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Abstract—Unmanned Aerial Vehicles (UAVs) has stood out
for assisting, enhancing, and optimizing agricultural production.
Images captured by UAVs allow a detailed view of the analyzed
region since the flight occurs at low and medium altitudes (50m
to 400m). In addition, there is a wide variety of sensors (RGB
cameras, heat capture sensors, multi and hyperspectral cameras,
among others), each with its own characteristics and capable
of producing different information. In multi-spectral images
acquisition, we use a distinct sensor to capture each image band
and at different time, leading to misalignments. To tackle this
problem we propose to train a deep neural network to predict
the vector deformation fields to perform the registration between
bands of a multi-spectral image. The proposed approach has
an accuracy ranging from 89.90% to 93.79% in the task of
estimating the displacement field between bands. With this field
estimated by the network, it is possible to register between the
bands without the need for manual marking of points.

I. INTRODUCTION

Agriculture has undergone major changes in recent cen-
turies. Such changes would directly impact the history of
humanity. It is worth noting that until the end of the 18th
century, there was much pessimism about the Earth’s ability
to feed a population that grew exponentially. Pessimism,
fortunately, did not materialize to catastrophic levels due to
advances in agriculture. We can summarize these advances in
three great revolutions: first, the mechanization of farms (1900
to 1930), later, the genetic modification of plants (1990 to
2005), and we are currently experiencing the third revolution,
defined as Precision Agriculture (PA) [1]–[3].

In general, we understand PA as the individualized treatment
of each area that makes up a particular crop. Thus, the individ-
ualized treatment allows, for example, the effective application
of agricultural inputs, which generates a reduction in costs
and an increase in the gains of the agricultural producer. In
this sense, PA is heavily dependent on imaging and mapping
techniques. Images can be captured from different sources
such as satellites, Unmanned Aerial Vehicles (UAVs), and even
smartphones [4].

The use of UAVs in the PA has become popular due to
the possibility of capturing images from low and medium dis-
tances (especially when compared to satellites). Additionaly,
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it is possible to couple several sensors in a single aircraft, thus
enabling us to capture multispectral images. Figure 1 presents
an example of a scene containing five bands. However, because
the flight of a UAV is subject to environmental impacts (e.g.,
wind, shadows) and the different sensors are often placed in
different parts of the aircraft, it is common misalignments
between the bands of the same captured scene. Such mis-
alignments can be grouped into two large groups: (i) linear,
which involves a pre-established pattern (e.g., rotation, scale,
and perspective change), and (ii) non-linear, where there is no
established pattern of deformation. Figure 2 presents an image
composed of two bands, through a checkerboard (where light
and dark tones differentiate different bands). In this figure, it
is possible to see the misalignment between the bands of the
same scene. [5]–[9].

For correct analysis of images for decision-making in PA,
the bands must be aligned. Thus, the present work presents a
proposal based on U-Net to perform alignment between the
bands of the same scene without manual marking of points.
For this, we considered two datasets and trained a deep-
learning approach to the task of estimating the displacement
field between bands of the same scene. [11], [12].

II. MATERIALS AND METHODS

A. Deep learning

Deep Learning consists of an area of Artificial Intelligence
that simulates the human brain through an artificial neural
network containing more than one hidden layer. Through Deep
Learning it is possible to perform problems of, for example,
classification, segmentation, or regression, in different contexts
(e.g., images, text, speech) [13].

Convolutional Neural Networks (CNNs) are a category of
deep learning methods. These networks use the concept of
the receptive field of biological systems, which gives them
networks the ability to learn different filters and features
of an image. In this way, CNNs can explore the spatial
correlations between pixels in image to extract meaningful
image attributes for many tasks, such as image classification
and segmentation. In short, a typical CNN contains three types
of layers: convolutional, pooling, and dense. The convolutional
layer is responsible for extracting significant features from an
image. The pooling layer aims to reduce the feature maps



Fig. 1. Example of a scene containing all bands: Blue, Green, Red, Near-Infrared, and Red Edge, respectively. Adapted from [10].

Fig. 2. Checkerboard of two bands of the same image. Note that in highlight
there is a misalignment between the bands, where the same line, in its different
bands, should follow the same diffraction [10].

computed by the convolutional layer. Finally, a flattening
operation converts the feature maps (two or more dimensions
- 2D or more) obtained in the previous operations into a one-
dimensional vector (1D) which is processed by the dense layer
[14]–[16].

U-Net is a CNN proposed by [11] for medical image
segmentation. The main idea of U-Net is to apply pooling and
upsampling operations. In general terms, the pooling operation
reduces the size of the input to highlight the main features. The
upsampling operation will progressively expand the feature
maps identified in previous pooling operations until the output
has the same size as the input [17], [18].

