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Abstract—This article1 exposes a semi-automatic method with
the potential to aid the doctor while supervising the progression of
skin lesions. The proposed methodology pre-segments skin lesions
using the SLIC0 algorithm for the generation of superpixels.
Following this, each superpixel is represented using a descriptor
constructed of a mix from GLCM and Tamura texture features.
The feature’s gain ratios were utilized to choose the data applied
in the semi-supervised clustering algorithm Seeded Fuzzy C-
means. This algorithm uses certain specialist-marked regions
to group the superpixels into lesion or background regions.
Finally, the segmented image undergoes a post-processing step
to eliminate sharp edges. The experiments were performed on a
total of 3974 images. We used the 2995 images from PH2, DermIS
and ISIC 2018 datasets to establish our method’s specifications
and the 979 images from ISIC 2016 and ISIC 2017 datasets
for performance analysis. Our experiments demonstrate that
by manually identifying a few percentages of the generated
superpixels, the proposed approach reaches an average accuracy
of 95.97%, thus giving a superior performance to the techniques
presented in the literature. Even though the proposed method
requires physicians’ intervention, they can obtain segmentation
results similar to manual segmentation from a significantly less
time-consuming task.

I. INTRODUCTION

The human body is similar to a machine made up of
different components that work together to perform its func-
tions. The main functions of the skin are excretory, protective,
relationship, thermoregulatory, and metabolic. In skin areas,
repeatedly over many years, exposed to the sun could occur
skin cancer lesions.

These lesions could be benign or malignant. Benign lesions
have more regular edges and uniform coloring (Figure 1a),
whereas malignant lesions have more irregular borders and
varied coloring (Figure 1b). Malignant lesions can lead to
skin cancers, such as melanoma. Melanoma is aggressive
cancer with easy proliferation. In a report, the Skin Cancer
Foundation [1], estimated new cancer cases in 2021 increase
by 5.8 percent. Also, it estimated more than 200,000 new
cancer cases in the United States, with 101,280 involving
melanoma at its most severe stage.

The detection of skin cancer is frequently made based on
images that professionals visually analyze. However, manual
image segmentation is a time-consuming task that demands
skilled and trained specialists. Computer-assisted diagnosis
systems (CAD) combines techniques related to artificial in-
telligence and digital image processing to help specialists in
their clinical tasks [2].
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(a) Benign lesions. (b) Malignant lesions.

Fig. 1. Skin lesion images samples.

Lesion segmentation an essential step in the CAD system to
classify skin lesions. The image rising from this step provides
the lesion classification characteristics as benign or malignant.
According to [3], segmentation of a lesion’s boundaries is
vital to locate it accurately within the image under analysis
and diagnosis. Also, the ABCD (asymmetry, border, color,
and diameter) rule can help non-dermatologists differentiate
between benign melanocytic naevi and melanoma lesions [3].
Recently, [4] demonstrated the importance of the ABCD rule
in the automatic diagnosis of melanoma.

Deep learning has increased in demand in medical imaging
analysis [5], and these systems also use a transparent segmen-
tation step to the user. In some cases, the lesion under analysis
is segmented before being classified by a convolutional neural
network (CNN) [6].

There are various algorithms adopted in the processing and
analysis of skin lesions images. However, researchers com-
monly applied strategies that depended on the image dataset
characteristics used. Sometimes these datasets are private.
Segmentation becomes more complicated when there is greater
diversity in the skin lesion images under analysis, such as
when the images are from people of different races or acquired
under other conditions.

This article proposes a semi-automatic method for skin
lesions segmentation from a wide diversity of skin lesion
images collected by combining several publicly available
image datasets. We executed various experiments with dif-
ferent texture descriptor algorithms to develop our method,
including combining feature vectors. Our approach applies a
pre-processing step for hair extraction and a pre-segmentation
step based on superpixels. The specialist then selects a few
of the generated superpixels, and the seeded fuzzy C-means
(SFc-means), proposed by [7], cluster them into skin lesions
or parts of the image background. Finally, we remove noise
and specific fragments in the edges of the lesion.

The article is structured as follows. Section II shows a
general survey of related works; Section III describes the
proposed approach; Section IV gives more details of the im-



ages dataset, the evaluation metrics adopted, and the achieved
results; Section V discusses the findings. Assumptions and
recommendations for further studies are seen in the Section VI.

