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Abstract—Public datasets have played a key role in advancing
the state of the art in License Plate Recognition (LPR). Although
dataset bias has been recognized as a severe problem in the
computer vision community, it has been largely overlooked in the
LPR literature. LPR models are usually trained and evaluated
separately on each dataset. In this scenario, they have often
proven robust in the dataset they were trained in but showed
limited performance in unseen ones. Therefore, this work investi-
gates the dataset bias problem in the LPR context. We performed
experiments on eight datasets, four collected in Brazil and four in
mainland China, and observed that each dataset has a unique,
identifiable “signature” since a lightweight classification model
predicts the source dataset of a license plate (LP) image with
more than 95% accuracy. In our discussion, we draw attention
to the fact that most LPR models are probably exploiting such
signatures to improve the results achieved in each dataset at the
cost of losing generalization capability. These results emphasize
the importance of evaluating LPR models in cross-dataset setups,
as they provide a better indication of generalization (hence real-
world performance) than within-dataset ones.

I. INTRODUCTION

Is it possible to predict the dataset from which a license
plate (LP) image is coming? Initially, one may think that this
task is fairly trivial since – in principle – images from distinct
datasets are collected in different regions, with different hard-
ware, for different purposes, etc. On second thought, one may
realize that it depends on the datasets we are comparing.

Suppose there are two datasets, one composed exclusively of
images of American LPs and the other of images of European
LPs. In that case, it should indeed be relatively straightforward
to distinguish which dataset each LP image belongs to due to
the many characteristics LPs from the same region/layout share
in common, e.g., the aspect ratio, colors, symbols, the position
of the characters, the number of characters, among others (this
is well illustrated in [1]). Nevertheless, beyond the LP layout,
are there unique signatures (bias) in each dataset that would
enable identifying the source of an LP image?

The presence of unique signatures in public datasets was
first revealed by Torralba et al. [2]. They investigated the then-
popular object recognition datasets (PASCAL’07, ImageNet,
among others) using the Name That Dataset! experiment in
which a Support Vector Machine (SVM) classifier was trained
to distinguish images from 12 datasets. If dataset bias did not
exist, no classifier would be able to perform this task at levels
considerably different from chance. However, their classifier
reached an accuracy of 39%, which is significantly better than
chance (1/12 = 8%). This result becomes even more surprising
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RodoSol-ALPR (ES) [7]: ___ , ___ , ___ , ___ SSIG-SegPlate (MG) [8]: ___ , ___ , ___ , ___
UFOP (MG) [9]: ___ , ___ , ___ , ___ UFPR-ALPR (PR) [10]: ___ , ___ , ___

Fig. 1. Can you name the dataset to which each of the above images belongs?
(you can try grouping the images into four distinct groups if you are unfamiliar
with the corresponding datasets). See footnote1 for the answer key. This task
is somewhat challenging for humans, as LP images from distinct datasets have
similar characteristics. However, a shallow CNN (3 conv. layers) predicts the
correct dataset in more than 95% of cases (chance is 1/4 = 25%). All images
above were classified correctly, with a mean confidence value of 95.9%.

when taking into account that those datasets were created with
the expressed goal of being as varied and rich as possible,
aiming to sample the visual world “in the wild” [2].

Dataset bias has been consistently recognized as a severe
problem in the computer vision community [3]–[6], as models
are inadvertently learning idiosyncrasies of each dataset along
with knowledge fundamental to the task under study. Never-
theless, to the best of our knowledge, it has remained largely
unnoticed in the License Plate Recognition (LPR) literature.

Considering the above discussion, in this work we revisit the
experiments conducted by Torralba et al. [2], adapting them
to the LPR context (see Fig. 1, where we recreate the Name
That Dataset! game [2] with Brazilian LPs2). Our experiments,
performed on public datasets acquired in Brazil and mainland
China, demonstrate that a lightweight Convolutional Neural
Network (CNN) can identify the source dataset of an LP
image with more than 95% accuracy, which is much higher
than expected from chance or human perceptual similarity
judgments. Intriguingly, our experiments also show no signs of
saturation as more training data is added, i.e., the classification

1Answer key: RodoSol-ALPR → (a),(d),(h),(l); SSIG-SegPlate →
(e),(i),(j),(o); UFOP → (b),(f),(m),(n); and UFPR-ALPR → (c),(g),(k).

