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Abstract—Background and Objective: The morphological anal-
ysis of sperm cells is considered a tool in human fertility
prognosis. However, this process is manual, time-consuming
and dependent on professional expertise. From a computational
perspective, this is a challenging problem due to the high inter-
category similarity between the objects of interest and the amount
of data available. In this paper, we propose a Convolutional
Neural Network model to automate morphology analysis of
human sperm heads.

Methods: We performed K-Fold cross-validation experiments
over two publicly available datasets and assessed the performance
of the proposed approach using Accuracy, Precision, Recall and
F1-Score. We also compared the proposed model with well-known
Convolutional architectures and previous approaches on the same
task.

Results: Experimental evaluation showed that our approach
achieved a macro-averaged F1-score of 0.95 while our best model
attained an accuracy of 97.7%. The error analysis revealed a
balanced classifier over different sperm head classes.

Conclusions: We proved that the proposed approach outper-
formed the previous state-of-the-art results on this task.

I. INTRODUCTION

Infertility, according to the World Health Organization
(WHO) is ”the inability of a sexually active, non-contraceptive
couple to achieve pregnancy in one year” [1]. This condition
affects 15% of couples, and 50% of cases are related to men
[2]. Evidence shows that factors such as genetic predisposition,
age, diet, and stress levels directly influence the number
of abnormal sperm cells in the human species [3].The first
procedure in evaluating male infertility is the health analysis of
semen [1]. This investigation follows common criteria where
a series of parameters are measured: volume, concentration,
motility, quantification of leukocytes, and morphology. Evi-
dently morphology is considered a good predictor of fertiliza-
tion ability and yields preponderant information when deciding
the course of treatment [4].

The morphology analysis examines the characteristics of
its head, middle part, and tail as well and the excess residual
cytoplasm. In this study we are particularly interested in sperm
head morphology analysis, a challenging task that provides
valuable diagnostic information. Sperm samples showing mi-
crocephaly, for instance, may indicate a high DNA fragmen-
tation; spermatozoa with a round head and no acrosome may
suggest globozoospermia, a genetic syndrome; spermatozoa
with a thin head are found in cases of hyperthermia and related

to cases of varicocele; samples with 100% of spermatozoa with
macrocephaly indicate macrocephalic sperm syndrome [5].

Nevertheless, sperm head morphology classification has
a broad spectrum of possibilities and is considered a non-
trivial task [4]. The main issue is that the physical traits
responsible for distinguishing cells from different classes are
minimal (high inter-class similarity) and, therefore, hard to
discern. This fact considerably increases the subjectivity of the
analysis, and there is a significant variation in the responses
obtained from different technicians on the same sample [6]
even after simplifying classification rules. Therefore, this
task is based on an error-prone process dependent on the
professional’s expertise. Computer Assisted Semen Analysis
(CASA) systems analyze semen parameters, including sperm
head morphology. The argument is that these systems may
improve the consistency of the results while reducing the time
necessary for completing the task [7]. The existing CASA
systems fail to provide thorough sperm head morphology
analysis, which implies losing significant diagnostic informa-
tion. In recent years, there has been an increasing interest in
deep supervised learning models in medical image processing.
These techniques’ application resulted in the new state-of-the-
art in several medical image classification tasks [8]. However,
to our knowledge, no prior investigation has experimented with
deep learning techniques to classify sperm head morphology.
Typically, these approaches require several thousands of la-
beled samples to achieve a good generalization capacity. This
number, though, is far more than what is publicly available
for the task. From a computational standpoint, the problem
is amplified due to the high inter-class similarity between
the objects of interest. Thus, in this context, a successful
model must be able to capture slight shape variations (discreet
patterns) even when exposed to small amounts of data.
This paper addresses this problem by presenting a supervised
approach based on a deep Convolutional Neural Network
(CNN) architecture for automated sperm head morphology
classification. We validated it on two public datasets using
standard performance evaluation metrics such as precision,
recall, and F1 score. We also compared the proposed model,
a known convolutional architecture, and previous approaches
to the same task.