II. RELATED WORK

Diverse methods were proposed regarding the skin lesions
segmentation in images. According to the literature [8]–[10],
the most common semi and fully automatic segmentation
methods are ranked into three principal domains clustering,
thresholding, and deformable models. More recently, the use of
deep learning techniques has become popular [11]. However,
despite the numerous segmentation methods that have been
developed, there is still a demand for performance improve-
ment [5].

We searched to identify the literature’s available works
based on the applied segmentation technique(s), accuracy,
and publication year. Our search was performed on three
public databases, Scopus, IEEE Xplore, and Web of Science.
We applied three search strings: “skin lesion segmentation”,
“melanoma segmentation” and “dermoscopy images segmen-
tation”.

We established the following selection criteria: (1) articles
must have been published after 2016 in computer science, en-
gineering, or medicine fields; (2) articles must use dermoscopy
images; (3) articles must use public image datasets in the
evaluation of segmentation accuracy; (4) articles must use
evaluation metrics suggested by the International Skin Imaging
Collaboration (ISIC).

Regardless of the segmentation technique(s), most skin
lesion segmentation approaches from images included both
pre and post-processing steps.

Table I summarises the works found in the literature based
on the year of publication, the segmentation technique(s), the
number of validation images, the number of image datasets,
and the segmentation accuracy achieved. It is important to note
that in all of these works, the images used for validation were
extracted from the same image dataset(s) used to adjust their
parameters.

After analyzing the literature’s works, we observe that
each method’s performance decreased when the images under
analysis were more difficult to segment, mainly due to uneven
illumination, artifacts, noise, and low contrast. To subdue these
obstacles, we introduce a semi-automatic method that requires
only a quick and easy intervention by the user. Although
the segmentation results depend on this user interaction, our
approach relieves the user of the challenging act of delineating
the lesion border. Also, the time required for diagnosis is
reduced. The proposed method offers the user high confidence
in segmentation since they take an active and essential role in
the segmentation process.

III. PROPOSED SEGMENTATION METHOD

We propose a semi-automatic segmentation approach using
seeds, selected by the specialist, related to the lesion and
non-lesion regions. The selected seeds are then used to outfit

TABLE I
SUMÁRIO DOS TRABALHOS ENCONTRADOS NA LITERATURA.

Work Year Technique(s) Images Datasets Accuracy(ies)
Li et al. [12] 2018 2D DenseUNet-167 archi-

tecture
600 1 ISIC 2017: 94.30%

Li and Shen [13] 2018 Lesion Indexing Network 150 1 ISIC 2017: 95.00%
Unver and Ayan [14] 2019 GrabCut Algorithm 800 2 PH2 : 92.99%

ISIC 2017: 93.39%
Filali and Belkadi [15] 2019 Multi-scale contrast seg-

mentation
201 1 DermIS: 97.86%

Nida et al. [16] 2019 Deep regional CNN +
Fuzzy C-means

380 1 ISIC 2016: 94.20%

Navarro, Escudero-Viñolo and
Bescós [17]

2019 SLIC algorithm + Gaussian
distribution

600 1 ISIC 2017: 95.50%

Garcia-Arroyo and Garcia-
Zapirain [18]

2019 Cuts and their image masks
obtained for different lev-
els of probability from fuzzy
sets and probability images
+ Histogram thresholding
+ Mask post-processed

979 2 ISIC 2016: 93.40%
ISIC 2017: 88.40%

Goyal et al. [3] 2020 R-CNN with DeeplabV3C
mask

800 2 PH2 : 91.90%
ISIC 2017: 94.08%

Xie et al. [19] 2020 Mutual bootstrapping deep
CNNs

800 2 PH2 : 96.50%
ISIC 2017: 94.70%

Lei et al. [20] 2020 U-Net network + Dual dis-
crimination

1279 3 ISIC 2016: 96.00%
ISIC 2017: 93.50%
ISIC 2018: 92.90%

Arora et al. [21] 2021 Modified U-Net network +
Gaussian blurring + Me-
dian filtering

550 1 ISIC 2018: 95.00%

Qamar, Ahmad and Shen [22] 2021 Combination of DenseNet
network and ResNet+
Atrous spatial pyramid
pooling + dense skip
connection

518 1 ISIC 2018: 96.25%

Tong et al. [23] 2021 Extended version of U-Net
with triple attention mecha-
nism

1179 3 PH2 : 92.60%
ISIC 2016: 95.40%
ISIC 2017: 94.30%

the semi-supervised clustering algorithm. Following this, post-
processing is performed to exclude misclassified areas and
reduce noise from the segmented lesion border. Figure 2
represents the proposed segmentation method.