2 To maintain consistency with previous work [10]–[12], we refer to “Brazil-
ian” as the layout used in Brazil before the adoption of the Mercosur layout.



accuracy could be even higher if there were more training data.
The severity of the dataset bias problem in LPR boils down

to the following. LPR datasets are usually very unbalanced in
terms of character classes due to LP assignment policies [13],
[14]. In a dataset collected in Brazil, for instance, one letter
may appear much more frequently than others according to
the state in which most vehicles were registered [10], [15]
(e.g., the SSIG-SegPlate dataset [8] has 746 instances of the
letter ‘O’ but only 135 instances of the letter ‘Q’). The same is
true for vehicles registered in different cities within a province
in mainland China [14], [16]. Considering that LPR models
are generally trained and evaluated on images from the same
dataset (see Section II), such bias can skew the predictions
towards the prominent character classes, resulting in poor
generalization performance in the real world [7], [17], [18].

The aim of this paper is two-fold. First, to situate the dataset
bias problem in the LPR context and thus raise awareness in
the community regarding the possible impacts of such bias as
this issue is not getting the attention it deserves. Second, to
discuss some subtle ways bias may have crept into the chosen
datasets to outline directions for future research.

II. RELATED WORK

Automatic License Plate Recognition (ALPR) systems ex-
ploit image processing and pattern recognition techniques to
find and recognize LPs in images or videos [16], [19]. Some
practical applications for an ALPR system are automatic toll
collection, road traffic monitoring, traffic law enforcement, and
vehicle access control in restricted areas [20], [21].

Deep learning-based ALPR systems typically include two
stages: License Plate Detection (LPD) and LPR [15], [22]. The
former refers to locating the LP regions in the input image,
while the latter refers to recognizing the characters on each LP.
Recent works have focused on the LPR stage [14], [23], [24],
as general-purpose object detectors have achieved impressive
results in the LPD stage for some years now [10], [25].

The standard method of evaluating an LPR method’s per-
formance is to use multiple publicly available datasets, such as
SSIG-SegPlate [8] and CCPD [22], which are split into disjoint
training and test sets. Such an assessment is typically done
independently for each dataset [10], [21], [26]. As models
based on deep learning can take significant time to be trained,
some authors have adopted a slightly different protocol where
the proposed networks are trained once on the union of
the training images from the chosen datasets and evaluated
individually on the respective test sets [7], [19], [27]. Although
the images for training and testing belong to disjoint subsets,
these protocols do not make it clear whether the evaluated
models have good generalization ability, i.e., whether they
perform well on images from other scenarios/datasets, mainly
due to domain divergence and data selection bias [2], [3].

In fact, a recent work [7] showed that there are significant
drops in LPR performance for most datasets when training
and testing well-known Optical Character Recognition (OCR)
models (e.g., CRNN and Facebook’s Rosetta) in a leave-one-
dataset-out (LODO) experimental setup. One might think that

such disappointing results were caused by the fact that existing
datasets for LPR are heavily biased towards specific regional
identifiers [13], [14]. Nevertheless, the authors explored sev-
eral data augmentation techniques to avoid overfitting, includ-
ing one based on character permutation [15] that is known to
successfully mitigate the impacts of such bias on the learning
of LPR models [1], [28], [29]. Thus, we soon hypothesized
that there are other strong biases crept into LPR datasets. This
analysis is precisely what motivated our work.

III. EXPERIMENTS

This section describes the experiments performed in this
work. We first list the datasets explored in our assessments,
explaining why they were chosen and not others. We also
detail how the LP images from each dataset were selected
and divided into training, validation and test subsets. Then,
we describe the CNN model employed for the dataset classifi-
cation task (Name That Dataset!) and provide implementation
details. Finally, we report the results achieved.

A. Datasets

Our experiments were carried out on images from eight pub-
lic ALPR datasets introduced over the last decade: RodoSol-
ALPR [7], SSIG-SegPlate [8], UFOP [9], UFPR-ALPR [10],
a reduced version of CCPD [22], ChineseLP [30], PKU [31],
and PlatesMania-CN [1]. The images of the first four datasets
were acquired in three states of Brazil, while the images of
the last four datasets were collected in various provinces of
mainland China. We cropped the LP regions from the original
images (taken in urban environments) for our experiments.