B. Image Dataset

Two different experts manually marked the images in the
datasets in order to align them, thus making it a ground truth
for our experiments. Each expert worked on a different dataset.
In general, the experts marked 12 points in the green band. In
the sequence, the experts selected the equivalent points in the
other bands [10]. Tables I and II shows the misalignment, in
pixels, between the ground truth generated by the experts in
the soybean and cotton datasets, respectively.

TABLE I
MISALIGNMENT AVERAGE, IN PIXELS, BETWEEN THE SENSORS PRESENT

IN SOYBEAN DATASET.

Blue Green Red NIR Red Edge
Blue - 5.18 15.75 15.07 12.14

Green 5.18 - 15.09 12.33 4.02
Red 15.75 15.09 - 29.25 14.79
NIR 15.07 12.33 29.25 - 16.17

Red Edge 12.14 4.02 14.79 16.17 -

TABLE II
MISALIGNMENT AVERAGE, IN PIXELS, BETWEEN THE SENSORS PRESENT

IN COTTON DATASET.

Blue Green Red NIR Red Edge
Blue - 28.30 12.11 33.28 8.48

Green 28.30 - 21.44 24.01 35.66
Red 12.11 21.44 - 14.94 21.30
NIR 33.28 24.01 14.94 - 39.37

Red Edge 8.48 35.66 21.30 39.37 -

For the experiments, we considered two dataset to eval-
uate the proposed approach. Both datasets have images of
1280 × 960 pixels size and an average of 80% overlap
between images. We obtained the first dataset from a soybean
plantation. Soybean dataset contains 1080 images (216 scenes
and 5 bands). The second dataset is from a cotton plantation.
Cotton dataset contains 830 images (166 scenes and 5 bands).
The bands present in both datasets are Blue, Green, Red,
Near-Infrared (NIR), and Red Edge. We obtained the images
in a single flight without any type of pre-processing, and it
took place at an average height of 100 meters, at an average
speed of 20m/s. Under these conditions, the Ground Sample
Distance (GSD) is 6.8cm/pixel [10].

Due to the nature and purpose of the UAV flight, both
dataset have images of heterogeneous content. Figure 3 shows
some image samples of the soybean dataset and Figure 4
shows image samples of the cotton dataset, after after the
generation of the ground truth.

Fig. 3. Examples of images from soybean dataset: each row represents a
scene captured by UAV. Columns represent the respective bands (From lef to
to right: Blue, Green, Red, NIR, and Red Edge, respectively).



Fig. 4. Examples of images from cotton dataset: each row representsa scene
captured by UAV. Columns represent the respective bands (From lef to to
right: Blue, Green, Red, NIR, and Red Edge, respectively).

To perform our experiments, we have proportionally re-
duced the images to 20% of their original size, preserving
their content and aspect ratio so that we do not insert any
deformation. We performed this operation to reduce the com-
putational cost of further training in relation to their original
sizes. In this way, the images will be 256× 192 pixels size.

We consider the green band as fixed as in [10]. The authors
justifies this choice because the images are usually composed
of vegetation, so this band has more content that can be used
as reference object for matching with other bands. Thus, we
generated deformations in the other bands and we kept the
green band preserved for both datasets.

The non-linear deformations consisted of two random grids,
one for displacements in the y-direction, and the other for
displacements in the x-direction. In short, the transformation
is defined through a 3× 3 point B-spline grid, where random
displacements are ranging from a uniform distribution with
x, y = [−0.05, 0.05] [19].

To make the generated deformations more adherent with
real deformations, we also inserted two more rigid deforma-
tions often found in a UAV flight: rotation and scale. These
deformations were also randomly computed in a controlled
range of variations. For the scale, we consider variations of
±2%, to the original. For the rotation, we consider a variation
of up to 10 degrees around the central point. Figure 5 shows
the artificially generated deformations.

In our approach we used supervised learning to learn the
displacement field (U ) of the moving image to the fixed image.
The displacement field (U ) is calculated as follows:

U = originalGrid− transformedGrid (1)

where originalGrid refers to the deformation-free image grid
(original image) and transfomedGrid refers to the image grid
after inserting the deformations. The visual presentation of the
displacement fields, with the respective color map, is shown
in Figure 6.

(a) (b)

(c) (d)
Fig. 5. Example of distortion in near-infrared band. Note that the grids in
this figure are for a better visual representation of the deformation and do not
represent in size the B-spline transformation grid.

(a) (b)
Fig. 6. Example of displacement fields in Figure 5-(d) in relation to Figure
5-(b): (a) displacement field for the x axis; (b) displacement field for the y
axis. The colors blue and red represent positive and negative displacements,
respectively.