II. RELATED WORK

In recent years, one may observe a growing interest in the
application of deep supervised learning models in the field of
medical image classification [9], [10]. Among the available
techniques, we highlighted the ones based on Convolutional
Neural Networks (CNN) - a technique that has been used
in several domains with encouraging results [11]. Huang et.
al. [12] employed this approach in identifying pancreas cancer
in abdominal computed tomography. The same architecture
was used by Baloni et. al [13] to identify hydrocephalus
desease.

Even with the increasing applicability of CNNs in medi-
cal image classification problems, few research works have
applied this state-of-the-art technology to assess the quality
of human semen. Dewan et al. [14] presented a CNN model
trained to distinguish between sperm and non-sperm objects.
Its output enables the estimate of spermatozoa concentration
directly from raw video through a frame-by-frame count. It
also allows evaluating motility. In this case, whenever the
binary CNN identifies a sperm cell, a second stage starts
tracking its trajectory across multiple frames. The results were
presented for sperm concentration, motility percentage, and
tracking performance, reaching a mean miss percentage of
7.44% on 95% confidence intervals. Golomingi et. al [15] used
a VGG-19 and one variation of it with 1942 images to detect
sperm in glass slides in sexual assault cases reaching high
levels of accuracy.

Previous studies also investigated the automated human
sperm head morphology classification problem [16], [17]. The
study carried out by Abbiramy and Tamilarasi [18] compared
the accuracy of three distinct binary neural network models to
classify sperm heads as normal or abnormal using the holdout
method. The experimental results attained an accuracy of 75%
using a traditional two-layer feed-forward network trained
with gray-level co-occurrence matrix features. However, the
authors exclusively utilized images contained in the WHO
laboratory manual [1] and, therefore, there is no evidence that
the proposed approach performs equally well under real usage
circumstances, with images captured from microscopes with
standard resolution. A recent study has proposed an approach
based in pseudo-masks and unsupervised spatial prediction
tasks [19] to classify the human sperm head morphology.

On the other hand, Chang et al. [16] expanded the sperm
head morphology classification problem by presenting a new
approach that can classify cells into five distinct groups
(amorphous, normal, pyriform, small, and tapered), which
is essential for the diagnostic perspective. Their two-stage
system uses an ensemble of classifiers based on Support Vector
Machines (cascaded SVM classifiers). The first stage aims at
identifying amorphous sperm cells (filtering stage). The second
(the verification stage) categorizes any positive sample from
the filtering stage into the remaining classes. The goal of this
schema is to minimize the average confusion matrix at the
second stage. This method achieved 73% accuracy, the same
accuracy that a human expert could achieve.

The same problem proposed by Chang et al. [16] was
also faced by Shaker et al. [17]. The authors presented a
technique based on Dictionary Learning (DL), namely ADPL,
which was validated on top of datasets such as the Hu-
man Sperm Head Morphology (HuSHeM) [20] and SCIAN-
MorphoSpermGS [6]. In the case of the HuSHeM dataset, four
categories were considered: normal, pyriform, tapered, and
amorphous. A cascade SVM was implemented as described
by Chang et. al. [16] for comparison purposes and it was
trained on the HuSHeM dataset using a K-fold cross-validation
setup. The results showed the superiority of the DL method,
reaching a mean accuracy of 92.2%, mean precision of 93.5%,
mean recall of 92.3%, and mean F1-score of 92.9%. Another
advantage of the DL method is the number of parameters
compared to the ensemble of SVMs.

III. BACKGROUND

CNNs are variants of multi-layer perceptron networks
(MLPs). Typically arranged in a deep architecture (composed
of multiple stacked layers), CNNs are focused on visual pattern
recognition directly from the raw pixels of an image. This
biologically inspired network architecture is based on the idea
that the visual cortex recognizes objects starting from primitive
shapes, iteratively elaborating more abstract concepts.