In this work, we chose to experiment with LPs from Brazil
and mainland China because there are many ALPR systems
designed primarily for LPs from one of those regions [10],
[11], [17], [32]. Considering the objectives of our study, we
also filter which LP images from each dataset to use in our
experiments: (i) regarding the datasets collected in Brazil, we
explore only LPs that have a single row of characters and gray
as the background color; and (ii) for the datasets acquired in
mainland China, we explore only LPs that have a single row of
characters and blue as the background color. This protocol was
adopted because the four datasets collected in each region have
LPs with these characteristics. In contrast, only some have LPs
with other characteristics (e.g., the UFOP and SSIG-SegPlate
datasets do not have any two-row LPs, and the ChineseLP and
PlatesMania-CN datasets do not have any yellow LPs). See
Table I for an overview of the datasets used in our experiments.
We labeled the color of each LP in every dataset to make this
selection. These annotations are publicly available3.

For reproducibility, it is essential to make clear how we
divided the selected images from each of the datasets to
train, validate and test the classification model (detailed in
Section III-B). The CCPD, RodoSol-ALPR, SSIG-SegPlate
and UFPR-ALPR datasets were split according to the protocols
defined by the respective authors (i.e., the authors specified

3 https://raysonlaroca.github.io/supp/sibgrapi2022/annotations.zip

https://raysonlaroca.github.io/supp/sibgrapi2022/annotations.zip


TABLE I
THE DATASETS USED IN OUR EXPERIMENTS.

Dataset Year LP Images State / Province-City

UFOP [9] 2011 244 Minas Gerais (BR)
ChineseLP [30] 2012 400 Various (CN)
SSIG-SegPlate [8] 2016 1,832 Minas Gerais (BR)
PKU [31] 2017 2,024 Anhui-Tongling (CN)
UFPR-ALPR [10] 2018 2,700 Paraná (BR)
CCPD [22] 2020∗ 25,000† Anhui-Hefei (CN)
PlatesMania-CN [1] 2021 347 Various (CN)
RodoSol-ALPR [7] 2022 4,765 Espírito Santo (BR)
∗ The CCPD dataset was introduced in 2018 and last updated in 2020.
† Following [24], we used a reduced version of CCPD in our experiments.

which images belong to which subsets), while the other
datasets, which do not have well-defined evaluation protocols,
were randomly split into 40% images for training; 20% images
for validation; and 40% images for testing, following the
split protocol adopted in the SSIG-SegPlate and UFPR-ALPR
datasets4. As the CCPD dataset has many more images than
the others (more than 350K), we followed [24] and performed
our experiments using a reduced version with 25K images.

Three points should be noted. First, for all datasets, we
were careful not to have images of the same LP in different
subsets (otherwise, different images of an LP could appear
in both the training and test sets, for example). Second, as
the chosen datasets have different numbers of test images, we
randomly sample a set of N test set images from different
datasets to predict which dataset each image belongs to (for
each region, N is constrained by the smallest number of
images in the test sets). This experiment is repeated 100
times with different splits and we report the average results.
Similar protocols were adopted in [2], [3], [33]. Third, we
used Albumentations [34], a well-known library for image
augmentation, to balance the number of training images from
different datasets, thus avoiding overfitting. Transformations
applied to generate new images include, but are not limited to,
random noise, random JPEG compression, random shadows,
and random perturbations of hue, saturation and brightness.

Hereinafter, “Brazilian LPs” refer to gray single-row LPs
from vehicles registered in Brazil (prior to the adoption of the
Mercosur layout), and “Chinese LPs” refer to blue single-row
LPs from vehicles registered in mainland China. While some
examples of Brazilian LPs can be seen in Fig. 1, some Chinese
LPs from the chosen datasets are shown in Fig. 2.