Post-processing

Semi-supervised Clustering

(a) Input image (b) Hair removal (c) Superpixels
partitioning

(d) Seed marking
by specialist (e) Feature extraction

(f) SFc-means

(g)  Mathematical
morphology

(i)  Convex Hull
Operation

(j) Active
contour

(k)  Segmented image (l)  Overlap segmentated
and original image

Pre-processing

(h)  Largest element
selection

Fig. 2. Flowchart of the proposed segmentation approach.



A. Pre-processing
1) Hair removal: The first method step is hair removal.

For this, we applied the DullRazor [24] algorithm. The al-
gorithm mentioned uses a morphological closing operation on
greyscale images to recognize regions with hair. Since hairs are
long, thin structures, a bilinear interpolation is carried out on
the identified hair regions’ pixels. Finally, a median adaptive
filter is applied to soften the modified hair pixels.

2) Superpixel partitioning: Traditionally, in digital image
processing, the input image pixels are individually processed;
however, this requires a high computational effort in images
with large dimensions. We use superpixels to reduce com-
putational cost. Superpixels are usually generated by pixel
clustering algorithms. They collect local redundancies in the
image and merge the corresponding pixels into superpixels.
The proposed method uses Simple Linear Iterative Clustering
algorithm with zero parameters (SLIC0) [25] for the gen-
eration of superpixels. This algorithm’s efficiency has been
proven relative to other algorithms in terms of its speed,
memory consumption, and segmentation performance.

In search of optimal superpixels number, we evaluated
different values for c, starting from 400 and adding increments
of 200 until the segmentation accuracy had stabilized. In total,
seven values of c were assessed: 400, 600, 800, 1000, 1200,
1400 and 1600.

B. Semi-supervised clustering
After superpixel representation, we cluster them using

Seeded Fuzzy C-means (SFc-means). The SFc-means groups
elements based on knowledge obtained from the labeled data,
i.e., the seeds are selected by the user. The algorithm is based
on approximate reasoning using fuzzy logic, which permits
this method to treat the imprecision inherent to the scenario.

1) Selection of seeds: Our proposed semi-automatic seg-
mentation method is based on a specialist’s selections from
the lesion and non-lesion regions in the dermoscopic image
under analysis to feed a semi-supervised clustering algorithm.
Figure 3 shows examples of superpixels that can be chosen
by the specialist. The black lines delineate the region of each
superpixel (sp) The superpixels in red represent lesion areas,
while those in green represent the background of the images.

(a) Image with 400 sp. (b) Image with 800 sp. (c) Image with 1200 sp.

Fig. 3. Images with selected superpixel (sp) seeds (where red indicates the
lesion region and green the image background).

There is also a ground truth image, i.e., a binary mask
with the ideal segmentation for each image utilized in this
work. To simulate the specialist’s seeds selection, we chose
1%, randomly, of the superpixels for use as seeds for the SFc-
means. Those seeds contained superpixels from both regions,
i.e., skin lesion and image background.

2) Extraction of texture features: Features can be obtained
from an input image, such as texture, color, and shape.
Attributes can be grouped into feature vectors known as image
descriptors. In this case, we extracted texture features from six
color channels: RGB (red, green, blue) and L*a*b* (lightness,
green-to-red variation, blue-to-yellow variation). The texture
information extracted were from: Grey-level co-occurrence
matrix - GLCM [26] (102 features), Grey-level run-length
matrix - GLRLM [27]–[29] (264 features), Geostatistics [30],
[31] (576 features), Local binary pattern - LBP [32] (1536
features) and Tamura [33] (18 features).

3) Feature selection: After building the features vector
and evaluating the best results, we combined different texture
descriptors to create a hybrid texture descriptor. Following
this, we performed feature selection to simplify the prediction
model and thus eliminate unnecessary features. Therefore, the
required computational cost is decreased, and the clustering
algorithm’s performance can be improved.

