dataset might
have distinct representations and instance segmentation models
have different ways of outputting results, it can be challenging
to integrate them into the same interface. To accomplish
this, we propose a decoupled approach, specifying a standard
tabular data format (see details on https://github.com/pedro-
sidra/pcloud explorer), and requiring the user to convert their
results to this format. We use Python with Plotly Dash for the
backend and frontend.

Fig. 1 shows an example of the REIS user interface using
the S3DIS dataset [2]. The interface has interactive controls to
select and filter variables of interest. The main window shows
the rendering of the PC and selected properties. Finally, an
Instance Detection Matrix supports selections on a matrix
cell to show the corresponding objects in PC rendering.

A. Inputting 3DIS Results

The user provides a set of files, a ‘load’ method, and a list of
class names. The input files may be of any format - the ‘load’
method must interpret them and output a PC in tabular format
with the columns of interest. Each column must be given
either a numerical or a categorical type and a name, which
dictate the type of plot used. The system implements spe-
cial behavior for certain column names, e.g. ’instance pred’.
Instance-wise attributes should be propagated to the points
belonging to the respective instance, which adds redundancy
but maintains data-format consistency. The minimum set of
columns is the point coordinates (colors optional) plus L,
L̂, I and Î . If R,G,B are available, the grayscale value
gsv = (R+G+B)/3 is included automatically. Additional
columns can be provided and displayed as generic features.

B. User Interface

The user interface is composed of a main window that
displays the PC as an interactive 3D scatter plot, using color
mappings according to properties the user selects. The system
supports discrete color mappings for features with categorical
values, like L and L̂, and continuous color mappings for
features with continuous numerical values like prediction
confidences. In this mode, the user can cycle through different
files (i.e., scenes) to render the model’s inference results. We
additionally support using two orthogonal color encodings:
hue and luminance; we call this strategy “shading”, and it
provides simultaneous rendering of two variables. In addition,
we provide an “object prediction” view, which combines Î
and L̂ into a single rendering by using point colors to encode
the semantic classifications and bounding boxes to indicate

https://github.com/plotly/dash
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Fig. 1. REIS rendering user interface. A: controls to select scenes and features of interest. B: interactive PC rendering.; in B1, the “Mouse Hover” feature is
visible, showing additional information. C: Instance Detection Matrix; when the user clicks a cell, the corresponding instances are listed in C1.

approximate instance boundaries. We further guide the users’
explorations with a compact and comprehensive plot, the
Instance Detection Matrix, which represents missed instances,
false positives, and confusion between classes. The matrix
view is interactive, and clicking the cells allows visualizing
the corresponding instances to understand each failure case.

C. Shading

REIS provides a “shading” feature that enables simultane-
ous analysis of two variables in 3D space. The user chooses a
discrete variable ci, which modulates point colors, and a con-
tinuous variable qi, which modulates color intensity. Specif-
ically, ci determines a base color from a discrete colorscale;
this color is then converted into its HSV (Hue, Saturation,
Value) components, and the relative value qi/(qmax − qmin)
is used to replace the V component. By default, the system
uses gsv as the quantitative variable, since it modulates scene
lighting and texture information. Fig. 2 shows an example of
this, and Figure 6 shows a different choice of qi.

One downside of this strategy is that it can lead to high
similarity between different discrete colors after applying
shading. We build a specific color scale to avoid this problem
by exploiting the hue channel of the HSV color space:

hk = k
360◦

K + 1
, sk =

{
0.5, if k mod 2 = 0
1, otherwise , vk = 1, (1)

Fig. 2. Comparison of PC rendering using discrete shading and modulation
of discrete colors with continuous values (grayscale shading), which improves
depth perception in the scene. For example, notice the clear distinction
between chair instances and the texture of windows and boards..

where K is the total number of colors in the colorscale, and
the chosen color for category k is represented as (hk, sk, vk)
in the HSV color space. The saturation channel oscillates
between 0.5 and 1 to avoid similarity between colors with
similar hues, which tends to happen as K increases. For point
cloud 3DIS datasets, K is usually between 10 and 20. Fig. 2
(and all proceeding renderings we show) uses a color scale
generated with this strategy using K = 14, which is the
number of classes on the S3DIS dataset [8] plus an additional
background class. Although popular datasets usually have
a color standard, we argue that the benefit of our shading
strategy justifies the change in color scales.