One may have noticed that all LP images we showed (both
in Fig. 1 and Fig. 2) are quite horizontal, tightly bounded,
and “easy” to read. This is because we rectified all LP images
to eliminate biases such as repetitive tilt angles caused by
specific camera positions in images from distinct datasets.
This procedure (i.e., LP rectification) has been performed quite
frequently in the literature, as it makes the recognition methods
considerably more robust to distortions caused by oblique
views [16], [19], [21]. To perform the rectification, we labeled
the position (x, y) of the four corners of each LP in the eight

4 The training, validation, and test splits are available at https://raysonlaroca.
github.io/supp/sibgrapi2022/splits.zip

Fig. 2. Some Chinese LPs from the datasets used in our experiments. From top
to bottom: CCPD [22], ChineseLP [30], PKU [31] and PlatesMania-CN [1].
The first character on each LP is a Chinese character representing the province
in which the vehicle is affiliated. The second character is an English letter
representing the city – in the province – in which the vehicle is affiliated [1].

datasets that do not contain such labels (only the CCPD and
RodoSol-ALPR datasets have corner annotations for all LPs).
These annotations are also publicly available3.

B. Classification Model
For the dataset classification task (Name That Dataset!), we

designed a lightweight CNN architecture called DC-NET. It
is inspired by the CDCC-NET model [35] and is relatively
similar to the model used for this same task in [36].

DC-NET’s architecture is shown in Table II. As can be seen,
the model is relatively shallow, with three convolutional layers
containing 16/32/64 filters, each followed by a max-pooling
layer with a 2×2 kernel and stride = 2. We evaluated several
changes to this architecture, such as using depthwise separable
convolutional layers, convolutional layers with stride = 2 (re-
moving the max-pooling layers), and different input sizes and
numbers of filters. However, better results were not obtained
(these experiments were conducted in the validation set).

TABLE II
DC-NET’S LAYERS AND HYPERPARAMETERS.

# Layer Filters Size / Stride Input Output

0 conv 16 3× 3/1 192× 64× 3 192× 64× 16
1 max 2× 2/2 192× 64× 16 96× 32× 16
2 conv 32 3× 3/1 96× 32× 16 96× 32× 32
3 max 2× 2/2 96× 32× 32 48× 16× 32
4 conv 64 3× 3/1 48× 16× 32 48× 16× 64
5 max 2× 2/2 48× 16× 64 24× 8× 64
6 flatten 24× 8× 64 12288

# Layer Units Input Output

7 dense 128 12288 128
8 dense 4 128 4

The DC-NET model was implemented using Keras. We
used the Adam optimizer, initial learning rate = 10-3 (with
ReduceLROnPlateau’s patience = 3 and factor = 10-1), batch
size = 64, max epochs = 50, and patience = 7 (the number of
epochs with no improvement after which training is stopped).

All experiments were performed on a computer with an
AMD Ryzen Threadripper 1920X 3.5GHz CPU, 96 GB of
RAM, and an NVIDIA Quadro RTX 8000 GPU (48 GB). In
this setup, DC-NET runs at ≈ 720 FPS (using batch size = 1).

C. Results
In this subsection, we report the results obtained by DC-

NET in the dataset classification task (Name That Dataset!).

https://raysonlaroca.github.io/supp/sibgrapi2022/splits.zip
https://raysonlaroca.github.io/supp/sibgrapi2022/splits.zip


Fig. 3 shows the confusion matrices for Brazilian (left) and
Chinese (right) LPs. There is a clearly pronounced diagonal in
both matrices, indicating that each dataset does have a unique,
identifiable “signature”; it is worth noting that only about 25%
accuracy would be expected if the classifier was operating at
chance levels, as would happen if the LP images from each
dataset were fully unbiased samples. The overall accuracy was
95.2% for Brazilian LPs and 95.9% for Chinese LPs.
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Fig. 3. Confusion matrices for a classifier (DC-NET) trained to predict the
source dataset of a given LP image; left: Brazilian LPs, right: Chinese LPs.