For feature selection, we used the gain ratio information [34]
algorithm. It is a filter that overvalues features with multiple
values. Hence, this algorithm selects features that maximize
the information gain while minimizing an attribute’s number
of values.

The gains ratio information approach is resilient, combines
various methods of research and evaluation. We applied the
Ranker technique. It ranks the attributes based on their eval-
uations. In this technique, a score is used for each attribute.
So, a ranking is constructed according to attribute relevance
degree. In this context, we performed 24 tests using 1%, 2%,
3%, 4%, 5%, and from 10% to 100% with a step of 5% of
the feature vector length.

4) Seeded Fuzzy C-means: Based on the fuzzy C-means,
the SFc-means [7] is a semi-supervised clustering algorithm.
The authors introduced the use of seeds and a clustering
threshold.

The SFc-means do not use the original concept of centroids.
The algorithm uses all available labeled examples (i.e., all the
seeds) as group representations. During clustering, SFc-means
measures the membership degree of each input sample for
each seed. The algorithm places the results in a descending
sequence in a membership array.

Another SFc-means feature is the establishment of a clus-
tering threshold value (t). This threshold is responsible for the
association (or not) of an input sample with a cluster.

Figure 4 depicts the results of the SFc-means algorithm
in grouping the superpixels presented in the input image.
Red color represents superpixels in lesion area, green color
represents background superpixels.

C. Post-processing

Although the SFc-means clustering has a high degree
of certainty, it often produces errors, as we can see from
Figure 5a. For this reason, we applied a post-processing
step using mathematical morphology techniques (MM) and
geodesic active contour (GAC).



(a) (b)

Fig. 4. Results of a semi-supervised segmentation obtained using the SFc-
means (a - Input image with 1200 sp; b - Sp. of (a) after clustering).

To eliminate the small amounts of noise that persist after
clustering, we applied an opening morphological operation
succeeded by an erosion. The structuring element is a disc
with a radius equal to 0.5% of the number of lines of the input
image. We then separated the largest connected component, as
shown in Figure 5c.

After selecting the region of the lesion, we removed sharp-
edged fragments from the margins. To do this, we calculated
the convex hull of the lesion region (Figure 5c and Figure 5d).
We approximated the two contours by executing 100 iterations
of the GAC algorithm [35] (Figure 5e). Hemalatha et al. [36]
proposed the GAC algorithm to medical image analysis. The
GAC modifies, proportional to the curvature, the convex hull
in the Euclidean plane by moving its points perpendicularly
to the lesion region.

(a) (b) (c) (d) (e)

Fig. 5. Example of the post-processing step of the proposed method (a -
Result clustering; b - Mathematical morphology; c - Selection the largest
element component; d - Convex Hull operation; e - Geodesic active contour.)

IV. EXPERIMENTS

A. Image Datasets

One of the difficulties of dermoscopic image segmentation
is segment lesions’ capacity in datasets with distinct traits.
For example, several experts collected images using different
cameras, from patients of different races, varying resolutions,
including ground truth images given by distinguished special-
ists. Numerous authors have, therefore, evaluated their systems
using just individual datasets. In this research, we arranged the
datasets into development and performance datasets.

The development dataset is created using images from the
PH2 [37], DermIS [38] and ISIC 2018 [39] datasets. The PH2

base was brought together through a partnership between the
University of Porto and the Dermatology Service of Hospital
Pedro Hispano. Comprises 200 images with a resolution of
768 × 560 pixels. While the DermIS base is the result of
the partnership between the Universities of Heidelberg and
Erlangen. DermIS base presents more challenging skin lesions
when compared to PH2 base, as they have a greater similarity
between benign and malignant lesions and make segmentation
difficult.

The ISIC 2018 database provided by the International Skin
Imaging Collaboration Challenge (ISIC) has RGB images

with sizes ranging from 767 × 576 and 6682 × 4401. The
set of images is composed of 2594 training images acquired
from different patients from different institutions and different
dermoscopy. We employed the development dataset for the
algorithm parameter tuning.

