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Abstract—Several studies have investigated the vast potential
of deep learning techniques in addressing a wide range of appli-
cations, from recommendation systems and service-based analysis
to medical diagnosis. However, even with the remarkable results
achieved in some computer vision tasks, there is still a vast scope
for exploration. Over the past decade, various studies focused
on developing automated medical systems to support diagnosis.
Nevertheless, detecting cerebrovascular accidents remains a chal-
lenging task. In this regard, one way to improve these approaches
is to incorporate information fusion techniques in deep learning
architectures. This paper proposes a novel approach to enhance
stroke classification by combining multimodal data from Fourier
transform with Convolutional Deep Belief Networks. As the main
result, the proposed approach achieved state-of-the-art results
with an accuracy of 99.94%, demonstrating its effectiveness and
potential for future applications.

I. INTRODUCTION

Nowadays, most artificial intelligence techniques are based
on deep learning (DL) [1]–[3], which attempts to mimic the
human brain and its visual processing to learn hierarchical fea-
tures. Given the advances, DL has recently been highlighted in
several real-world scenarios, mainly due to its high efficiency
in solving particular tasks, such as image classification [4].

Concerning medical applications, it is consensus that cere-
brovascular accidents, aka stroke, and classification (complete
diagnosis) represent an important problem to be supported by
artificial intelligence. This lesion damages the cerebral tissue
and it may permanently impair or reduce brain functions, also
may leading to patient death [5]. Additionally, stroke may
leave long-life sequels and curtail the life’s quality of the
affected patients, costing billions of dollars per year worldwide
to treat those people [5].

Pereira et al. [6] dealt with stroke classification proposing
standard Convolutional Neural Networks (CNNs) to classify
brain-computed tomography (CT) images. In a similar manner,
Bacchi et al. [7] developed a promising approach to detect
ischemic stroke thrombolysis. Moreover, Roder et al. [8] em-
ployed Restricted Boltzmann Machines (RBMs) with Fourier
transform to classify images of patients with cerebrovascular
accidents. The authors obtained high accuracy rates regarding
the problem using CT-based images. On the other hand,
medical images are hard to obtain and harder to label, which
leads to small databases. The authors in [8] also stated that

the database used in their work (approximately 300 images)
was relatively small, and the employed techniques should be
improved with more data.

The main objective of this paper is to detect and classify
stroke using a dataset of CT images provided by Pereira et
al. [6], with a new information fusion methodology for Convo-
lutional Deep Belief Networks (CDBNs) [9] able to overpass
the previous state-of-the-art results on such a database [8].
The proposed approach employs the frequency information
representation from Fourier transform [10] and fusion it with
the spatial domain (original CT images) in new multimodal
CDBN architecture. As far as the authors are concerned, no
single combination of CDBNs with the Fourier transform or
their application on cerebrovascular accident tasks is reported
to date. At last, the present work has three main contributions:
(i) it introduces a new framework for classification and image
processing with Fourier transform and convolutions in Deep
Belief Networks; (ii) it proposes the coupling of Fourier
transform and Convolutional Deep Belief Networks; and (iii)
it provides an effective application for the medical area.

The remainder of this paper is structured as follows: Sec-
tion II presents the theoretical background and related works
concerning the researched topics. Section III introduces the
proposed approach, while Section IV presents a brief expla-
nation regarding the employed dataset and the experimental
methodology. Finally, Section V presents the experimental
results and Section VI states conclusions.

II. THEORETICAL BACKGROUND AND RELATED WORKS

In this section, we present the main concepts of CDBNs,
Fourier Transform, and cerebrovascular accident. Additionally,
related works to the previous topics are presented.

A. Convolutional Deep Belief Networks

A Deep Belief Network [2] is a generative model based on
stacking two or more Restricted Boltzmann Machines. RBMs
are energy-based stochastic neural nets based on physical prin-
ciples, composed of two layers of neurons (visible and hidden),
capable of modeling the input data probability in its hidden
layer. The DBNs/RBMs can be employed in unsupervised and
supervised paradigms, since they can be trained under both



situations [11], [12], or mixed with unsupervised pre-training
and supervised fine-tuning [2], [13].

