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Abstract—Proper light-transport simulation adds both realism
and aesthetically pleasing effects to virtual 3D scenes. However,
the cost of computing complex light interactions is prohibitive for
real-time applications. Indirect diffuse lighting is a low frequency
component of global illumination that can greatly enhance the
quality of an image. Virtual point lights are commonly used to re-
produce diffuse bounces by tracing light paths through the scene
and creating proxy light sources at the intersections between a
path and geometry. In this work1 we extend clusterization-based
methods for virtual point lights, allowing for the reproduction of
up to two bounces of light with a projection-aware sampling
method in real-time. We show that plausible images can be
obtained in real-time rates for low to mid-end commodity GPUs.

I. INTRODUCTION

The multitude of visual effects that arise from the interaction
between light and the environment in a synthetic scene is
popularly called global illumination. Their representation may
yield realistic and pleasing images, as well as visual cues of the
many materials that compose a scene. However, reproducing
these effects may come with a high computational cost. In the
movie industry, where render times are not usually a problem
and the development of the final product may take hundreds of
hours, the task of computing each frame may be forwarded for
clusters of computers in render farms. On the other hand, in
real-time media like video games, global illumination effects
often require optimization and ad-hoc methods to meet time
constraints.

Global illumination algorithms for real-time applications
must be able to reproduce lighting effects plausibly under
strict time and hardware budgets. For this reason, algorithms
may be specialized to compute only a smaller subset of visual
phenomena efficiently. One of these commonly reproduced
effects is the indirect diffuse lighting, which represents the
many scattered interreflections of light rays between surfaces
throughout the scene. This low-frequency component of global
illumination is multi-bounce by nature, this means that a light
ray will hit more than a single object, getting attenuated and
carrying color information from one surface to another.

The multiple bounces involved in this process usually
make it prohibitive to represent dynamically in real time, as
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the multiple ray-triangle intersection tests between geometry
stored non-contiguously will incur in performance hotspots
(e.g. pointer chasing). Techniques used to represent this phe-
nomenon may approach the problem in two ways, either in
world-space or in screen-space.

The world-space solution tries to compute the diffuse com-
ponent of light transport between the objects in world space.
Approaches like this include many-light methods [1] and Path
Tracing [2] for example. These techniques achieve accurate
results but at a higher computational cost that grows linearly
with the number of objects. On the other hand, screen-space
methods like the Deep G-Buffer [3] and Directional Occlu-
sion [4] focus only on data present in screen-space. These
approaches tend to be faster but highly viewer dependent and
prone to artifacts between frames.

An interesting approach to the problem of computing diffuse
lighting in real-time was proposed in Clustered Visibility
[5]. In that work the cost of computing indirect lighting in
world-space is mitigated by reducing the number of visibility
queries using clusterization techniques. However, this method
is limited to single bounce diffuse illumination, leaving further
bounces still an open problem.

In this work we propose Screen-Space Virtual Point Light
Propagation (SSVP), our global-illumination method that
merges screen-space algorithms with cluster-based world-
space approaches. SSVP uses a pseudo-random sampling
method for paraboloidal projections that approximates the pro-
jection of an elliptical paraboloid in a 2D texture. That pseudo-
random sampling strategy reduces the probability of samples
falling under empty or incoherent areas of the projected image,
consequently allowing for plausible real-time propagation of
up to two indirect diffuse bounces of light in the scene in fast,
real-time framerates. The contributions of our work are the
following:

• A fast way to reproduce up to two bounces of diffuse
indirect lighting for 3D scenes.

• An efficient method of sampling from paraboloid shadow
maps.

II. SCREEN-SPACE VPL PROPAGATION

The main pipeline of SSVP can be seen in Figure 1. The
idea behind it is to leverage the 2D projection representing
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(a) G-Buffer Rendering (b) First-bounce VPL
Sampling

(c) First-bounce VPL
Clustering

(d) Second-bounce VPL
Sampling

(e) Final Rendering

Fig. 1. An overview of our SSVP pipeline. First, the scene is rendered from the camera’s viewpoint to a G-buffer. Next, we render the scene from the
viewpoint of the main light source to generate our RSM. In both cases we store depth, world-space position, albedo and normals (a). First-bounce VPLs (red
squares) are sampled over the scene from the RSM (b). Afterwards, clusters (green squares) are generated by grouping similar VPLs (c). For each cluster,
we generate a paraboloid map and perform a unit-disk sampling to distribute second-bounce VPLs (blue squares) over the scene (d). Shading is performed
by gathering the contribution of the VPLs in the final stage (e).

the visibility of a Virtual Point Light (VPL) generated by an
elliptical paraboloid, with a sampling method that matches the
circular shape of its horizontal cross section. Our algorithm
may be divided in two main steps and a final presentation
stage: creation of first-bounce VPLs; creation of second-
bounce VPLs; a final step that just gathers contribution from
each light and creates the final image that is presented to the
screen. The first-bounce VPLs are obtained with a traditional
Reflective Shadow Map (RSM) [6]. To achieve the goal of
propagating the second-bounce VPLs, we reuse previously
clustered VPLs and devise a sampling scheme for their visi-
bility maps.

