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Abstract—Pattern-set matching refers to a class of problems
where learning takes place through sets rather than elements.
Much used in computer vision, this approach presents robustness
to variations such as illumination, intrinsic parameters of the
signal capture devices, and pose of the analyzed object. In-
spired by applications of subspace analysis, three new collections
of methods are presented in this thesis1 summary: (1) New
representations for two-dimensional sets; (2) Shallow networks
for image classification; and (3) Tensor data representation by
subspaces. New representations are proposed to preserve the
spatial structure and maintain a fast processing time. We also
introduce a technique to keep temporal structure, even using the
principal component analysis, which classically does not model
sequences. In shallow networks, we present two convolutional
neural networks that do not require backpropagation, employing
only subspaces for their convolution filters. These networks
present advantages when the training time and hardware re-
sources are scarce. Finally, to handle tensor data, such as videos,
we propose methods that employ subspaces for representation
in a compact and discriminative way. Our proposed work has
been applied in problems other than computer vision, such as
representation and classification of bioacoustics and text patterns.

I. INTRODUCTION

The task of recognizing objects from one image has a
limited capacity for recognition. For instance, single-view
information may be insufficient to solve possible ambiguity
due to the camera’s point of view or occlusion. An image
set (more generally, pattern set) is a collection of images of
the same object or event. This set can be unordered, where
the timestamp is not relevant or ordered. A pattern set model
requires robustness to corrupt data and handle a variable set
size properly without increasing computational complexity.

Subspace representation has been a common strategy to
model pattern sets. A subspace eases the issues above using
the geometrical structure under which images in a set are
distributed. A subspace describes the set with a fixed dimen-
sion, a model with mainly two valid points. (1) Statistical
robustness to input noises, i.e., perturbations such as occlusion.
(2) Compactness (low dimension), even when processing many
images, leads to a fixed complexity. Current challenges exist
in pattern set modeling. For instance, employing Principal
Component Analysis (PCA) [1] to model the pattern sets may
be insufficient to represent two-dimensional patterns existing

1This article summarizes the main contributions of the Ph.D. Thesis entitled
“Pattern-set Representations using Linear, Shallow and Tensor Subspaces”.

in images. PCA demands pattern vectorization, which may
lead to weakening the set representation.

In this work, among other contributions, we describe a
new type of subspace that can process two-dimensional image
sets without damaging their two-dimensional structures. We
name our model Two Dimensional Mutual Subspace Method
(2D-MSM) as a mention to the Mutual Subspace Method
(MSM) [2], a fundamental subspace classification algorithm.
Similar to MSM, in 2D-MSM, both the input and the learnable
basis vectors span subspaces and their mutual canonical angles
perform their matching. Besides, we describe a variant called
Hankel Mutual Subspace Method (HMSM), where the frames
of an input video are arranged in a Hankel-like matrix,
protecting its ordering during the extraction of its basis vectors.

Subspaces have been incorporated in shallow neural net-
works, concretely as parameters of Convolutional Neural
Networks (CNN). We describe a shallow network based on
subspaces applied in image classification problems. This new
concept not only learns the network weights without using
backpropagation but can work under scarce training sample
conditions. The proposed network presents a discriminative
space, where the extracted features provide more reliable in-
formation for classification. We also developed a convolutional
neural network able to process semi-supervised data efficiently.

Many applications employ data in a tensor format, such as
video and audio. Tensor data is observed in action analysis
from video data, where both spatial and temporal information
is present in a structured form. The spatial and temporal
information can be handled independently within different
representations. Inspired by the Fukunaga-Koontz Transfor-
mation (FKT) [3], we describe a formulation of FKT to
handle tensor data. Our method has been applied to tensor
representation to solve action learning from videos. Here,
tensor data is decomposed into several subspaces, enabling
tensorial learning. We also developed another solution for
tensor data when only unsupervised training data is available.

General objective: Develop advances in subspace learning
by introducing new representations and shallow networks.
These representations reduce the complexity of solving pattern
set classification and related problems. We explore different
approaches to describe and classify pattern sets in diverse
machine learning scenarios. Specific objectives: (1) Investi-
gate variants of subspace-based methods that represent two-
dimensional data. (2) Introduce shallow networks capable of
learning through subspaces without employing backpropaga-
tion. (3) Propose methods for representing tensorial data.



