
Counting Particles: a simple and fast surface
reconstruction method for particle-based fluids

Filomen Incahuanaco Quispe
ICMC-USP

fincahuanaco@usp.br

Afonso Paiva
ICMC-USP

apneto@icm.usp.br

Fig. 1: Surface reconstruction of a liquid toy dragon with 1.2M particles in a grid with 2563 cells: from left to right, our method,
Müller et at. [1] , Zhu and Bridson [2], Yu and Turk [3]. Our method is 2.2× faster than the best competitor method.

Abstract—We present a novel and efficient surface reconstruc-
tion for particle-based fluid methods. Although particle-based
methods are practical for computing level-sets that represent
liquid interfaces, these methods are computationally expensive
when the number of particles increases considerably due to the
intense usage of particle approximations. This paper introduces a

simple level-set approximation using a discrete indicator function
(DIF) defined by counting particles inside grid cells. Our method
is fast, easy to code, and can be adapted straightforwardly
in particle-based solvers, even implemented in GPU. Moreover,
we show the effectiveness of our approach through a set of
experiments against prior surface reconstruction methods.

I. INTRODUCTION

In particle-based fluid methods, such as Smoothed Parti-
cle Hydrodynamics (SPH) [4] and Position-Based Dynamics
(PBD) [5], particles are usually employed to track the air-
liquid interface in Lagrangian fluid flow simulations. Although
these methods have been successfully used in interactive
applications, rendering complex liquid animations with a high
number of particles at reasonable computational times, even
in GPU architectures, remains a subject of intense research in
computer animation.

The rendering of air-liquid interfaces in particle-based fluids
consists of two stages: first, splatting the level-set function
defined by the particles to a regular grid. Second, the liquid
surface reconstruction is given by the isosurface extracted from
a discrete level-set using a polygonization algorithm, such as
Marching Cubes (MC) [6], where a polygonal mesh represents
the isosurface. However, this entire process is computationally
expensive since the surface’s smoothness and topological
correctness require a high-resolution grid.

On the other hand, in computational fluid dynamics, an
indicator function 1F (i.e., a function that is one on the
interior of the fluid body F and zero on the exterior) is usually
employed for tracking liquid interfaces [7]. Let G be a regular
grid of resolution nx×ny×nz grid that enclosures the domain.
The key idea is to compute a local fraction of volume occupied
by the fluid in each grid cell K ∈ G, as follows:

ϑ(K) =
1

VK

∫
K

1F (x) dx , (1)

where VK is the volume of K. The scalar field ϑ : G → [0, 1]
is known as discrete indicator function (DIF). Besides, there
are robust surface reconstruction methods from DIFs in the
literature [8], [9].

This paper presents a novel and practical surface recon-
struction for particle-based fluid methods. We approximate
efficiently a DIF by simply counting particles inside grid cells.
Therefore, we show the effectiveness of our approach through
a set of comparisons against prior surface reconstruction
methods. Figure 1 shows our method in action.

In summary, the contributions of our method are:
• a novel DIF that uses only the number of particles inside

the grid cells;
• our framework speeds up considerably the surface recon-

struction compared with prior methods;
• our method is simple and easy to code, even in GPU.

II. RELATED WORK

To better contextualize our method and highlight its proper-
ties we organize the existing methods for particle-based fluid
rendering into two main groups: mesh-based and screen-space
methods.

Mesh-based methods. The main goal of these methods is
to extract a smooth triangle mesh from the particle positions
using MC-based algorithms. Typically, the liquid surface is
represented implicitly by the zero level-set of a signed distance

field computed from a weighted sum of kernel evaluations
from the particles’ distances. These methods can use isotropic
kernels [1], [2], adaptive size kernels [10] or anisotropic SPH
kernels [3]. Despite the existence of parallel implementations
of these methods [11]–[13], if the liquid spreads more over
the computational domain, the underlying MC grid and its
resulting surface mesh become very large, causing excessive
memory consumption. Bhattacharya et al. [14] improved the
undesired blobby appearance of the level-sets using a smooth-
ing process by solving a constrained optimization problem.
Sandim et al. [15] proposed an alternative framework for
surface reconstruction. Their framework relies on a level-
set definition using the Hermite data (particle positions and
normals) from the boundary particles. The liquid surface is
obtained fitting the boundary particles using Screened Poisson
surface reconstruction [16]. However, this method also suffers
the same issues of the kernel-based methods.