Initially, RBMs and DBNs were developed using visible
and hidden layers with binary states sampled from a Bernoulli
distribution. Both layers are connected via a real-valued matrix
corresponding to the neural connections. Later, Welling et
al. [14] and Hinton [15] showed variations for the neurons in
an RBM, such as binomials, rectified linear (ReLU), and Gaus-
sians. Additionally, Lee et al. [9] proposed the Convolutional-
based RBM (CRBM) and DBN (CDBN), representing an
outstanding breakthrough in energy-based models.

To model the CDBN, one must formulate the CRBM first.
Let D ∈ ℜC×N×N be an input image with N × N pixels
and C channels, and v ∈ ℜC×N×N and h ∈ ℜK×M×M the
visible and hidden layers, respectively, where K stands for
the number of P × P convolutional filters. The visible and
hidden layers are connected by the matrix w ∈ ℜK×C×P×P ,
with biases b ∈ ℜC and a ∈ ℜK associated to the visible
and hidden layers, respectively. The energy of a CRBM is
described as follows:

E(v,h) = −
K∑

k=1

hk ⊗

(
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c=1

(wkc ∗ vc)

)

−
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M2∑
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hkij

−
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bc

 N2∑
i,j

vij
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where ∗ and ⊗ stand for the convolutional operator and the
dot product, respectively, wkc denotes the filter k concerning
channel c, and vc corresponds to the image channel c.

Since CRBM variants are bipartite graphs and the proba-
bility of a joint configuration depends on the given energy,
one can calculate the visible and hidden probabilities as in
a standard RBM. Equations 2 and 3 describe the conditional
probabilities for a neuron in the hidden and visible layers of
a CRBM, respectively:

P (hk = 1|v) = σ

(
C∑

c=1

(wkc ∗ vc) + ak

)
(2)

and

P (vc|h) = σ

(
K∑

k=1

(wT
kc ∗ hk) + bc)

)
, (3)

where σ(·) denotes the logistic function. Equation 2 computes
the probability of all hidden neurons from the convolutional
filter k, and Equation 3 uses the transposed weight matrix to
map back the hidden activations to the visible layer. In short,
training a CRBM aims to maximize the log-likelihood under
the convolutional parameters (w, b, and a). The Contrastive
Divergence [11] is applied to approximate the model gradients
and update its parameters according to the ascending stochastic
gradient, as shown by Lee et al. [9]. As such, it becomes
straightforward to change the activation of visible neurons to
a Gaussian distribution or even apply the ReLU activation
function.

Since the CRBM was defined, it is easy to extrapolate such
concepts to deeper versions, such as CDBN. This model repre-
sents a stack of two or more CRBMs greedily trained, i.e., one
block of CRBM each time, which composes the final CDBN
model with L hidden layers (each hidden layer is approximated
by a CRBM). To connect each CRBM block, we just forward
the feature map activation from the convolutional kernels from
the l−1th to the lth hidden layer, and train such CRBM with
contrastive divergence. Also, one can apply probabilistic max-
pooling [9] or the standard max-pooling [16].

B. Fourier Transform

The Fourier transform indicates that any periodic function
can be expressed as a sum of sines and cosines of different
frequencies, weighted by its coefficient. If an arbitrary function
is not periodic, one can still decompose it in sines and cosines,
but from the integral under the curves. Moreover, with the
computing advent and technological advances, the fast Fourier
transform (FFT) was developed [17], democratizing its use
in continuous or discrete domains. With the FFT, one can
employ several manipulations on digital signals (as images,
for instance), by applying filters in the frequency domain.
The Fourier transform in a D-dimensional array produces a
complex array with the same dimension in addition to the
magnitude (or module) and phase angle. The discrete Fourier
transform (DFT) is usually defined for two dimensions, as
follows [17]:

F (x, y) = R(x, y) + jI(x, y)