II. BACKGROUND THEORY

This section describes the background theory behind sub-
space learning and applications on pattern set representation
and classification. With video cameras being widely used, it
is natural to solve a classification problem using pattern sets.

The Mutual Subspace Method (MSM) [2] is a common
technique employed to represent and classify pattern sets. We
define a pattern set as a collection of samples relating to
a particular category. In this approach, a set of patterns is
analyzed in a batch instead of separately. Matching pattern
sets arises naturally in distinct circumstances, such as when the
target pattern is available in a data stream. Another practical
example is when the data is contained in a bag, such as
the profile pictures in a social media network. The MSM’s
theory was developed from the observation that patterns of the
same object produce a compact cluster in high-dimensional
vector space. This compact cluster can be described by a
subspace, which is generated by using PCA. The benefits of
subspace-based methods include their high compactness ratio,
low complexity, and flexibility to handle different data types.

A. Mutual Subspace Method
To represent a pattern defined by a subspace, we use

the observation that a set of images is in a cluster, where
orthonormal basis vectors can efficiently describe them. Let
us consider an image set X = {x1, x2, . . . , xn}, where x is a
feature vector, possibly obtained through the vectorization of
an image. Then, it is reasonable to conduct a decomposition
to gather knowledge of the geometric structure of X. The
Singular Value Decomposition (SVD) [] will produce a set of
eigenvectors U = {u1, u2, . . . , un}, and a set of eigenvalues
Λ = {λ1, λ2, . . . , λn}, where each vector in U represents
an axis and each value in Λ describes how each axis is
transformed in the space described by X. Another useful idea
is that Λ represents how much the vectors in X are correlated,
which is a valuable guidance towards the redundant and non-
redundant information in X. The SVD of X is

XX> = UΛU> . (1)

Each column of U is a singular vector of XX> and the
main diagonal of Σ presents the singular values in descending
order. The ordered nature of the singular vectors in Λ can be
directly employed to reveal the importance of each eigenvector
in U. The analysis of Λ is helpful in various problems,
such as dimensionality reduction, signal filtering, and feature
extraction. By analyzing the influence of each eigenvector, it
is possible to select a small set of eigenvectors by removing
all but the top k singular values in the diagonal of Λ.

B. Selecting basis vectors
The basis vectors generated by SVD may represent a set of

patterns compactly. The following criteria can be utilized to
obtain the compactness ratio of this transformation

µ(k) ≤
k∑
i=1

(λi)/

n∑
i=1

(λi) . (2)
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Fig. 1. Here is an effort to represent the MSM algorithm since it is difficult
to draw the subspaces in a high-dimensional space. (a) An unordered set of
images representing a particular character is processed (b) The subspaces are
produced by extracting the basis vectors from the set of patterns. (c) The
canonical angles are employed to achieve the similarity between P1 and P3.

In Eq. (2), k is the number of the selected basis vectors
which will span a subspace, λi corresponds to the i-th eigen-
value of XX>. Then, n = rank

(
XX>

)
. It is useful to set k as

small as possible to achieve a minimum number of orthonor-
mal basis vectors, maintaining low memory requirement.

C. Computing the similarity between subspaces

A general method for estimating the similarity between
subspaces is by computing the principal angles, also known as
canonical angles. The canonical angles give information con-
cerning the relative location of two subspaces in a Euclidean
space. Given two subspaces, P and Q spanned by U and V,
the principal angles between these subspaces can be obtained
by computing the eigenvalues of U>V as follows:

RΣS = U>V . (3)

The matrix Σ provides the set of eigenvalues,
σ1, σ2, . . . , σk, in its main diagonal, with 0 ≤ σ1 ≤
σ2 ≤ . . . ,≤ σk−1 ≤ σk ≤ 1. Then, the canonical angles are

θi = cos−1(σi) , ∀ i = 1, . . . , k . (4)

III. NEW SUBSPACE REPRESENTATIONS

Kernel Orthogonal MSM (KOMSM) has been used in many
applications due to its flexibility and straightforward imple-
mentation. However, its performance is not satisfactory for
more advanced systems, wherein more complicated structures
should be classified. In short, KOMSM employs PCA to
generate the subspaces where each two-dimensional image
from a set is reshaped to a one-dimensional vector, destroying
the spatial information. Similarly, KOMSM cannot handle
ordered information since the SVD is ordering invariant.