A. First-bounce VPL creation

This stage requires two rasterization passes over geometry.
Besides rendering from the viewpoint of the main camera, a
render pass from the perspective of the main directional light
source is also required. Position, normals, albedo and depth
information are stored in 2D textures (Figure 1a) to generate an
RSM. Each texel from this texture is considered to be a VPL
placed upon a small surface patch, with its positive hemisphere
oriented by the normal of this surface (Figure 1b). We sample
from this buffer with a 2D Hammersley sequence [7] defined
in Equation 1, for the first n elements where γ is the Van der
Corput sequence.(

k

n
, γ(k)

)
for k = 0, 1, 2 ... n-1 (1)

Thinking ahead to performance, we aim at bringing the
number of visibility checks to a minimum. To this end we
perform K-Means clusterization over the set of sampled VPLs
(Figure 1c), assigning each point light to the cluster with the
nearest mean. The prototype of each cluster is itself another
VPL, its position being the average of child VPLs and its
orientation being the summation of each normal belonging to
this set. The goal here is to use each centroid’s shadow map
as the representative visibility of a VPL.

The computation of the distance metric between a cluster
and a VPL requires some attention. The traditional Euclidean
distance is subject to many artifacts leading to clusters com-
pletely occluded, inside geometry and therefore leaking light.
This can happen when VPLs are positioned closely together
but in surfaces that are not coplanar. To account for these
geometric properties, the normals of each VPL are introduced
in the computation too, attenuating these artifacts. This dis-
tance formula was proposed by [5] and is shown in Equation
2 below.

Dij = w1‖Vi − Cj‖+ w2(ni · nj)
+ (2)

The distance Dij between VPL Vi and Cluster Cj is the
weighted sum of the Euclidean distance ‖Vi − Cj‖ and the
clamped dot product (ni · nj)

+ between the VPL normal ni
and Cluster normal nj . Weights w1 and w2 correspond to
the factors that modulate the relevance of each factor to the
distance metric. We used the values of w1 = 0.6 and w2 =
0.4, empirically tuned for our test scenes. At this point it is
important to make clear that if the scene corresponds to the
interior of a convex or spherical shape, then cluster centroids
may appear as floating in space due to the steady and smooth
change in position between different points. Such configura-
tions may require careful consideration when implementing
the algorithm.

B. Second-bounce VPL creation

At this stage we add the main contribution of SSVP,
second-bounce diffuse lighting. We render the scene from the
viewpoint of each centroid to 2D textures in the same fashion
as the RSM in the first step, consisting of position, normals,
albedo and depth. Once again, considering the existence of
several clusters to be rendered we would like to avoid the
expensive rendering of cubemaps for each one. To perform
a single raster pass for each hemisphere of visibility, we use
paraboloid mappings [8] (Figure 1d). We intend to sample
from these paraboloid reflective shadow maps in the same



fashion as did in the previous step of the algorithm. This step
corresponds to the actual VPL propagation of our method.

However, as shown in Figure 1d (top) the projection ob-
tained by the paraboloid mapping does not fit evenly inside a
unit box. Instead it fills an ellipse oriented around the center
of the rectangular image.

Here we are guided by an interesting observation with
respect to the nature of the paraboloid used to obtain this
projection. Let Equation 3 be our paraboloid of interest :

f(x, y) =
1

2
− 1

2
(x2 + y2) (3)

An elliptic paraboloid has the form:

z =
x2

a2
+
y2

b2
(4)

Rearranging Equation 3:

z =
1

2
− x2

2
− y2

2
(5)

Equation 5 defines an elliptical paraboloid translated up
by a factor of 1

2 and with its concavity opening towards the
negative z axis. Note that terms a2 and b2 are equal here
(a2 = −2 and b2 = −2), what reveals another interesting
property. The elliptical paraboloid is also a circular paraboloid
as well. This means that any horizontal cross section of
the paraboloid defines a circle. In fact the only reason it
appears elliptical in Figure 1d is because of the rectangular
viewport it was clipped against. This understanding guided
our sampling method. Regular uniform random variables on
the interval [0, 1[, defined on the unit square would cause
samples to fall outside of the circular region of the projection,
becoming wasteful and using unneeded bandwidth. Hence, we
apply a unit circle uniform sampling method shown in [9] to
concentrate samples on the inner boundaries of the texture
inside the actual projection.

By the end of this stage we obtain second-bounce VPLs in
the same fashion as done for the first-bounce. We store these
point lights in arrays on the GPU and proceed to the shading
step. This approach also allows us to easily toggle the further
bounces on and off for visualization.