= |F (x, y)|ejϕ(x,y),
(4)

where R and I represent the real and imaginary components,
respectively, u and v stand for the two-dimensional matrix
coordinates, and ϕ is the phase angle. The magnitude and
phase angle of the input signal is defined by Equations 5 and 6,
respectively:

|F (x, y)| = [R2(x, y) + I2(x, y)]1/2 (5)

and

ϕ(x, y) = arctan

[
I(x, y)

R(x, y)

]
. (6)

C. Cerebrovascular Accident

A cerebrovascular accident, commonly known as a stroke,
is an injury that abruptly strikes the brain tissue. Its main
causes rely on the blood supply abnormalities to a certain
brain region, resulting in the loss or reduction of its functions.
The stroke can be classified into ischemic, characterized by
the blockage of a vessel responsible for brain irrigation, and
hemorrhagic, represented by the rupture of a blood vessel in
or around the brain. A stroke can occur early due to several
risk factors (non-modifiable and modifiable factors), such as
age, heart disease, physical inactivity, tobacco use, and alcohol
consumption, to cite a few. To reach the final diagnosis,



professionals need a detailed medical history, physical and
neurological exams, and brain imaging tests [18].

Virani et al. [5] pointed out that millions of people world-
wide are affected by strokes every year, with a high death rate.
Nevertheless, other expressive stroke-related problem stands
for the lifelong post-stroke sequelae, varying in many ways and
degrees [19]. Nonetheless, several studies employing artificial
intelligence to support and assist the medical diagnosis have
been doing, as showed by Pereira et al. [6] and Roder et
al. [8], focusing on detecting brain abnormalities by images
from computed tomography or magnetic resonance imaging.

D. Related Works

Fourier transforms have a wide range of applications, rang-
ing from classical image processing methods to deep learning-
based ones. Lotfollahi et al. [20], for instance, employed
the Fourier transform on digital image coloring of high-
definition infrared images through deep learning. The authors
explored a domain expressively difficult to acquire categorized
data, the histological stains. They showed that is possible to
employ unsupervised deep learning coupled with a fast Fourier
transform to map images in the infrared spectrum to high-
resolution images of histological stains.

Chen et al. [21] introduced an end-to-end deep neural
network model, named Fourier Image Network (FIN). The
framework does not require preprocessing steps and takes two
or more raw holographic images of different types, succeeding
in external generalization. FIN uses global spatial frequency
information processed by trained modules of spatial Fourier
transform (SPAF), which uses DFT in one of its modules,
similar to what happens in [22]. The proposed approach’s
effectiveness was experimentally demonstrated by training
the model with image samples of human lung tissue and
blindly testing with images of other human body tissues,
such as prostate, salivary gland, and cervical smear samples.
According to the author [21], the speed of FIN is 27 times
faster than iterative wave propagation-based algorithms for
holographic image reconstruction. Furthermore, compared to
existing CNN-based models, FIN exhibits great generalization
performance and is much faster in its inference speed.

Regarding deep learning applications to support medical
diagnosis, Pereira et al. [6] employed convolutional neural
networks to detect and classify images of patients with/without
stroke. The authors achieved promising results and relatively
high accuracy rates, ranging from 77% to 97%, regarding
stroke classification using CT-based images. Nevertheless, it
is well-known that medical images are hard to obtain, and
harder to label, which may lead to small databases, as pointed
out in their work.

Bacchi et al. [7] developed a promising approach to detect
ischemic stroke thrombolysis. The authors applied two Neural
Networks to process images and text, where the first was a
CNN fed with computed tomography images, while the second
was a 3-layer perceptron network to deal with structural data
from medical guides (age, gender, etc.). The results were

promising on their private dataset and showed an exciting line
for the development of robust tools for medicine.

Finally, Roder et al. [8] addressed the stroke classification
problem employing RBMs and Fourier transform. They used
the same database from [6], i.e., a public small-sized stroke
database to classify ischemic, hemorrhagic, and healthy brains
from CT images. The authors proposed the information fusion
with the original images and their transformed versions on the
frequency domain from the discrete Fourier transformation,
obtaining different RBM architectures as the input data varies.
The authors achieved more than 98% of accuracy in almost all
experiments, outstanding results even without convolutions.