C. End-to-end training

We trained our network to maximize the accuracy between
the estimated vector field (Û ) and the true vector field (U ), in
accordance with [12]. TensorFlow framework considers that
two floating point numbers equals if difference between them
is smaller than 10−6. Thus, we define the accuracy as

accuracy =
100

MN

N∑
i=1

M∑
j=1

δ(Uij , Ûij) (2)

with
δ(i, j) =

{
1, |i− j| <= 10−6

0, otherwise (3)

In addition, the loss is defined as:

loss =
1

n

n∑
j=1

|uj − ûj | (4)

where n refers to number of iterations. We also use the Adam
optimizer with a learning rate in 10−4.

According to [12], to adapt the U-Net to the registration
task, the input layer has two bands, one for the fixed band and



the other for the moved band. The output layer is also adapted
to have two bands, where each band corresponds to an axis
of the vector field (x and y). Finally, all activation functions
are the Leaky ReLU parameterized as ϕ(x) = max(x, 0.01x),
which restrict neurons from being nulled (zero value) in some
applications of the ReLU function [19]. However, the output
layer has no activation function to enable real values. Figure
7 shows the proposed architecture.

III. RESULTS AND DISCUSSION

We conducted the experiments on a Personal Computer with
Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, 32GB RAM,
64-bit Windows OS and GPU NVIDIA GeForce GTX 1050 Ti,
4GB GDDR5. We also used Python 3.6 and Keras 2.1.6-tf with
TensorFlow 1.10.0 and CUDA Toolkit 9.0. In this experimental
setup, our approach has about 8.5 million parameters. We
divided each dataset into training, validation, and test sets
in the proportion of 70%, 15%, and 15%, respectively. We
performed the training of the network for 2000 epochs.

In our network the input consists of two band, being the
green the fixed one. Thus we evaluated how well the other
four bands align towards the green band. In short, we have
the following combinations: (i) Green and Blue, (ii) Green and
Red, (iii) Green and Red Edge, and (iv) Green and NIR. The
network output, as previously mentioned, is the displacement
field of the band moved in relation to the fixed band.

For the soybean dataset, for each band deformed (Blue, Red,
NIR, and Red Edge), we obtained an accuracy ranging from
89.90% to 93.79%. For the cotton dataset, with the same de-
formed bands as the soybean dataset, we obtained an accuracy
ranging from 90.01% to 91.21%. Table III summarizes the
accuracy for each of the datasets.

TABLE III
SUMMARY OF ACCURACY FOR EACH OF THE MOVED BANDS CONSIDERED.

Deformed Band Accuracy
Soybean Dataset Cotton Dataset

Blue 89.90% 90.01%
Red 89.95% 90.11%
NIR 90.50% 91.21%

Red Edge 93.79% 90.54%

After training the network, we evaluated its accuracy using
a set of images that were not part of the training and validation
sets. With the vector fields predicted by the network, we need
to map the points of the deformed image towards the fixed
image. In short, we applied the transformation learned by the
network, interpolating them in a new grid, as follows:

IR(x, y) = IM (x+ Z(x, y), y + V (x, y)) (5)

where IR is the registered band, IM is the moved band and
Z(x, y) and V (x, y) are the predicted vector fields for the x
and y axis, respectively.

We also present a visual analysis of our approach. For that,
we present the overlap between the bands before and after
applying our approach. Figure 8 shows this visual analysis for
the soybean dataset. Figure 9 shows the same visual analysis,

but for the cotton dataset. Note that these figures for visual
analysis have a highlight, where it is possible to observe the
ability of our approach to align the images in the correct
direction.

IV. CONCLUSIONS

Similar to [19], in this work we adapted the U-Net to
problems of co-registration in UAV images in the PA. In this
context, it was possible to estimate a deformation field between
bands of multispectral images with considerable precision.
The accuracy, when considering both datasets, ranged from
89.90% to 93.79%. In this way, our network can perform co-
registration after training without manually marking the points.

In this sense, we need to highlight that although the
approach behaved similarly in both datasets, we obtained
them under different flight conditions and in different crops,
demonstrating the ability of our approach to generalize.

Although our proposal is related to that of [12], we take
into account multispectral images. In addition to the content
of each one of the images in our training set being totally
different, in other words, there is no defined pattern of content
between our images (see Figures 3 and 4). In [12], the images
are exclusive of lungs captured through a CT.

In [20], the co-registration between the same bands con-
sidered in this work is carried out, however, [20] does not
consider the presence of non-linear deformations, besides
needing the manual marking of points for the co-registration
task.

Finally, through visual analysis, we can see the ability of
our approach to performing co-registration on multispectral
images. This capacity is even more evident due to the degree of
non-linear deformation considered, in addition to the inclusion
of linear deformations, which increases the complexity of
learning the network. Therefore, from the scenes aligned with
our approach, the images can be used more effectively in the
PA for different tasks (e.g., vegetation indices, detection of
planting lines, and segmentation).
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