A CNN scans an image by analyzing patches of an input
image (receptive field) through convolution operations of k
trainable convolution kernels (local feature detectors), where
each is responsible for capturing a distinct pattern on an image.

Formally, at each layer, the input image is convolved with
a set of kernels, each of them generating a feature map. These
feature maps are subjected to an element-wise non-linear
transform, using rectifier linear unit function. The process
is repeated for each convolutional layer in the architecture.
A sequence of convolution layers is followed by a pooling
operation where the pixel values inside a feature map are
aggregated using invariant functions such as min, average
or max. A sequence of convolution layers is followed by a
pooling operation where the pixel values inside a feature map
are aggregated using invariant functions such as min, average,
or max. The pooling operation performs a subsampling that
divides the feature map and, thus, reduces the overall number
of parameters of the architecture which will set the boundaries
for the architecture portion responsible for performing feature
extraction over input images. The feature maps of the last
layer are flattened to a unidimensional matrix and feed a set
of fully connected layers optimized to minimize the following
cost function with respect to the input images.

IV. EXPERIMENTS

A. Proposed Methods

Recently, driven by the ImageNet challenge [21], highly
deep and complex CNN architectures have been proposed
including AlexNet, VGGNet, ZFNet, GoogLeNet, and ResNet.
These models were successfully employed in applications
that rely on object segmentation and classification. In this
work, we compared two architectures, a tailored version of



VGGNet which we refer to as Sperm Head Morphology CNN
(SHMCNN) and a bilinear CNN model (BCNN).

The VGGNet, presented by VGG group [22], has become
one of the standard architectures for deep learning in com-
puter vision reaching the top-5 accuracy on ImageNet, with
92.3%. VGGNet replaced larger convolution kernels (11 × 11
for instance) from Krizhevsky and Hinton (AlexNet) [23]
approaches by smaller ones (3×3) arranged in sequence. VGG
network preserves the ability to detect larger features while
improving the ability to capture fine-level properties over the
input. VGG-16 and VGG-19 are the most prominent versions
of this architecture.

An off-the-shelf VGGNet architecture does not converge
on small datasets with low resolution samples, such as those
publicly available for the task of human sperm head morphol-
ogy classification. It needs a larger number of labeled samples
to prevent overfitting while requiring images with higher
resolution, due to the high number of pooling operations in its
structure. Therefore, we proposed an architecture that contains
4 convolutional blocks with stride one. The last convolutional
layers outputs 256 feature kernels of 8x8 images. This setup
was achieved after empirical evaluation and was the one that
yielded the best results for this model.

The Bilinear Convolutional Neural Network (BCNN)
model [24] is an architecture tailored for fine-grained object
recognition. Regular CNN architectures are good at distin-
guishing objects with high inter-class variation such as dif-
ferentiating a car from an airplane. However, when the goal is
to classify highly similar objects such as birds by its species or
airplane models, the accuracy decays. The BCNN architecture
is composed of two parallel feature extractors for the same
input image. The convolutional layer outputs of feature extrac-
tors are then combined with outer product to obtain a quadratic
number of feature maps that feed a classification layer. The
idea is that each output of an extractor is combined with
output of the another extractor. This architecture demonstrated
to be effective for fine-grained recognition tasks [25] and was
relevant for the sperm head morphology classification task due
the high inter-class similarity.

In our architecture we mixed two different feature detection
parts as shown in Figure 1. The left one is identical to that
of SHMCNN network (presented in the previous subsection).
The right side follows the VGGNet architecture. The same
number of layers is employed on both sides and their output
dimensions are identical at the fourth convolutional block, a
requirement for the outer product operation.