III. FOURIER-BASED MULTIMODAL CONVOLUTIONAL
DEEP BELIEF NETWORKS

It is well-known that information can be represented in
different domains, such as space or frequency, through the
Fourier transforms, for instance. Given that, this work pro-
poses to enhance the power of Convolutional Deep Belief
Networks by applying different data modalities as input, in
a multimodality fashion, employing the Fourier transform to
improve the performance of the stroke classification problem.
Such networks have been chosen due to their simplicity and
lack of work involving the researched topics.

The information fusion in multimodality aggregates data
from different domains. Such an approach can employ as
many types of data as available, such as bi and tri-modal, for
instance. Regarding the proposed approach, the multimodal
data is composed of original computed tomography images
and their respective Fourier transforms, where the latter is
composed of two different components: magnitude (Equa-
tion 5) and phase angle (Equation 6).

Let FCDBN (Multimodal Fourier-based CDBN) denotes the
proposed approach, where its variations FCDBN-P, FCDBN-
M, and FCDBN-PM, denote which components are used to
compose the multimodality, i.e., P stands for the phase, M
stands for the magnitude, and PM for both.

These architectures are trained under the standard unsuper-
vised learning approach [2], [9] in which the second hidden
layer receives the kernels activations from all Convolutional
RBMs that process the input data, highlighting that all hidden
layers are max-pooled after trained. This approach is depicted
in Figure 1, in which h1 and h2 stand for the convolutional
kernels from the two input models (first hidden layer). After
that, they are fine-tuned for the classification task through
an additional Softmax layer, which receives the last hidden
layer activations from the convolutional kernels, h3 (or hL for
more hidden layers), and outputs the three class probabilities.
Figure 1 illustrates an FCDBN-P with two hidden layers and
two entries, where the first Convolutional RBM (ConvRBM)
receives the original CT image and the second (Fourier-
ConvRBM) receives the phase angle from the DFT applied
to the image.

In this work, the Multimodal CDBNs address the problem of
employing Gaussian visible units for convolutions, i.e., image
pixels as continuous values from a Gaussian distribution from



Fig. 1. FCDBN-P architecture with two types of inputs, i.e., original images
and the phase angle of the DFT.

the original grayscale images. For the proposed approach,
Gaussian-based CRBMs are employed to process the DFT
data, i.e., if a given architecture uses the phase angle (FCDBN-
P), the two data modalities are normalized by a standard
Gaussian and fed to two CRBMs. The same process occurs
for FCDBNs with magnitude (FCDBN-M), where the magni-
tude of the frequency spectrum is normalized by a standard
Gaussian and fed to another CRBM. Finally, when both DFT
components are used (FCDBN-PM), phase and magnitude are
normalized and fed into two Gaussian simultaneously to a base
CRBM (with CT images).

In summary, by applying the multimodal approach, the mod-
els aggregate information from the spatial component origi-
nating from the original images and the frequency originated
from the components of the Fourier transform. Additionally,
the employed multimodality enables the analysis of which
configuration is more suitable for the problem in question and
gives greater flexibility to the application.

IV. EXPERIMENTAL METHODOLOGY

In this section, we present an overall description of the
dataset and the experimental setup regarding the proposed
approach is explained, with hyperparameters details.

A. Dataset

The dataset employed in this study was introduced by
Pereira et al. [6], which consists of 25 brain CT scans,
featuring patients 1with (a) healthy brain, (b) ischemic stroke,
and (c) hemorrhagic stroke. The total number of images
accounts for 300, where 100 depicts healthy brains and 200 a
cerebrovascular accident (100 hemorrhagic and 100 ischemic).
In addition, the images exhibit irregular patterns, varying
lighting conditions, and diverse structural characteristics.

1Patients’ identification have been omitted for ethical reasons.

Each original image in the dataset is in grayscale and has a
resolution of 512×512 pixels. However, to reduce the number
of computational resources needed and to speed up the CDBNs
training, they have been resized to 150 × 150. The images
have also been normalized according to a standard Gaussian
distribution, i.e., zero mean and unit variance.