To solve these issues and motivated by 2D-PCA [4] and
the Hankel representation, we propose the Two-Dimensional
Mutual Subspace Method (2D-MSM) and its kernelized ver-
sion, Kernel Two-Dimensional Subspace (K2DS). The main
difference between PCA and 2D-PCA is that 2D-PCA uses
the image matrix directly, without pattern vectorization. Since
MSM and KOMSM operate on the basis vectors given by
PCA, replacing PCA with 2D-PCA reduces the memory cost
since the basis vectors of 2D-PCA are more compact.



To extract temporal information from ordered patterns, we
develop a Hankel matrix formulation for subspace represen-
tation. The image patterns can be stored in a way where the
ordering of the images is preserved. We select representative
samples from each gesture set to form its corresponding
Hankel matrix to obtain a smaller covariance matrix.

Computational Advantage: The main difference of 2D-
MSM from traditional MSM is that 2D-MSM does not require
transforming image matrices into vectors. Thus, it reduces
the computational complexity of constructing the subspaces
and reduces the matching time. All these aspects make the
proposed algorithm superior to MSM in terms of learning and
testing time. More precisely, the process of extracting the basis
vectors of each 2D-PCA variant determines its processing time
and the dominant complexity of each algorithm.

The problem formulation of matching time-aware pattern
sets is similar to the conventional pattern set matching de-
scribed in Figure 1, except that the ordering of the patterns
should be preserved. For instance, some gesture classes present
their semantic information correlated to the pattern ordering.

Here we summarize the Hankel representation for ordered
sets. A gesture that is handled as a time series of vectors can be
regarded as the output of a Linear Time Invariant (LTI) system
of unknown parameters. Then, given an ordered sequence of
feature vectors A = {Ai}Mi=1, its block-Hankel matrix is

HA =
[
(A1, . . . ,An−1)>, . . . , (Am+1, . . . ,AM )>

]
, (5)

where n is the maximal order of the system (or the number
of feature vectors), M is the temporal length of the sequence,
and it holds that M = n+m− 1.

To represent an ordered image set A by a subspace, we
introduce the of Hankel subspace for gesture recognition.
Given a Hankel matrix HA from A = {Ai}Mi=1, we can
compute an auto-correlation Hankel matrix as: CA = HAH>A,
where its eigendecomposition generates a set of eigenvectors
ΦA = {φi}Ki=1 that spans PA. The Eq. (3) and Eq. (4) are then
employed for measuring the similarity between two Hankel
subspaces. When creating a Hankel matrix, the number of
images in a set and its dimension are significant computational
resources. To alleviate this issue, we introduce two approaches:
(1) Random sample selection, where we randomly select
images from the set, preserving its original order and (2)
Clustering selection, where the centroids obtained by a k-
means clustering are used to represent the set.

A. Experimental Results Summary of 2D-MSM

We conducted image set matching experiments on 7
datasets: ALOI, RGB-D for object recognition, Honda/UCSD,
YouTube Celebrities, PubFig83, and CMU-MoBo for face
recognition and ASL Finger Spelling dataset. The classifi-
cation time of the subspace methods based on 2D-PCA is
about 3 times faster than the learning time and matching time
of KOMSM. The classification time of 2D-MSM is about 4
times faster than the learning time and matching time of MSM,

revealing that our method is more efficient than the traditional
KOMSM and MSM.

B. Experimental Results Summary of Hankel subspaces

We employed Cambridge gesture for general gestures classi-
fication and Human-Computer Interaction dataset, which con-
tains computer interface gestures. We compare the proposed
Hankel subspaces with several state-of-the-art subspace-based
methods, which achieved competitive accuracy, similar to dis-
criminative methods. This indicates that the temporal informa-
tion extracted by the Hankel representation is compelling, even
when random samples or centroids are selected as long as the
temporal order is preserved. We want to emphasize that Hankel
subspaces do not employ any learning scheme different from
the compared methods. This demonstrates the effectiveness of
using the Hankel subspace for gesture representation.