Screen-space methods. This class of methods performs in
2D image space using a smoothed depth buffer from the
visible liquid surface defined by spherical particles, where the
resulting surface is represented without mesh generation by
using rasterization techniques [17]–[21]. The liquid surface’s
visual quality relies on the depth buffer’s image-based filtering
process, which may demand large convolution kernels and
perform multiple filter iterations. However, beyond the screen-
space size and the number of filter passes, these methods’
efficiency also depends on the number of particles. Recently,
Oliveira and Paiva [22] improved the prior screen-space meth-
ods computing volumetric rendering effects in a small subset
of particles located at a narrow-band of the air-liquid interface.

Despite the proposed approach belonging to the class of
mesh-based methods, our method was strongly influenced by
screen-space methods, extending the filtering process to a 3D
image (a DIF in our case).

III. THE METHOD

In this section, we explain the pipeline of the proposed
surface reconstruction method. Given an input particle sys-
tem Pt at time-step t, our method performs three main steps,
as illustrated by Figure 2.

DIF evaluation. In this step, we approximate the local volume
of fluid simply by counting the particles inside each cell K ∈
G. Let N t

K be the number of particles of Pt inside K. Firstly,
we compute the initial particle average µ0 (at time-step t = 0)
given by:

µ0 =
1

|F|
∑
K∈F

N0
K ,

where the operator | · | denotes the set’s cardinality and F ⊆ G
is the subset of full cells of G, i.e., formed by cells that contain
particles in their interior. Assuming that the cell volume VK
is entirely occupied by the volume of µ0 particles, i.e., VK =
µ0Vp, where Vp is the particle volume. Thus, we approximate
the Equation (1) as follows:

ϑ̃(K) =
N t

K Vp
VK

=
N t

K Vp
µ0 Vp

=
N t

K

µ0
.

(a) input particles (b) DIF evaluation (c) smoothing

0

1

(d) isosurfacing

K

Fig. 2: Surface reconstruction pipeline.

In order to ensure ϑ̃(K) ∈ [0, 1], the fluid occupancy in a
cell K in our approach is given by:

ϑ̃(K) =
min(N t

K , µ0)

µ0
. (2)

Smoothing. To reduce the DIF discontinuities around the
liquid interface, we smooth the field (2) by applying 3D blur
filters from image processing [23], e.g., box and Gaussian
filters. Firstly, we apply a box filter of size 3 × 3 × 3 to
eliminate small holes (i.e., empty cells surrounded by full
cells). Then, we apply Gaussian filter of size 5 × 5 × 5 with
standard deviation σ = 1.2 in a single pass to enhance the DIF.

Isosurfacing. In our method, given a cell Ki ∈ G, we assume
that the smoothed DIF ϑ̃ is sampled at cell centers pi of Ki.
The liquid surface is represented by the level-set S = ϑ̃−1(c)
with isovalue c ∈ (0, 1). Thus, once computed the field ϑ̃,
we have fractional volumes of fluid ϑ̃i located at the cen-
ters pi. Then, we extract the polygonal mesh of the level-set
S executing the MC algorithm in the dual grid. The cells of the
dual grid are obtained by connecting the centers of the adjacent
cells of G (see Figure 3). The MC’s lookup table determines
the local topology of S inside each dual cell by indexing the
configurations of sign(ϑ̃i − c) at the eight corners of the cell.
Considering a linear approximation of ϑ̃, given a dual edge
eij = (pi,pj) where (ϑ̃i − c) · (ϑ̃j − c) < 0, the intersection
point (vertex) p of S with eij is computed as follows:

p = (1− α)pi + αpj with α =
c− ϑ̃i
ϑ̃j − ϑ̃i

.

After processing each dual cell, the entire surface S is ex-
tracted. In our experiments, we use the isovalue c = 0.25.

IV. RESULTS

We implemented our approach in C++ and a parallel version
of our code on GPU using CUDA. The particle-based fluid
simulations were produced with SPH using the computational
framework provided by DualSPHysics [24]. All results have
been achieved using a computer with AMD Ryzen 9 3950X
and 32GB RAM and NVIDIA GeForce RTX 2070 with
8GB VRAM.

Fig. 3: Isosurfacing of a DIF in 2D: a dual grid is obtained
from the grid G (solid black lines). For each dual cell (dashed
black line), MC examines the configuration of sign(ϑ̃i− c) at
the corners pi (orange dots) to define the local topology of
the surface S (solid red line) and determines the intersection
points p (red dots) between S and the dual edges eij .

Figures 1, 4, and 5 show comparisons of our surface
reconstruction method applied in different simulations in com-
parison with previous methods proposed by Müller et al. [1],
Zhu and Bridson [2], and Yu and Turk [3]. Furthermore, the
implementations in C++ of these methods can be found in the
Github1 repository from Kim’s book [25].