The results show that the DC-NET model is more successful
in classifying LP images from the datasets acquired with
static cameras (RodoSol-ALPR, SSIG-SegPlate, UFOP, and
PKU) than LP images from the datasets captured by handheld
(CCPD, ChineseLP, and PlatesMania-CN) or moving cameras
(UFPR-ALPR). We believe this is because images collected
by static cameras have many characteristics in common, not
just the background. These similarities are probably present to
some extent in the LP regions, explaining the greater accuracy
reached by the network in such images. To illustrate, in Fig. 4,
we show two pairs of the most similar images – in terms
of Mean Squared Error (MSE) – from distinct subsets from
each of the RodoSol-ALPR and UFPR-ALPR datasets (the
datasets where the highest and worst accuracy were achieved,
respectively). Observe that factors common in images taken
by static cameras, such as similar position and distance of
the vehicles to the camera, may cause the LPs from different
images to be quite resembling (note that this is not always the
case; it may seem so because we focused on the most similar
pairs of images from these datasets for this analysis).

It is intuitive to suppose that the network may simply
have learned the most frequent regional characters in each
dataset (e.g., most LPs in the CCPD dataset have ‘皖’ as the
first character). However, this does not hold since DC-NET
correctly classified more than 97% of the LP images from
both datasets collected in the Brazilian state of Minas Gerais
(SSIG-SegPlate and UFOP) and from both datasets acquired
in the Anhui province in mainland China (CCPD and PKU).

By carefully analyzing the confusion matrices in Fig. 3, we
noticed that almost all incorrect predictions on Chinese LPs
were between the ChineseLP and PlatesMania-CN datasets.
We consider this occurred because both datasets have images
collected from the internet (the other six datasets do not
contain any images from the internet). Specifically, all images

from the PlatesMania-CN datasets were downloaded from the
internet [1], while ≈ 39% of the ChineseLP’s images were
taken from the internet [30]. It makes perfect sense that the
bias is less pronounced when the images come from multiple
sources. The classifier still managing to achieve high accuracy
rates in both datasets is due to selection bias [2], [5], [36],
which arises because authors building a dataset select images
with specific purposes in mind, thus reducing the variability of
the data (in many cases without even realizing it). Furthermore,
these datasets have images with different quality levels, as they
were introduced years apart and the capture devices evolved
considerably in the time between them being collected.

(a) RodoSol-ALPR (MSE = 174)

(b) RodoSol-ALPR (MSE = 407)

(c) UFPR-ALPR (MSE = 1,686)

(d) UFPR-ALPR (MSE = 1,700)

Fig. 4. Two pairs of the most similar images (in terms of MSE) from distinct
subsets from each of the RodoSol-ALPR (a, b) and UFPR-ALPR (c, d)
datasets. In each pair, the left image belongs to the training set, while the
right one belongs to the test set. Observe that LPs from different images
captured by static cameras may be quite resembling. We show a zoomed-in
version of the LP in the lower left region of each image for better viewing.

An interesting point Torralba et al. [2] highlighted was that
by using more training data, the classification accuracy could
be increased with no immediate signs of saturation. Intrigued
by such results, we trained the DC-NET model three more
times for each LP layout: using 50%, 25% and 12.5% of the
training data (randomly selected). As shown in Fig. 5, the same
behavior is observed in our experiments, i.e., the accuracy
consistently improves as the size of the training set increases.

Another interesting finding is that the classifier predicts
the source dataset correctly with a significantly higher con-
fidence value than when it predicts incorrectly. The mean
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Fig. 5. Classification performance as a function of training data size. The
performance does not seem to be saturated for either Brazilian or Chinese LPs.

confidence values for correctly classified Brazilian and Chi-
nese LPs were 98.5% and 98.1%, respectively, while the
mean confidence values for incorrectly classified Brazilian
and Chinese LPs were 79.7% and 74.3%, respectively. Fig. 6
shows the Receiver Operating Characteristic (ROC) curves for
Brazilian (left) and Chinese (right) LPs.
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Fig. 6. ROC curves for Brazilian and Chinese LPs. Note the high Area Under
the Curve (AUC) values, which indicate that DC-NET performs considerably
well at distinguishing between LP images from different datasets.

IV. DISCUSSION

Considering that the DC-NET model – which is relatively
shallow – can predict the source dataset of an LP image with
accuracy above 95%, we conjecture that most LPR models
– which are considerably deeper – are actually learning and
exploiting such signatures to improve the results achieved in
seen datasets at the cost of losing generalization capability.
The intuition behind this conjecture is as follows: consider the
SSIG-SegPlate dataset [8] as an example, it has many LPs with
the letter ‘O’ as the first character but no LP with the letter ‘Q’
in that position. Hence, an LPR model capable of identifying
that a given LP image belongs to this dataset may predict the
letter ‘O’ as the first character even if the character looks more
like ‘Q’ than ‘O’ due to noise or other factors. However, the
relatively high recognition rates achieved in the SSIG-SegPlate
dataset would likely not be reached in unseen datasets.