B. Experimental setup

The Human Sperm Head Morphology dataset
(HuSHeM) [20] is a publicly available dataset comprised of
216 RGB images of sperm heads. The size of each of these
images is 131 × 131 pixels, where the target spermatozoon,
centered, may be eventually occluded by other objects.
Additionally, there is no standard sperm head orientation,
therefore, the cell may be geared in any direction. In this
dataset, sperm heads are classified into four distinct classes,

Fig. 1. The BCNN architecture tested on this study.

distributed as follows: Normal (54 images), Tapered (53
images), Pyriform (57 images), and Amorphous (52 images)
(Figure 2 for samples of each class). A group of three
specialists labeled all the collected images into the four
proposed categories. Only those consensually labeled samples
were kept in the dataset, reducing the outliers and creating a
reliable gold standard for the task.

Fig. 2. A sample of each sperm head class covered at HuSHeM dataset.

To create this dataset, semen samples were collected from
fifteen patients between 25 and 38 years old, following instruc-
tions and recommendations of the WHO manual [1]. The quick
diff method was used to fix and stain the semen smears. The
SCIAN-MorphoSpermGS dataset, collected by [6], consists of
1132 gray-scale images of sperm heads with no occlusion.
Each image has a size of 35×35 pixels, that, differently from
HuSHeM dataset, are classified into five categories: Normal
(100 images), Tapered (228 images), Pyriform (76 images),
Small (72 images), Amorphous (656 images). See Figure 3
for a sample image for each class.

C. Partitioning and pre-processing

In order to provide a robust approximation of the model’s
accuracy on unseen data, all the experiments reported in
this paper were subject to a k-fold cross-validation method,
with k=5. Hence, for each model evaluated, we randomly



Fig. 3. Sperm head categories contained into SCIAN-MorphoSpermGS
dataset.

divided the original dataset into five equal-sized folds and
performed five separate training sessions, each of them using
four folds for training (80% of data) and one fold for testing
(the remaining 20%). At each of these training sessions, we
rotated the fold selection, so that all folds were used at the test
set exactly once. Additionally, we employed a minimal pre-
processing stage composed of two steps. The first step was
about converting original RGB images into gray-scale 1. The
second and most significant step was the data augmentation
procedure.

Training a CNN model for an image classification task
requires adjusting millions of parameters and, consequently,
many labeled samples. As described in the Section IV, both
available datasets contain only a few dozens of images rep-
resenting each class. Directly using such small-sized datasets
as inputs often lead to overfitting, which reduces the overall
accuracy of a model. During data augmentation, one applies
a series of transformations over the original images of the
training set, aiming at artificially generating a more repre-
sentative number of samples. Frequently used transformations
involve zooming, rotating, translating, rescaling, brightness
manipulation, and randomly adding noise and occlusions to
the original samples. After carefully examining the results
produced by different data augmentation pipelines, we chose
to generate batches of new images for each training sample.
We randomly zoomed on a range of 1% to 15%, distorting the
image classifier. We applied standard metrics such as precision,
recall, and f-measure. The measurement was made for each
morphology class, yielding a local precision and recall. To
compute the system’s overall performance, we calculated
the median results of the local precision and recall. These
averaged results serve as input without de-characterizing its
morphology. We also randomly flipped and rotated each image
from 0 to 360 degrees.

Regarding the SCIAN-MorphoSpermGS dataset, indu-
bitably, the number of sperm-cells forms an unbalanced dis-
tribution. For this reason we performed a down-sampling
procedure where we randomly removed 556 samples from the
Amorphous class, 138 images from Tapered and 10 images
from Normal. Thus, we produced a subset with the following
distribution of images amount: Amorphous (90 images), Small
(72 images), Pyriform (76 images), Normal (90 images) and
Tapered (90 images). We applied the same pipeline in this
down-sampled subset (partitioning, pre-processing and data
augmentation).

1This step was performed only for the HuSHeM dataset. SCIAN-
MorphoSperm-GS samples are already at the gray-scale

D. General procedures and Evaluation

All CNNs were optimized using Adam, an efficient adap-
tive algorithm for gradient-based optimization of stochastic
objective functions that is typically suited for high-dimensional
parameter models [26]. The algorithm was initialized with the
following settings: α = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10

−8.
We used the Dropout technique [27] which affects the

network training procedure by randomly setting activations to
zero during backpropagation at training stage. Each training
session, despite the model, lasted for 200 epochs with an early
stopping policy, which ensured that, if a loss reduction did
occur in the last 20 training epochs, the training session would
be ended2.