IV. SHALLOW NEURAL NETWORKS BASED ON SUBSPACES

Deep learning-based approaches, especially those using
deep Convolutional Neural Networks (CNN), have been em-
ployed in image classification problems. Learning through
deep neural networks has received significant attention due
to its improvements over hand-crafted features. Despite en-
couraging results, the fine-tuning of deep neural network
parameters is time-consuming. Many shallow networks have
been proposed based on PCA, where convolutional kernels are
obtained from PCA, ICA, or DCT basis vectors. For instance,
PCANet (PCA network) [5] uses a CNN architecture with
no pooling layers, no activation functions, and without using
backpropagation. Although only PCA or Linear Discriminant
Analysis (LDA) are employed, they present competitive per-
formance compared to the state-of-the-art results.

To improve the discriminant potential of such networks, we
propose a shallow network based on the Fukunaga-Koontz
Transform (FKT) [6] to generate discriminative features and
handle complex distributions. In our method, instead of em-
ploying PCA or LDA to learn the convolutional kernels,
we use the subspace generated by FKT. Using the FKT
decorrelation subspace, we build a shallow network, FKNet,
that minimizes the correlation between different image classes.
In FKNet, the training images are firstly compressed as
subspaces to minimize their within-class distance. Besides,
the decorrelation subspace based on the compressed data is
more robust to outliers. The FKT kernels can reveal more
discriminative information compared to related networks.

In summary, our contributions in this context are: (1) A
new shallow network for image classification. Through the
use of FKT, we generate a discriminative subspace projection
to enhance the discriminability across the image classes. (2) A
new type of convolutional kernel based on orthogonalization
of subspaces. We show that the basis vectors of FKT are useful
as convolutional kernels, efficiently handling supervised data,
solving one of the limitations of PCANet.

Fukunaga-Koontz Network: Figure 3 shows the con-
ceptual diagram of the proposed shallow network. FKNet
processes images as follows. An input image is processed by
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Fig. 2. The FKT and its application. (a) Image sets can be represented by
Pi subspaces. (b) FTK is employed to decorrelate the subspaces. (c) When
subspaces P1, . . . ,PC represent image patches, the FKT transformation
matrix can be used as a convolutional kernel.

a convolutional feature extraction layer, followed by a mean-
pooling or other convolutional layers. Then, binary hashing
is applied to the produced features to achieve dimensionality
reduction. Finally, block-wise histogramming is employed to
create the final feature vector.

A. Representation by image patches

Given a dataset X consisting of N labeled training images
of size H ×W , we extract patches of size K1 ×K2 from X.
This procedure is performed by taking a patch around each
pixel from all N training images. Here, we denote the set of
image patches as P. Given that each image patch will have
size K1 ×K2, the set P will contain NP = HWN patches.

B. Computing image patches subspaces

To create subspaces, we will use the patch set P =
{pji}

Nj ,C
i,j=1, where C stands for the number of classes and Nj

is the number of patches in the j−th class. In this C class
classification problem, it is required to compute C feature
matrices {Aj}Cj=1. For each feature matrix Aj , we compute
the auto-correlation matrix Cj = Aj

>Aj . Equipped with all
C auto-correlation matrices, we can move forward to calculate
the matrix Uj of eigenvectors which diagonalizes the auto-
correlation matrix Cj as follows: Dj = Uj

−1CjUj with
j = 1, . . . , C and each Uj is a K1K2 × K1K2 matrix
satisfying UjUj

> = Uj
>Uj = I. The columns of Uj

that correspond to nonzero singular values compound a set
of orthonormal basis vectors for the range of Cj . Dj is the
diagonal matrix of eigenvalues of Cj . Unlike PCANet, FKNet
creates a subspace for each class independently, exploiting its
intrinsic characteristics in a more effective way.