To verify that the proposed method can be successfully used
in broad heterogeneous images, we applied it to the images
in the performance set, composed of images from the ISIC
2016 [40] and ISIC 2017 [41] datasets. We chose to use
only the images from the testing phase of these challenges.
The images in the ISIC 2016 and 2017 datasets are very
challenging since they include quite heterogeneous images.

B. Evaluation Metrics

In this work, we use the term ‘positive’ to designate lesion
areas, and ‘negative’ to designate non-lesion areas. Based
on confusion matrix we computed the segmentation accuracy
(Acc), specificity (Spe), sensitivity (Sen), and Jaccard index
(Jac).

Codella et al. [39] demonstrated that the direct use of the
Jaccard index as a measure of performance does not accurately
reflect the number of images in which the computational
segmentation fails or falls outside the expert interobserver
variability. It is, therefore, more suitable to use the threshold
Jaccard index metric (TJI).

In the ISIC challenge of 2018, the organizers chose 0.65 as
a basis value for the threshold Jaccard index metric to indicate
segmentation failure for a skin lesion image. To compute the
TJI metric, a score for each image (i) is calculated based on
the Jaccard index:{

scorei = 0, if Jac < 0.65,
scorei = Jac, otherwise. (1)

Given a dataset with n images, the final TJI value is
defined as the mean of all per-image scores:

TJI =

∑n
i=1 scorei

n
. (2)

C. Results

Our method requires four parameters: the number of super-
pixels generated by the SLIC0 algorithm (400, 600, 800, 1000,
1200, 1400 or 1600); the color channels for feature extraction
(RGB, L* a* b* or RGB + L* a* b*); the texture descriptor
(GLCM, GLRLM, Geostatistics, LBP, Tamura or combinations
of these descriptors); and the percentage of the most significant
features.

To set the value of each parameter, we executed the method
ten times. Furthermore, we multiplied the TJI by 100 to
homogenize the visualization and to allow the tables in this
section to be understood more easily.

When the TJI was used as the primary performance metric,
a hybrid of the RGB and L* a* b* color channels gave the
six best combinations, as shown in Table II. Three values
for the number of superpixels (1000, 1200, and 1400) and
two descriptors (GLCM and Tamura) were optimal. To set up
our hybrid texture feature vector, we decided to combine the



settings that gave the best results. Therefore, we concatenated
the GLCM and Tamura descriptors to create three additional
feature vectors, using 1000 superpixels in the RGB and L* a*
b* color channels. We then applied a similar setup using 1200
and 1400 superpixels.

TABLE II
BEST SEGMENTATION PERFORMANCE FOR THE DEVELOPMENT DATASET

USING THE PROPOSED METHOD.

GLCM

N◦ of Sp. Color Channel Acc(%) Spe(%) Sen(%) Jac(%) TJI(%)
1400 RGB+L*a*b* 96.88 96.68 91.57 87.41 96.85
1200 RGB+L*a*b* 96.73 96.61 91.61 87.45 96.27
1000 RGB+L*a*b* 96.41 96.10 90.87 86.34 95.71

Tamura

N◦ of Sp. Color Channel Acc(%) Spe(%) Sen(%) Jac(%) TJI(%)
1400 RGB+L*a*b* 97.17 97.19 92.04 88.61 96.85
1000 RGB+L*a*b* 96.78 96.35 91.59 87.71 96.13
1200 RGB+L*a*b* 97.04 97.07 91.64 88.18 95.98

We executed empirical tests to define the definitive feature
vector’s dimensionality, always searching for bargaining be-
tween TJI and the vector length. In these tests, we applied
the gain ratio algorithm and assembled the built vectors with
the features ranked in descending order of gain ratio. When
performing the experiments, we used these ranked features,
starting from the highest gain ratio and adding the other ones
incrementally to include all features. Thus, we used feature
vectors with the percentage of the most significant features
in a sum of 216 tests, i.e. 24 feature vectors with different
lengths multiplied by nine descriptors. Figure 6 depicts the
results obtained from these experiments. Using TJI as the
most relevant metric, we obtained the best results for 1400
superpixels using 80% of the GLCM and Tamura features.

Fig. 6. Values of TJI achieved using different numbers of features, sorted
by gain ratio.