While we are unaware of previous attempts to Name That
Dataset! in the LPR context, our findings echo the concerns
recently raised by Laroca et al. [7]. They evaluated the cross-
dataset generalization of 12 well-known OCR models applied
to LPR on nine datasets. As mentioned in Section II, they
observed significant drops in performance for most datasets
when training and testing the models in a LODO fashion
(i.e., one dataset is selected as the test set, and the remaining
datasets are used for training). Interestingly, the authors drew
attention to the fact that the errors under the LODO protocol

did not occur in challenging cases and thus were probably
caused by differences in the training and test images.

We believe that the main cause of dataset bias is related
to the cameras used to collect the images in each dataset.
Taking the results achieved in Brazilian LPs as an example,
the lowest accuracy (i.e., less pronounced bias) was reported
for the UFPR-ALPR dataset, which was captured by three non-
static cameras of different price ranges. In contrast, the other
datasets have images acquired by a single static camera (SSIG-
SegPlate and UFOP) or by multiple static cameras of the
same model (RodoSol-ALPR). In the same direction, another
probable cause of bias relates to how the images were stored
in different datasets. For example, the CCPD dataset contains
highly compressed images [7], [19] while most other datasets
do not. DC-NET probably exploited the detection of artifacts
in the highly compressed LP images for better classification.

Some works have related dataset bias to image back-
grounds [36], [37]. For example, a classifier may be classifying
images of the class “boat” without focusing on the boat itself
but rather on the water below or the shore in the distance [2].
Although we are convinced that we have eliminated such bias
by performing our experiments on rectified LP images, it is
worth noting that the corner annotations provided along with
the CCPD dataset [22] are not as accurate as those we made
or those from the RodoSol-ALPR dataset [7]. The DC-NET
model may have exploited these subtle distinctions as well.

It is worth noting that while these conclusions have been
reached for the particular classifier used in our experiments,
similar trends are expected to hold for similar models [36].

We consider two initial ways to mitigate the dataset bias
problem in LPR. The first is leveraging deep learning-based
methods’ high capability to visualize and understand how
bias has crept into the chosen datasets. One technique that
immediately comes to mind is Grad-CAM [38], which uses
the gradients of any target class flowing into the final convo-
lutional layer to produce a coarse localization map highlighting
the important regions in the image for predicting the class.

The other way is to embrace the “wildness” of the internet
to collect a large-scale dataset for LPR. However, as shown in
Section III and in [2], downloading images from the internet
alone does not guarantee a bias-free sampling, as keyword-
based searches return only particular types of images; users of
a specific website prefer images with certain characteristics,
among other factors. Thus, such a dataset should be obtained
from multiple sources (e.g., multiple search engines and web-
sites from various countries) on the internet.

V. CONCLUSIONS AND FUTURE WORK

In this work, we situate the dataset bias problem [2], [3]
in the LPR context. We performed experiments on LP images
from eight publicly available datasets; four were collected in
Brazil and four in mainland China. The results showed that
each dataset does have a unique, identifiable signature.

Specifically, our Name That Dataset! experiments showed
that the source dataset of an LP image could be predicted with
more than 95% accuracy (chance is 1/4 = 25%). Intriguingly,



we observed no evidence of saturation as more training data
was added. We believe there is no theoretical reason for such
results other than the strong biases in the actual datasets.

Considering our findings, we hope this work will encour-
age evaluating LPR models in cross-dataset setups, as they
provide a better indication of generalization (hence real-world
performance) than within-dataset ones.

How to best leverage the high capability of deep learning-
based methods to mitigate the dataset bias problem in LPR is
open for research in future work. As the first step in this direc-
tion, we plan to exploit visualization methods, such as Grad-
CAM [38], to produce visually explainable heatmaps to give
us clues into why such a lightweight classifier performs so well
at distinguishing between LP images from different datasets.
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