C. FKT for image patches subspaces decorrelation

Once equipped with all the C image patches subspaces Pj

and their Rj dimensions have been computed (using Eq. (2)),
we can use FKT to generate the matrix F that can decorrelate
the subspaces. Then, each set of basis vectors Uj spans a
reference subspace Pj . The method to generate the matrix
F that efficiently decorrelates the C Rj−dimensional classes
subspaces is explained as follows. First, we compute the total
projection matrix as: G =

∑C
j=1 UjU

>
j . The eigendecom-

position of G produces a K1K2 × K1K2 sum subspace B
and its eigenvalues Λ. By weighting B regarding the inverse
of its eigenvalues contribution, we of obtain F as follows,

feat. represent.
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Fig. 3. The proposed network architecture: A convolutional feature extraction
layer processes an input image based on FK convolutional layer, followed by
another FK layer. Then, an average pooling layer is employed. Finally, binary
hashing and a block-wise histogramming produce the final feature vector.

F = Λ−1/2 B>. Figure 2 illustrates the procedure to construct
FTK and its application as convolutional kernels.

D. Fukunaga-Koontz convolutional kernels

After obtaining P and F, we can compute the FK convo-
lutional kernel. In our formulation, each basis vector of F =
{w1, . . . ,wNF

} will be a convolutional kernel in the network.
According to this formulation, the definition of the Fukunaga-
Koontz convolutional kernel is: Wl = mapK1×K2

(wl) with
l = {1, 2, ..., LS}, where the operator mapK1×K2

(·) maps an
input vector y ∈ RK1K2 onto a matrix Y ∈ RK1×K2 and LS
is the number of convolutional kernels in the S-th layer.

Given an input image Pin, the output image Yl of a
convolutional layer is obtained by Yl = ρ(Wl ∗ Pin) with
l = {1, 2, ..., LS}, where ∗ refers to a convolution and ρ(·) is
an average pooling operator, which may or may not be present
in a particular layer, defined by a B1 ×B2 window.

E. Experimental Results Summary

FKNet provides competitive classification results compared
to related shallow networks. To show its flexibility, FKNet was
evaluated on a face verification task using the LFW dataset.
FKNet was demonstrated to be competitive in this experiment,
where FVF, MBSIF-OB and other shallow networks were
employed as baselines. The processing time measurement by
the proposed network is efficient. For instance, CNN required
about 3 hours to generate a 4 convolutional layers model
using the EMNIST training dataset. On the other hand, FKNet
obtained a comparable model using less than 17 minutes on
the same hardware, roughly one order of magnitude faster.
Another benefit of using the proposed network is that the
number of convolutional kernels employed is much smaller
than those used by a CNN.

V. TENSOR ANALYSIS BASED ON SUBSPACES

Tensors, which can be defined as a generalization of ma-
trices, allow a natural representation of multi-dimensional
data. For instance, video data is intuitively described by
its correlated images over the time axis. Vectorization and
concatenation of the video pixels may be applied to produce
a practicable representation. However, the vectorization pro-
cedure may degrade the spatio-temporal relationship between
pixels of video tensor data, causing information loss.

The order of a tensor is linked to its dimensions, also
known as ways or modes. Tensor unfolding is a procedure
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Fig. 4. The unfolding procedure of a 3-mode tensor. The unfolding of the
3-mode tensor A produces 3 sets of matrices X(1), X(2) and X(3).

that reorganizes the tensor data to permit the analysis of
each mode separately, possibly revealing correlations that were
not immediately observed. This tensor unfolding procedure is
shown in Figure 4. The tensor unfolding maneuver facilitates
the interpretability of the modes, as in medical image analysis.

Product Grassmann Manifold (PGM) efficiently represents
tensor data, as in action recognition problems [7]. PGM
describes subspaces as a point on the product space of n
Grassmann manifolds, where each subspace corresponds to a
point on one of the n Grassmann manifolds. The classification
is performed based on the chordal distance [8]. Similar to
MSM, PGM lacks a discriminative mechanism.

We introduce the n-mode Generalized Difference Subspace
projection (n-mode GDS), extracting discriminative informa-
tion from tensor data and providing suitable subspaces for ten-
sor data classification. We employ the GDS projection, which
acts as a feature extractor for MSM. Since GDS represents
the difference among class subspaces, the GDS projection
can increase the class subspaces’ angles toward orthogonal
status. Likewise in PGM, we can express tensor data as a
point on a product manifold, simplifying the tensorial data
representation and enabling GDS, revealing the relationship
between all tensor modes in a unified design.