Figure 7 represents the features chosen from descriptors and
the vector positions sorted by the gain ratio algorithm in the
GLCM+Tamura feature vector. It can be seen from this figure
that the GLCM descriptor the part larger on the crucial features
subset.

GLCM Tamura

0 11 83 89 955 7771655953474135292317

Fig. 7. Origin of the 96 selected features (the bar at the bottom indicates the
source of the characteristics at each position).

To demonstrate that the proposed method works well on
images from different datasets, we applied it to the perfor-
mance image dataset (ISIC 2016 + ISIC 2017 datasets) using
the best parameters found in the previous stage. We obtained
the results shown in Table III. The obtained results and the
average processing time, in seconds. The tests were carried
out on a computer with an Intel Core i7-3630QM CPU and
8GB of RAM memory using MATLAB [42].

TABLE III
AVERAGE AND STANDARD DEVIATION OF THE SEGMENTATION QUALITY
METRICS OBTAINED BY THE PROPOSED METHOD ON THE PERFORMANCE

DATASET AND THE RESPECTIVE AVERAGE PROCESSING IN SECONDS.

Dataset Acc(%) Spe(%) Sen(%) Jac(%) TJI(%) Time(s)

ISIC 2016 96.24±0.08 95.62±0.22 86.12±0.09 82.43±0.16 94.28±0.01 4.12±0.35
ISIC 2017 95.80±0.05 94.62±0.06 78.71±0.23 74.13±0.29 78.97±0.02 4.75±0.40

The values in Table III indicate that the proposed method
achieved an accuracy of bigger than 95.80% for both datasets.
Moreover, the Jaccard index values reveal that, on average,
the similarity between the segmented regions and their ground
truths was higher than 82% for the ISIC 2016 dataset and
higher than 74% for the ISIC 2017 dataset. These results
reflect the value obtained for TJI. They indicate that in 94.28%
of the ISIC 2016 dataset images, the agreement was higher
than 65% between the segmented regions and their ground
truth. The ISIC 2017 dataset was a particularly challenging
case, and a TJI of 78.97% was achieved. The method took, on
average, between 4 and 5 seconds to execute an image with a
tiny standard deviation. Thus, demonstrating that the execution
time is no susceptible to the dimensions in the image.

Skin lesion segmentation algorithms can be used to assist
the specialist in extracting from the input image information
related to the ABCD rule, for example, or in producing inputs
for lesion classification systems. It is, therefore, essential to
determine the effectiveness of segmentation for benign and
malignant lesions.

Figure 8 depicts the results of the proposed segmentation
method (in red) overlapped by the correspondent ground truths
(in blue). For each individual dataset in the performance
dataset, the figure shows the worst (Figures 8a and 8d), the
median (Figures 8b and 8e), and the best (Figures 8c and 8f)
values of the Jaccard index.

(a) Jac = 3.97% (b) Jac = 87.14% (c) Jac = 97.09%

(d) Jac = 0% (e) Jac = 82.25% (f) Jac = 97.84%

Fig. 8. Examples of skin lesions from the ISIC 2016 (a, b, c) and ISIC 2017
(d, e, f) datasets (for each example, the ground truth is shown in blue and the
segmentation obtained by the proposed method in red).



V. DISCUSSION

The results obtained in this work are equivalent to those
of state-of-the-art alternatives. In some situations, researchers
have used private-labeled datasets, and it is difficult to repro-
duce the results reported in their work. Nevertheless, since the
PH2, DermIS, ISIC 2018, ISIC 2016, and ISIC 2017 datasets
are publicly available, a comparison against other state-of-the-
art methods that used these datasets was viable. Table IV
shows the results of this comparison for the development
dataset. The values shown in this table for existing methods
were acquired from the original articles.

For the PH2 dataset, the accuracy and Jaccard values
obtained with the proposed method were lower than those
reported by [19], with differences of 0.4% and 1.76%, respec-
tively. For the DermIS dataset, the proposed method’s accuracy
was 1.62% lower than that reported by [15]. In the examples
where our method gave a worse average performance, the
differences were not statistically significant. The ISIC 2018
dataset the Acc, Spe, Jac and TJI values obtained by the
proposed method was higher than for the other methods. One
aspect that should be noted is that although the proposed
method attained a high accuracy for the DermIS dataset,
the value of 73.63% for the TJI indicates that the method
demands to be refined.