Table I shows the computational times and some statistics
for a set of experiments presented in this section. The column
|P| is the number of particles and the column res is the
resolution of G. The average time of each method across
all animation frames was measured using a single-core CPU.
The speedup (in parenthesis) shows how fast our approach is
compared to prior methods. Note that our approach is 2.1×
faster in the worst case and 13.9× faster in the best case,
demonstrating our method’s efficiency.

V. DISCUSSION

Scalability and profiling. Figure 6 shows the computational
timing of our approach implemented on GPU and the perfor-
mance profiling of each stage of the reconstruction pipeline
(as shown in Figure 2) with different resolutions of G. As can

1https://github.com/doyubkim/fluid-engine-dev

https://github.com/doyubkim/fluid-engine-dev

Fig. 4: Surface reconstruction of a floating ball with 0.93M SPH particles in a grid with 2563 cells: from left to right,
our method, Müller et at. [1] , Zhu and Bridson [2], Yu and Turk [3].

Fig. 5: Surface reconstruction of a double dam-break simulation with 1M SPH particles in a grid with 2563 cells: from left to
right, our method, Müller et at. [1] , Zhu and Bridson [2], Yu and Turk [3].

TABLE I: Average statistics and computational times (in seconds) per frame.

time (speedup)
Experiment |P| res Müller et al. [1] Zhu and Bridson [2] Yu and Turk [3] Ours

Toy dragon (Fig. 1) 1.20M 2563 22.42 (3.0) 15.94 (2.2) 85.03 (11.6) 7.30 (–)
Floating ball (Fig. 4) 0.93M 2563 18.85 (2.6) 16.23 (2.3) 100.05 (13.9) 7.21 (–)
Double dam-break (Fig. 5) 1.00M 2563 19.48 (2.9) 14.05 (2.1) 76.27 (11.3) 6.74 (–)

be seen, the computational time related to grid operations to
produce the smoothed DIF increases when we refine the grid,
becoming a potential bottleneck in high-resolutions. Regarding
the rendering, our method preserves nicely small-scale liquid
details even in a grid with a resolution of 5123. Important
to note that the GPU version is almost 100× faster than the
single-core version for a grid resolution of 2563 (see Table I).

Limitations and future work. The grid representation re-
stricts our GPU implementation to bounded domains. It
opens possibilities for replacing our current data structure

with sparse grid representations using GVDB Voxels [26].
Aggressive smoothing can remove small surface details like
liquid droplets. Thus, another direction of future research is
constructing a “detail-aware” blur using adaptive filters [27]
for DIF smoothing and more sophisticated polygonization
algorithms suited for DIFs [8], [9] as well.

VI. CONCLUSION

We introduced a simple and fast surface reconstruction
method for liquid interfaces suited for particle-based fluid
solvers on both CPU and GPU architectures. The proposed

0.00

0.05

0.15

0.25

0.10

0.20

0.30 GPU time

Fig. 6: Analysis of the grid resolution on GPU: surface reconstruction of the liquid splashing in the double dam-break (Figure 5)
using our method with different grid resolutions (left) and the average computational timing (in seconds) of each pipeline
stage (right): DIF evaluation (), smoothing (), and isosurfacing ().

method relies on a novel smoothed DIF defined by counting
particles inside grid cells, providing a high-quality surface.
Our method provides a significant speed-up for surface recon-
struction compared to the prior methods, as attested by the set
of experiments and comparisons carried out in the paper.

ACKNOWLEDGEMENTS

We want to thank the anonymous reviewers for their valu-
able suggestions. We also thank Samantha Miller from SideFX
for their kind donation of the Houdini software. This study
was financed in part by the National Council for Scien-
tific and Technological Development – Brazil (CNPq) under
grant 309226/2020-1, and the São Paulo Research Founda-
tion (FAPESP) under grant 2019/23215-9. The computational
resources provided by the Center for Mathematical Sciences
Applied to Industry (CeMEAI), also funded by FAPESP (grant
2013/07375-0).

REFERENCES

[1] M. Müller, D. Charypar, and M. Gross, “Particle-based fluid simulation
for interactive applications,” in Symposium on Computer Animation
(SCA ’03), 2003, pp. 154–159.

[2] Y. Zhu and R. Bridson, “Animating sand as a fluid,” ACM Trans. Graph.,
vol. 24, no. 3, pp. 965–972, 2005.

[3] J. Yu and G. Turk, “Reconstructing surfaces of particle-based fluids
using anisotropic kernels,” ACM Trans. Graph., vol. 32, no. 1, pp. 5:1–
5:12, 2013.

[4] M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner,
“SPH fluids in computer graphics,” in Eurographics 2014 - State of the
Art Reports, 2014, pp. 21–42.

[5] M. Macklin and M. Müller, “Position based fluids,” ACM Trans. Graph.,
vol. 32, no. 4, 2013.