Fig. 3. Rendering model errors on the S3DIS dataset. The box on the center-
right of the image shows when the user’s mouse hovers over a point.

D. Error Map

A common task in qualitatively analyzing instance seg-
mentation results is to compare model inferences with the
Ground Truth (GT). Due to the challenges in PC rendering,
this can be an error-prone task, with unnoticed missing or
subtle details due to occlusions. We thus provide a rendering
view to highlight errors in the semantic predictions. We define
the “hit” vector H as follows:

H =

{
True, if L̂i = Li

False, otherwise
, (2)

and map it into green (True) and red (False) colors to indicate
the points where the model has mistakes. Through mouse
hovering, we detail the mistake by showing the predicted
and the actual labels as textual details, and the user can
identify model mistakes without comparing two different plots.
Fig. 3 shows an example highlighting the mislabeling of
windows and boards on the walls, and also a structural column.
Notice that the shading strategy with gsv is critical to show
scene details in this rendering – without the grayscale/textural
information contained in gsv, all points with similar colors
would be indistinguishable.

E. Instance Detection Matrix

A common way to analyze model performance in classifica-
tion tasks is to look at the Confusion Matrix (CM). Although
not usual, some works on 3D Semantic Segmentation show
CMs for point-wise classification [21]. However, the standard
concept of a confusion matrix cannot be directly applied in
3DIS. For example, if a predicted instance is not correctly lo-
calized (i.e., its IoU is smaller than the acceptance threshold),
it cannot be assigned to a GT instance. Such an instance is a
false positive, but we cannot assign it to a class-related row
in the confusion matrix.

We propose an analog to the confusion matrix that also
reflects the instantiation of objects, allowing us to determine
errors due to bad instantiation or wrong categorization. We
call it Instance Detection Matrix, and denote it by Φ. It is
a function of a given set of predictions and a given IoU

threshold τ , used to determine when an instance is correctly
localized, explained next.

We first define a function mask iou(a, b), which determines
the IoU between the masks [I = a] and [Î = b]. We
compute this IoU for all combinations of instance GT ID
a and predicted ID b in a given PC, and store all entries
with mask iou(a, b) ≥ τ in a list. We filter this list to
obtain all pairs of “Matched” instances between GT and
predictions. First we keep only the highest IoU entry for
each unique value of I; then we do the same for Î . The
resulting entries are the correctly localized instances. Using
these entries and their corresponding semantic classifications,
we compute the instance-level confusion matrix ϕ like a
conventional confusion matrix. We then find FP and FN , the
false-positive and false-negative vectors, respectively. Both are
determined by listing all instance IDs not present in the match
list, then taking a histogram of their corresponding semantic
classifications. FP reflects predicted instance IDs that are
incorrectly localized: they have a predicted category label but
no associated GT label; on the other hand, FN accounts for
GT instance IDs with no matching prediction: they present a
GT category but no corresponding predicted label.

The Instance Detection Matrix Φ is obtained by concate-
nating the traditional confusion matrix ϕ, which contains
instances that are well-localized but wrongly classified, with
the source-agnostic instances (called No Match) in FP and
the target-agnostic instances (called No Prediction) FN :

Φ =

[
ϕ FN

FP T 0

]
. (3)

In REIS, Φ is shown in the main view, next to the PC
rendering (Fig. 1). We color the cells in Φ by the row-
normalized value of the cell, with values in the diagonal in
green, since they are correct predictions, and other values in
red. Besides providing a breakdown of different error types, Φ
can be interacted with by clicking on any cell, which renders
the corresponding instances from the original PC. Examples
are provided in the next section.

IV. EXPERIMENTAL RESULTS

We demonstrate the functionality of REIS with a case
study: investigating the results of the SoftGroup algorithm
proposed in [2] on the S3DIS dataset [8]. We used the
published code and model from [2], and wrote the required
‘load’ method to adapt their data format. As done in some
instance segmentation approaches, SoftGroup produces an
additional category background to detect false positives
generated during the instance-proposal step. Hence, we append
the inference-only class background to the original set of 13
classes from S3DIS. Another detail about [2] is that the “Soft-
Grouping” process might produce more than one instance
for the same point. We resolve this (in the same way as
the author’s visualization implementation) by populating the
point cloud with instance IDs in ascending order of instance

We avoid using the Hungarian Algorithm to obtain the optimal matching
[11], since it may lead to less interpretable results.