To evaluate the performance of the sperm head morphology
classifier, we applied standard metrics such as, precision,
recall, and f-measure. The measurement was made for each
morphology class, yielding a local precision and recall. To
compute the overall performance of the system, we calculated
the median results of the local precision and recall. These
averaged results serve as input to compute the F1-score of
the model (macro-averaged F1-score), which indicates the
harmonic mean between the averaged precision and recall.

V. RESULTS

We compared the results obtained by our proposed ap-
proaches: BCNN (Table I) and SHMCNN (Table II). The
comparison revealed close performance for both methods,
with a difference of 0.01 Macro-Averaged F1-score points.
While the BCNN network achieved an impressive F1-score
of 0.98 for capturing Normal sperm cells, the SHMCNN
exhibited a degraded score (0.96), but on the other hand, it
performed consistently across different classes and showed
to be a balanced classifier. We expected that the BCNN
model would be able to find better feature descriptors for
sperm images, due to its natural ability to deal with inter-
class similarity of objects [24]. The results suggest that the
inter-class similarity, although present in the task, may be
manifested through simpler shapes that SHMCNN can capture.
A positive point for the SHM-CNN model is that it requires
only a fraction of the parameters of a BCNN (a quadratic
model) – 10M against more than 60M – which makes it faster
at training and prediction, while it exhibits a small memory
footprint.

TABLE I
DETAILED RESULTS FOR BCNN MODEL ON HUSHEM DATASET.

Morphology Precision Recall F1-Score Support
Amorphous 0.98 0.88 0.93 52

Normal 1.00 0.96 0.98 54
Pyrifom 0.85 0.98 0.91 57
Tapered 0.96 0.92 0.94 53

Macro-Averaged 0.95 0.94 0.94 216

Our best single training session of the SHMCNN model
on the HuSHeM dataset achieved an accuracy of 97.7%.

2https://github.com/dfalci/spermheadmorphology



TABLE II
DETAILED RESULTS FOR SHMCNN MODEL ON HUSHEM DATASET.

Morphology Precision Recall F1-Score Support
Amorphous 0.98 0.92 0.95 52

Normal 0.98 0.94 0.96 54
Pyriform 0.92 0.98 0.95 57
Tapered 0.94 0.96 0.95 53

Macro-Avg 0.96 0.95 0.95 216

The confusion matrix is shown in Figure 4. It is the result
of summing up all the confusion matrices obtained in each
individual experiment of the cross-validation. Notice that the
major difficulties faced by our model were at labeling Pyriform
cells, with lowest Precision (0.92), with 5 samples being
incorrectly classified. . The lowest recall, in turn, was at
recognizing Amorphous cells (0.92), with 4 errors.

Fig. 4. Confusion matrix for the 5-fold cross-validation experiment of
SHMCNN model.

Our next step was to compare the performance of SHMCNN
model with that of our baseline - ADLP [17] - at HuSHeM
dataset. Table III shows the results. We highlighted that the
SHMCNN performance is superior in all three metrics, pro-
viding a considerable error reduction rate of 37.5% on macro-
averaged F1-score. This result suggests that our approach
is suitable for classifying sperm head morphology under
HuSHeM dataset.

TABLE III
COMPARISON OF THE PERFORMANCE OF SHMCNN AND ADPL

METHODS ON HUSHEM DATASET.