[6] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” in SIGGRAPH ’87, 1987, pp. 163–169.

[7] C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the
dynamics of free boundaries,” J. Comput. Phys., vol. 39, no. 1, pp. 201–
225, 1981.

[8] J. Manson, J. Smith, and S. Schaefer, “Contouring discrete indicator
functions,” Comput. Graph. Forum, vol. 30, no. 2, pp. 385–393, 2011.

[9] F. Evrard, F. Denner, and B. van Wachem, “Surface reconstruction from
discrete indicator functions,” IEEE Trans. Vis. Comput. Graph., vol. 25,
no. 3, pp. 1629–1635, 2019.

[10] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas, “Adaptively sampled
particle fluids,” ACM Trans. Graph., vol. 26, no. 3, 2007.

[11] G. Akinci, M. Ihmsen, N. Akinci, and M. Teschner, “Parallel surface
reconstruction for particle-based fluids,” Comput. Graph. Forum, vol. 31,
no. 6, pp. 1797–1809, 2012.

[12] W. Yang and C. Gao, “A completely parallel surface reconstruction
method for particle-based fluids,” Vis. Comput., vol. 36, pp. 2313–2325,
2020.

[13] Q. Chen, S. Zhang, and Y. Zheng, “Parallel realistic visualization of
particle-based fluid,” Comput. Animat. Virt. W., vol. 32, no. 3–4, p.
e2019, 2021.

[14] H. Bhattacharya, Y. Gao, and A. W. Bargteil, “A level-set method for
skinning animated particle data,” IEEE Trans. Vis. Comput. Graph.,
vol. 21, no. 3, pp. 315–327, 2015.

[15] M. Sandim, D. Cedrim, L. G. Nonato, P. Pagliosa, and A. Paiva,
“Boundary detection in particle-based fluids,” Comput. Graph. Forum,
vol. 35, no. 2, pp. 215–224, 2016.

[16] M. Kazhdan and H. Hoppe, “Screened Poisson surface reconstruction,”
ACM Trans. Graph., vol. 32, no. 3, pp. 29:1–29:13, 2013.

[17] W. J. van der Laan, S. Green, and M. Sainz, “Screen space fluid ren-
dering with curvature flow,” in Symposium on Interactive 3D Graphics
and Games (I3D ’09), 2009, pp. 91–98.

[18] S. Green, “Screen space fluid rendering for games,” http://developer.
download.nvidia.com/presentations/2010/gdc/Direct3D Effects.pdf,
2010, game Developers Conference.

[19] T. Imai, Y. Kanamori, and J. Mitani, “Real-time screen-space liquid
rendering with complex refractions,” Comput. Animat. Virtual Worlds,
vol. 27, no. 3–4, pp. 425–434, 2016.

[20] L. S. R. Neto and A. L. Apolinário Jr., “Real-time screen space cartoon
water rendering with the iterative separated bilateral filter,” Journal on
Interactive Systems, vol. 8, no. 1, 2017.

[21] N. Truong and C. Yuksel, “A narrow-range filter for screen-space fluid
rendering,” ACM Comput. Graph. Interact. Tech., vol. 1, no. 1, 2018.

[22] F. Oliveira and A. Paiva, “Narrow-band screen-space fluid rendering,”
Comput. Graph. Forum, 2022, to appear.

[23] J. Toriwaki and H. Yoshida, Fundamentals of Three-Dimensional Digital
Image Processing. Springer, 2009.

[24] J. M. Domı́nguez, G. Fourtakas, C. Altomare, R. B. Canelas, A. Tafuni,
O. Garcı́a-Feal, I. Martı́nez-Estévez, A. Mokos, R. Vacondio, A. J. C.
Crespo, B. D. Rogers, P. K. Stansby, and M. Gómez-Gesteira, “Dual-
SPHysics: from fluid dynamics to multiphysics problems,” Comp. Part.
Mech., 2021.

[25] D. Kim, Fluid Engine Development. CRC Press, 2016.
[26] K. Wu, N. Truong, C. Yuksel, and R. Hoetzlein, “Fast fluid simulations

with sparse volumes on the gpu,” Comput. Graph. Forum, vol. 37, no. 2,
pp. 157–167, 2018.

[27] C.-F. Westin, R. Kikinis, and H. Knutsson, “Adaptive image filtering,”
in Handbook of medical imaging. Academic press, 2000, pp. 19–31.

http://developer.download.nvidia.com/presentations/2010/gdc/Direct3D_Effects.pdf
http://developer.download.nvidia.com/presentations/2010/gdc/Direct3D_Effects.pdf

	Introduction
	Related Work
	The method
	Results
	Discussion
	Conclusion
	References