Our contributions are: (1) A novel tensor data representation
called n-mode GDS. (2) We present a new tensor classification
framework. (3) We introduce an improved version of the
geodesic distance, fusing and estimating the importance of
each tensor mode for an efficient classification.

A. n-mode Generalized Difference Subspace

Tensor data is usually represented by a set of modes
(n-mode tensor) to reduce computational complexity. Given
two n-mode tensors A and B, we can formulate the tensor
matching problem in two steps. First, we create a convenient
representation, where A and B can be expressed in a compact
and informative manner. Second, we establish a mechanism
to produce a reliable measure of similarity between these
representations, allowing the comparison of A and B.

B. Tensor Representation by Subspaces

To simplify the tensor representation, we employ the un-
folding process. We denote by X = {Xi}ni=1 the set of
unfolded images corresponding to the mode-1, mode-2 and
mode-3 unfolding of A. The same procedure is conducted on
the tensor B, resulting in Y = {Yi}ni=1.

We can use eigen-decomposition to derive a set of eigen-
vectors for each element of X and Y. Then, the eigenvectors
associated with the largest eigenvalues of each element of
X and Y represent their elements in terms of variance
maximization [1]. After selecting these eigenvectors, we obtain
UX = {Ui}ni=1 and UY = {Ui}ni=1, respectively.

Equipped with UX and UY , which span the n-mode
subspaces P = {Pi}ni=1 and Q = {Qi}ni=1, we develop a
mechanism to extract discriminative information fromA and B
by creating a set of subspaces D = {Di}ni=1, whereby project-
ing the sets P and Q we obtain discriminative subspaces. We
adopt GDS [9] since it provides a reasonable balance between
robustness and computational complexity, considering that it
is mainly based on eigen-decomposition. After projecting the
n-mode subspaces P and Q onto D, we obtain the sets P̂ and
Q̂. By selecting a similarity function, we have the main tools
to represent and measure the similarity between A and B.

C. Generating the n-mode GDS Projection

In a m-class classification problem, P = {Pij}n,mi,j=1 denotes
the set of all n-mode subspaces spanned by U = {Uij}n,mi,j=1.
Then, we can develop the n-mode GDS projection D =
{Di}ni=1. Since each mode subspace reflects a particular
factor, it is essential to handle each one independently and
compute a model that reveals hidden discriminative structures.
In traditional GDS, this procedure is performed by removing
the overlapping components that represent the intersection
between the subspaces. In mathematical terms, the GDS
projection can be described as extending the difference vector
between two vectors in a multi-dimensional space.

To compute the n-mode GDS, we compute the sum of
the projection matrices of each i-mode subspace as follows,
Gi = 1

m

∑m
j=1 UijU

>
ij , for 1 ≤ i ≤ n. Since Gi has

information regarding all class subspaces in a particular mode,
it is beneficial to decompose it to exploit discriminative
elements. Applying eigen-decomposition to Gi, we obtain:
Gi = ViΣiV

>
i , for 1 ≤ i ≤ n, where the columns in

Vi = {φ1, φ2, . . . , φRi} are the normalized eigenvectors of Gi,
and Σi is the diagonal matrix with corresponding eigenvalues
{λ1, λ2, . . . , λRi

} in descending order, where Ri = rank(Gi).
We can define Di = {φαi

, . . . , φβi
}, where αi < βi ≤ Ri.

tensor A

D1

D2

D3

mode-1

mode-2

mode-3

P1

P2

P3 MD

ρ(A,B)

Fig. 5. Figure of the n-mode GDS projection. We unfold the 3−mode tensor
A and compute its subspaces. Then, we project the subspaces onto the n-mode
GDS. The PGM can be exploited to represent the projected subspaces. The
chordal distance ρ(A,B) determines the similarity between A and B [10].