Table IV exhibits the results of the proposed method against
state-of-the-art methods for the images in the performance
dataset. Table V presents the results of this comparison.

TABLE IV
COMPARISON OF THE RESULTS OF THE PROPOSED METHOD AGAINST

THOSE OF STATE-OF-THE-ART ALTERNATIVES FOR THE DEVELOPMENT
DATASET.

PH2

Method Acc(%) Spe(%) Sen(%) Jac(%) TJI(%)
[14] 92.99 94.02 83.63 79.54 −
[3] 93.80 92.90 93.20 83.90 −

[19] 96.50 94.60 96.70 89.40 −
[23] 94.30 93.70 96.00 84.20 −

Proposed 96.10±0.06 93.72±0.17 91.93±0.38 87.64±0.26 98.83±0.00

DermIS

Method Acc(%) Spe(%) Sen(%) Jac(%) TJI(%)
[15] 97.86 99.00 91.86 − −

Proposed 96.24±0.08 99.58±0.05 72.33±1.49 70.28±1.28 73.63±0.03

ISIC 2018

Method Acc(%) Spe(%) Sen(%) Jac(%) TJI(%)
[21] 95.00 95.00 94.00 83.00 −
[20] 92.90 91.10 95.30 − 82.40
[22] 96.25 97.00 96.50 83.30 −

Proposed 97.08 ±0.13 97.42±0.15 93.48±0.89 89.89±0.58 99.67±0.01

For the ISIC 2016 dataset, the proposed method achieved
higher accuracy than the alternative methods. The Jac value
obtained by the proposed method was higher than for the other
methods except for that of [16]. For the ISIC 2017 dataset, the
accuracy obtained by the proposed method surpassed all of the
other methods under comparison, although the Jac value was
only higher than that obtained by the method of [18].

An important aspect that should be noted about the state-
of-the-art methods in Table V is that they used images from
the same dataset for both parameter tuning (for example, the
training of classifiers) and performance evaluation. This means
that these methods will be more efficient for these pre-known

TABLE V
COMPARISON OF THE RESULTS OF PROPOSED METHOD AGAINST THOSE

OF THE STATE-OF-THE-ART ALTERNATIVES FOR THE PERFORMANCE
DATASET.

ISIC 2016

Method Acc(%) Spe(%) Sen(%) Jac(%) TJI(%)
[16] 94.20 94.00 95.00 93.00 −
[18] 93.40 97.80 87.00 79.10 −
[20] 96.00 96.80 93.70 − 87.10
[23] 95.40 96.10 92.70 84.50 −

Proposed 96.24±0.08 95.62±0.22 86.12±0.09 82.43±0.16 94.28±0.01

ISIC 2017

Method Acc(%) Spe(%) Sen(%) Jac(%) TJI(%)
[12] 94.30 95.30 87.90 79.80 −
[13] 95.00 97.40 85.50 75.30 −
[14] 93.39 92.68 90.82 74.81 −
[17] 95.50 − − 76.90 −
[18] 88.40 92.30 86.90 66.50 −
[3] 94.08 95.00 89.93 79.34 −

[19] 94.70 96.80 87.40 80.40 −
[20] 93.50 97.60 83.50 − 77.10
[23] 92.60 96.50 82.50 74.20 −

Proposed 95.80±0.05 94.62±0.06 78.71±0.23 74.13±0.29 78.97±0.02

images, unlike our approach, which not used the ISIC datasets
in the development; this is further confirmation of the superior
robustness portability of our method.

VI. CONCLUSION AND FUTURE WORK

In this article, we presented a semi-automatic method for
the segmentation of skin lesions in dermoscopic images.
Our approach is based on superpixels, the union of texture
information, and semi-supervised clustering.

The proposed method requires the user to identify areas
in each region of the image (i.e., the lesion and the back-
ground). However, this corresponds only to 1% of the existing
superpixels in the image. In practical terms, this means that a
minimal amount of data is required from the specialist. The
physician can obtain segmentation results similar to manual
segmentation from a significantly less time-consuming task in
our method.

To simulate an environment closer to physicians’ real-world
problems, we used 3974 images. The results were promising
but could be improved, and we, therefore, think to evaluate
various other post-processing image techniques and other types
of texture information.
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