Classifier Precision Recall F1-Score
SHMCNN 0.96 0.95 0.95
APDL [17] 0.93 0.92 0.92

We also applied a variant of the SHMCNN architecture to
the SICAN-MorphoSpermGS dataset in the same way we did
for the HuSHeM dataset. The pre-processing stage was mostly
the same, despite its samples being horizontally oriented.
The only change regarding the gray-scale transformation is
not necessary for this dataset. Again, we used k-fold cross-
validation with k = 5 on a down-sampled subset, following the
procedures described in Section IV-C. Thus, we maintained
compatibility with the setup used of previous studies. We
compared our results with those of Chang et al. [16] and

Shaker et al. [17]. Considering the smaller size of their images
(35 × 35), we opted to remove the last convolutional layer
of our SHMCNN architecture. The results are summarized
in Table IV. Our model has achieved a higher recall rate
for morphology classes. The exception lies in the amorphous
category, which achieved a recall of only 13%, which is less
than half of the ADPL method. We suspect this issue is due
to the automated down-sampling procedure, which may have
produced an under-represented sub-sample of this category.
Nevertheless, the proposed method is effective for classifying
sperm head morphology for the remaining classes.

VI. DISCUSSION

Despite the relevant results reached by this study, a discus-
sion could be addressed when we analyze the applied method
to different species of sperm. In fact, the basis of this study
relies on the dataset and CNN techniques, hence, with a rich,
correct and well-classified corpus of sperms head images.
Moreover, this method will be able to accomplish similar
performance. However, what could we expect if the model
built in this paper was applied to classify the sperm head
morphology of other species? Some studies were conducted
aiming to compare a large set of attributes of different species
sperm, including its morphology [28].

The attributes of 16 species of patellid limpet (marine
gastropod) spermatozoa and spermatogenesis and the shape of
the head have the same variances when the scientists collated
them or compared to human sperm head shape [29].

An analysis was conducted among species of artiodactyls,
perissodactylans, and cetaceans. As a result, the researchers
found that the sperm heads of all analyzed species were
dorsoventrally flattened and generally had an ovoid. In some
cases, there was a variation in the relative posterior thickness
of the sperm head. The study also reports variations in sperm
head shapes where some species had more elongated heads
while others had more rounded heads [28]. This variation
could be an issue to a model trained only with human image
samples. In other words, with this study we reached significant
results using a dataset based on human sperm images and any
kind of effort to reach these findings on another species should
be followed by a previous task to create a corpus with the
images of those species.

VII. CONCLUSION

The current study aimed to determine the accuracy of an
automated sperm head morphology classifier based on CNN
architecture. We proposed and evaluated two CNN models:
SHMCNN and BCNN, tailored for this specific task. Both of
them are based on state-of-the-art image recognition archi-
tectures, one used in general purpose environments and the
other typically suited for fine-grained tasks. To assess their
performances, we conducted a series of 5-fold cross-validation
experiments using metrics such as precision, recall and f-score.

The results confirmed that SHMCNN method outperformed
the previous approaches by reaching a macro averaged F1-
score of 0.95 at the HuSHeM dataset. The error-analysis



TABLE IV
COMPARISON OF THE RECALL OBTAINED FROM SHMCNN AND THE ONE OBTAINED FROM ADPL METHOD FOR SCIAN-MORPHOSPERMGS DATASET.

Amorphous Normal Pyriform Small Tapered Average
SHMCNN 0.13 0.90 0.71 0.85 0.91 0.70
ADPL [17] 0.35 0.71 0.71 0.68 0.67 0.62

showed that we achieved a balanced classifier across different
classes, which indicates that the proposed approach is effective
in recognizing all four sperm head classes. The research
has also demonstrated that the accuracies of the SHMCNN
and BCNN models were close. However, BCNN network
was heavier from a computational perspective and it required
more than six times the number of parameters. To validate
our SHMCNN further, the architecture was modified and
applied at SICAN-MorphoSpermGS dataset. Again, our results
confirmed the superiority of the proposed method over ADPL
method.

The scope of this study was limited by dataset charac-
teristics. Both SHMCNN and BCNN models with the im-
plicit margin of error, brought segmented and cropped sperm
head images. As opposed to what occurs in a real-world
scenario, our evaluation was not affected by this natural
error-propagation. Future studies may address this matter by
focusing on end-to-end method for classifying human sperm
head morphology directly from raw video stream.
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