B. Experimental Setup

The experimental setup comprises four different CDBN
architectures, yet with the same training process, i.e., networks
trained with the Contrastive Divergence, and with an equal
number of epochs for each ConvRBM that composed the deep
model. The baseline architectures are the Neural Networks
proposed by Pereira et al. [6], CNN1, and CNN2, and the ones
proposed by Roder et al. [8], i.e., GaussianRBM, MultFRBM-
P, MultFRBM-M, and MultFRBM-PM. The architectures pro-
posed in this paper stand for FCDBN-P, FCDBN-M, and
FCDBN-PM, with the CDBN being the base model. The
hyperparameter configuration is presented in Table I.

TABLE I
HYPERPARAMETER CONFIGURATION FOR THE FOURIER-BASED CDBN

MODELS.

Architecture # Kernel Shape # Kernels Learning Rate Momentum

CDBN (5, 5) 32 10−6; 10−7 0.5

FCDBN-P (5, 5) 32, 32 10−5; 10−6; 10−6 0.5

FCDBN-M (5, 5) 32, 32 10−5; 10−6; 10−6 0.5

FCDBN-PM (5, 5) 32, 32, 32 10−6; 10−6; 10−6; 10−7 2 0.5

From Table I, it is important to highlight that all hyperpa-
rameters were empirically chosen in exploratory experiments,
leading to the best configurations in terms of convergence
and stability. The kernel shape for convolutions is equal to
all layers and input data to simplify this analysis, and the
same rationale is employed on the kernel number, keeping
the same as the anchor model (CDBN) for each additional
RBM added. Also, the learning rate stands for the values
that provided stability in the learning procedure. Moreover, all
models have a momentum of 0.5 on stochastic gradient descent
for all layers. Finally, only one hidden layer for all CDBN
models was employed to show how promising the proposed
approach is.

Regarding the training and evaluation methodology for the
employed dataset, we opted to follow the works of Pereira
et al. [6] and Roder et al. [8], which provided two distinct
data configurations: a half-and-half split between training and
testing sets (50/50) and a quarter-third of training and testing
splits (75/25). We opted to employ an additional partition,
to analyze the robustness of the proposed methodology, be-
ing 25% for training and 75% for testing. Moreover, the
experiments have been evaluated throughout 15 independent
executions to reduce the models’ stochasticity, to remove any
virtual split-based data bias, and to provide enough executions
to conduct a statistical test, i.e., Wilcoxon signed-rank test [23]
with 5% of significance.

2This model required lower learning rates to convergence.



Concerning the training pipeline, all models were first
trained in an unsupervised manner (pre-training phase), as
CDBNs were proposed [9], for 50 epochs, with a mini-batch
of 50 samples. After the pre-training, we added a Softmax
layer on top of all CDBNs (multimodal or not) to compose the
classification models, in which the Adam [24] optimizer was
employed with a learning rate of 10−4 to the Softmax layer,
50 fine-tuning epochs, and 60 samples per mini-batch. Since
the dataset has equal class distribution, we opted to keep the
standard accuracy, as Pereira et al. [25] and Roder et al. [8],
as performance measurement.

V. EXPERIMENTS

Table II presents the mean results and their respective stan-
dard deviation obtained from the 15 independent executions,
considering the three data splits, i.e., 25/75, 50/50, and 75/25.
Additionally, the Wilcoxon signed-rank test with a p-value
of 5% was applied to the proposed models following the
rationale: select the best mean accuracy in a split and test
against all other Fourier-based models to test (one-versus-all),
enabling tagging with (=) the statistically similar results, and
with (! =) the different ones. Moreover, the highest mean
achieved by a given model in each split is underlined.

TABLE II
MEAN ACCURACY AND ITS RESPECTIVE STANDARD DEVIATIONS FOR THE

TEST SET CONSIDERING THE DATA SPLITS.