Fig. 4. Object prediction view on Area 5, Conference Room 2 of the S3DIS
dataset. Bounding boxes denote approximate predicted object boundaries, and
colors denote semantic classification.

classification confidence. This strategy sometimes leads to
disjoint or noisy instance predictions since some points from
the lower confidence predictions might remain, even if most
of the instance is overwritten by a higher confidence one. We
keep these artifacts in the visualization and highlight them
with bounding boxes in the “Object Prediction” view, as seen
in the leftmost instance of column and the four instances of
clutter in Fig. 4.

We guide our investigation using the Instance Detection
Matrix Φ, as shown in the top left of Fig. 5. First, we
notice a total of 1,073 entries in the background column
of Φ, meaning that several instances were classified into
this “artificial category”. The count in the last row (673)
relates to instances that were not correctly localized, and
classifying them as background is interesting to avoid
false positives. The remaining 400 entries relate to correctly
localized instances mislabeled as background, from which
205 present clutter as the GT label. By clicking on any
cell on the clutter row, we can visualize the corresponding
instances and see that it is a diverse class, which explains the
confusion with background. However, the remaining 195
entries are related to clearly identifiable categories mislabeled
as background. This brief visual analysis indicates the pros
and cons of using the additional category background,
putting into context this specific design decision.

Fig. 5 also shows how REIS allows the visualization of the
instances shown in matrix Φ. For example, clicking on cell “A”
shows instances of chair that were not detected, as illustrated
in the top-central position of Fig. 5. Along with the individual
instances, the system also provides a table discriminating the
scenes where each instance was identified, as shown in the
bottom left of Fig. 5. This table is also interactive, and clicking
on a scene provides its visualization, as illustrated in the
bottom right (for the “Area 5, Conference Room 3” scene).
We can observe that multiple chairs were merged into a single
instance – possibly an error in the instance generator module of
Softgroup – that was classified as background. In fact, this
exact case is mentioned in [11] to highlight their contributions,
and it can be quickly discovered using REIS without having

to navigate scene by scene exhaustively.
To demonstrate the shading strategy for a continuous vari-

able other than gsv, we add a point-wise “Semantic Prediction
Confidence” to the point attributes. Fig. 6 shows an example
using the predicted labels and confidence. We observe that
object boundaries have a lower confidence value, possibly due
to the voxel and convolutional nature of the algorithm, which
may lead to gradual changes along the boundaries.

V. CONCLUSIONS

This paper presented REIS, a visual analytics system de-
signed to explore and analyze instance segmentation results
of PCs. Through a combination of rendering techniques,
the proposed Instance Detection Matrix, and an interactive
interface, REIS offers a domain-specific tool with the potential
to streamline qualitative analysis.

Many of the system functionalities aim to present PC
information concisely. For example, the shading approach
combines one categorical and one continuous variable in a
single view, which can be used in many ways to facilitate
analysis. Additionally, REIS introduces an error map, which
highlights areas where the segmentation model misclassified
objects or regions – this avoids a visual comparison of GT and
predictions by the user. Bounding boxes also provide addi-
tional information, even if less precise than point-wise colors;
with them, REIS shows approximate instance information at
the same time as semantic labels.

Finally, the system introduces an instance detection matrix
Φ, which expands the concept of a confusion matrix. Besides
the inherent information obtained by visual analysis of this
matrix, adding interactivity to navigate to the instances respon-
sible for each error case further speeds up visual exploration.

We highlight some cases where REIS helped carry out
efficient qualitative analysis, revealing features of the Soft-
Group algorithm [2] in the process. We show that its instance
refinement classifier seems biased towards the background
class, a drawback the original authors did not detect or point
out. We also visually show the impact of each point possibly
corresponding to more than one instance - in that, after collaps-
ing each point to a single instance, some predicted instances
might be only partially overridden. Finally, we provide our
system and framework to the community. We believe this
tool can help speed up and scale up qualitative analysis,
empowering the user to go beyond the metrics.
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