D. Representing the n-mode Subspaces P̂ on the PGM
We introduce the product manifold to describe P̂ into a

single manifold MD, which consists of the product of the
projected n-mode subspaces onto the n-mode GDS (i.e., the
projection of P onto D). Given a set of manifolds M =
{Mi}ni=1 composed by P̂, Eq. (6) describes this procedure:

MD = M1 ×M2 × . . .×Mn =
(
P̂1, P̂2, . . . , P̂n

)
, (6)

where × denotes the Cartesian product, Mi is a i-mode mani-
fold and P̂i ∈Mi. Here, tensor data can be regarded as a point
on MD, as shown in Figure 5. A benefit of employing MD

is that it allows working directly with geodesics through the
use of the geodesic distance. The geodesic distance between
two points is the length of the geodesic path, which is the
shortest path between the points that lie on the surface of
MD. Once obtained θ̄ = {θ̄i}ni=1 (see Eq. (3) and Eq. (4)),
we can introduce the weighted geodesic distance based on the
product manifold, which is defined as:

ρ(A,B) =

(
n∑
i=1

(
wiθ̄i

)2)1/2

, (7)

where we estimate wi by using the Fisher score [] since each
mode will provide a different discriminative index.

E. Experimental Results Summary
We evaluated the proposed approach on five video datasets

containing human actions and compared its results with the
results achieved by other state-of-the-art approaches. The ex-
perimental results showed that the n-mode GDS outperforms
conventional subspace-based methods in terms of accuracy.
Moreover, the proposed n-mode GDS does not require pre-
training, which is an advantage in many applications where
pre-trained models are scarce.

VI. CONCLUSION AND FUTURE WORK

We have investigated the invariant properties of pattern sets
by their representations through subspaces. These invariances
reflect physical properties and may be applied to represent and
analyze many practical problems. Our studies have adopted
a geometric framework in which the pattern sets statistical
behavior is parametrized by subspaces. We handle pattern-
sets as points in a metric space under this framework and
analyze them using Grassmann geometry theories. The intro-
duced methods present low computational complexity, simple
implementation, and strong theoretical background.

Future work: (1) Investigate new subspace representations
to express text, sound, tables, trees, and graphs, to name a
few. These variants can be readily applied and employ their
benefits. (2) Develop new shallow networks using the theory
of Lie groups which present a simple model for continu-
ous symmetry. (3) Introduce a deterministic neural network
initialization by applying the convolutional kernels produced
by FKT or GDS. (4) Propose an information fusion strategy
(multimodal data) by subspaces that may handle both sound
subspaces and video subspaces in a unified framework.
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Award: Best Paper Award. URL

2) International Conference on Machine Vision Applications, MVA
2019. News2meme: An Automatic Content Generator from News
Based on Word Subspaces from Text and Image. Award: Best
Poster Award. URL

3) International Conference on Image Processing, ICIP 2017. Dis-
criminative Canonical Correlation Analysis Network for Image
Classification. Award: IEEE Signal Processing Society Student
Travel Award, App. ID: 24775.

4) Int. Conference on Machine Vision Applications, MVA 2017. A
Deep Network Model based on Subspaces: A Novel Approach for
Image Classification. Award: Best Poster Award. URL

5) International Conference on Machine Vision Applications, MVA
2017. Enhancing Discriminability of Randomized Time Warping
for Motion Recognition. Award: Best Poster Award. URL

6) British Machine Vision Association CVSS, BMVA CVSS 2016. A
Deep Network Model based on Subspaces. Award: Outstanding
Presentation Award. URL

B. Articles under review
1) Signal, Image and Video Process., Springer. Regularized Hankel

Mutual Subspace Method for Gesture Recognition, (Qualis: A3)
2) Transactions on Audio, Speech and Language Processing, IEEE.

Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic. URL, (Qualis: A1)

https://ppgcc.github.io/discentesPPGCC/pt-BR/qualis/
https://www.sbc.org.br/33-premios
http://www.mva-org.jp/archives.BestPosterAward.php
http://www.mva-org.jp/archives.BestPosterAward.php
http://www.mva-org.jp/archives.BestPosterAward.php
http://cvss.swansea.ac.uk/index.php?n=Site.Award
https://arxiv.org/pdf/2103.10166.pdf
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