Architecture 25/75 50/50 75/25

CDBN 97.86± 2.41 (=) 99.41± 0.50 (! =) 99.83± 0.33 (=)

FCDBN-P 97.99± 2.19 99.71± 0.60 99.94± 0.21

FCDBN-M 97.88± 2.38 (=) 99.48± 0.65 (! =) 99.83± 0.34 (=)

FCDBN-PM 97.41± 2.21 (! =) 99.57± 0.79 (=) 99.72± 0.50 (=)

GaussianRBM [8] - 99.66± 0.52 (=) 99.66± 0.52 (! =)

MultFRBM-P [8] - 98.76± 1.58 (=) 99.72± 0.40 (=)

MultFRBM-M [8] - 98.53± 1.70 (=) 99.49± 0.60 (! =)

MultFRBM-PM [8] - 97.94± 1.66 (! =) 99.32± 0.71 (! =)

CNN1 [6] - 93.46± 16.54 97.20± 2.45

CNN2 [6] - 83.55± 13.09 77.33± 22.24

From Table II and the first data split (25/75), one can
observe that all CDBN-based models achieved impressive
mean accuracy, around 97%, better than expected since the
number of training samples was pretty low. However, the
standard deviation was high, showing that the proposed models
may require more data to become stable. Also, the better model
so far was FCDBN-P, have been statistically different from
FCDBN-PM, a more complex version.

Regarding the 50/50 split, the best model so far was the
FCDBN-P, achieving a mean accuracy of 99.71% surpassing
the multimodal models from Roder et al. [8] and CNNs of
Pereira et al. [6]. Additionally, such a model was statistically
different from CDBN, and FCDBN-M. Still glancing at the
proposed approaches, they all surpass the multimodal RBMs
from [8] in more than 1 point on mean accuracy and low
standard deviation, pointing out that our approach is robust
even with low data volume. However, our best result was

statistically similar to three of four models from Roder et
al. [8].

Finally, concerning the third split (75/25), there has been
a significant improvement in the multimodal CDBN models,
where all approaches obtained a mean accuracy higher than
99.72%. Over all models, the FCDBN-P stood out, achieving
99.94% and surpassing both unimodal (CDBN) and baseline
models. Additionally, it had the lowest standard deviation
(0.21) compared to all models. Such results corroborate the
positive effects regarding the proposed approach, in which all
models overpass the non-convolutional and shallow [8] ver-
sions, in which the FCDBN-P was statistically better than three
of four models from Roder et al. [8]. Moreover, the impressive
performance improvement given more data indicates that such
a methodology may be even more efficient for applications
with more data available to train.

One important observation regarding the proposed approach
is that, looking at the computer vision state-of-the-art, the
employed models for different domains stands for huge models
like ResNet [26] and Vision Transformers [27], for instance,
which are well-proved to be data-hungry. On the other hand,
FCDBN- models achieved outstanding results with low volume
of data compared to the CNNs from Pereira et al. [6],
which evince the proposed models relevance. Additionally,
Figures 2, 3 and 4 illustrate the fine-tuning learning procedure.

Fig. 2. Mean accuracy over the test set considering the 25/75 split.

VI. CONCLUSION

This work explores the use of multimodal data in the context
of Convolutional Deep Belief Networks applied to the stroke
classification task. The proposed multimodality employs the
Fourier transform to provide two additional data distributions,
i.e., the magnitude and the phase angle.

We argue that the proposed approaches achieved state-of-
the-art results and surpass the previously approaches regarding
the experimental tests. Every proposed model has been supe-
rior to the baselines employed by Roder et al. [8] and Pereira
et al. [6], which led us to the assumption that our models
may perform in a stable, and accurate, manner even with a
low volume of data available. Another crucial point is the



Fig. 3. Mean accuracy over the test set considering the 50/50 split.

Fig. 4. Mean accuracy over the test set considering the 75/25 split.

potential of multimodal CDBNs, especially when combined
with the power of the Fourier transform. According to Table II,
it is clear that the phase angle contributed more to model
discrimination than the magnitude, indicating that such an
approach is viable and should be extended to other datasets.

Concerning future works, we aim to deeply study the
proposed approach on other tasks in the medical domain. Also,
the authors intend to evaluate the idea of making a large pre-
trained model with this approach to open-use.
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