C. Shading the scene

To efficiently shade the scene with many lights, we adhere
to an interleaved shading approach [10], splitting the frame-
buffer into smaller, equal-sized tiles with resolution directly
proportional to the number of VPLs. Each tile is shaded
by a different subset of lights and then interleaved back
together. Because each tile represents only a fraction of the
total framebuffer resolution, the number of fragments to shade
is reduced considerably per light, with a speed up inversely
proportional to the number of light sources per tile.

Finally, a post processing tone mapping operator [11] is
applied to clamp lighting values to the 3-Channel 8 bit per
color image format of the screen. Figure 1e shows the final
image obtained by our method for the scene Sponza.

4 Clusters 8 Clusters 16 Clusters 32 Clusters
Gbuffer 1.03 1.03 1.03 1.03
Misc 0.26 0.29 0.30 0.30
Paraboloid 1.16 2.50 7.90 56.29
Shade 10.44 10.90 11.08 11.13
Total(ms) 12.89 14.72 20.31 68.75

TABLE I
RELATIVE TIME OF EACH SSVP PIPELINE STAGE AS THE NUMBER OF

CLUSTERS CHANGE. TIME IS GIVEN IN MILLISECONDS. MISC
CORRESPONDS TO THE TIME NEEDED TO GENERATE A SHADOW MAP, TO

SAMPLE FIRST-BOUNCE VPLS, TO CLUSTER THOSE VPLS AND TO
SAMPLE SECOND-BOUNCE VPLS. SHADING ACCOUNTS FOR BOTH PIXEL

SHADING OPERATIONS AND DENOISING.

III. RESULTS AND DISCUSSION

We ran our tests on a personal computer under the Windows
10 operational system. The hardware specifications consisted
of a total of 16 gigabytes of RAM, an Intel i7 4790K CPU
at stock clocks and an Nvidia GTX 1060 with 6 gigabytes
of VRAM. The code prototype was developed in C++ using
the OpenGL 4.6 API. For ground truth comparisons, a base
image was generated by path-tracing the scenes with 256 ray
samples per pixel. Three aspects are considered for evaluation:
rendering performance, visual quality and temporal coherence.

We applied our method in four popular scenes from com-
puter graphics literature: Cornell Box, Conference Room,
Sibenik Cathedral and Crytek Sponza, all provided by [12]. By
default we used FULL-HD resolution (1080p) together with
256 first-bounce VPLs and 256 second-bounce VPLs.

A. Rendering Performance

In order to obtain a comprehensive frametime analysis of
SSVP running on different scenes, we benchmarked a test run
from a fixed point of view inside each model. Figure 3 shows
the average rendering times for increasing number of clusters
for each test scenario.

Notice the sharp increases in rendering times as the number
of clusters goes up. For all test scenes 16 Clusters appears to
be the hard threshold for hard real-time scenarios, around 16
milliseconds per frame [13]. To better understand the phe-
nomenon behind this steep growth we breakdown an example
frame for the scene Sponza in Table I.

Each time slice corresponds to a specific step of our
pipeline. Notice as the number of clusters grow, the main
culprit for the increased rendering times is the Paraboloid
Creation step. The time required to render paraboloids grows
by a factor seemingly proportional to the raise in the number
of clusters (4, 8 and 16), beyond this point (at the change
to 32) time grows steeper in a spike. Each paraboloid pass
implies in rendering the geometry as many times as the number
of clusters. Preliminary investigation of this behavior implies
in increasing cache misses and points synchronization as we
grow the number of render passes in geometry shaders, but
no experiments with different hardware configurations were
performed therefore a decisive evaluation can not be provided
here.

Because this behavior is consistent between scenes, we
advise the reader to employ caution when implementing the
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Fig. 2. HDR-VDP-2 metric applied to images generated with 4, 8 and 16 clusters (Figures 2a, 2b and 2c respectively) in comparison to 32 clusters in Figure
2d. Figures 2e, 2f and 2g show the perceptual error metric for 4, 8 and 16 clusters when compared to the base image with 32 clusters.

Fig. 3. Average frametimes of our algorithm for four different scenes, running
on a viewport with 1920x1080 resolution, 4x4 interleaved sampling pattern
and increasing cluster configurations.

technique, picking a number of clusters that offers a good
trade-off between performance and quality is paramount to
maintain good framerates.

B. Visual Quality

We carry the visual quality tests with a ground truth com-
parison. Each reference image was generated with the industry
standard Path-Tracing technique. The comparison shows the
impact of allowing direct light to bounce two times through
the scene, and compare the final image to the ground truth.
Figures 4, 5, 6 and 7 show how the addition of second-bounce
VPLs introduces some effects such as color bleeding, which
can be seen nearby the curtains in Sponza for example and
make the shadows brighter, giving a proper sense of indirect
lighting.

Two different lighting conditions were used. In the Sponza
scene, directional lighting, similar to sun rays come from the
top of the atrium and reach the floor of the main hall. Because
the other scenes consist mainly of closed spaces, Sibenik,
Conference Room and Cornell Box, we shoot a spotlight
against a wall and let the VPLs propagate from it.

As observed in Table I, adding more clusters impacts the
performance negatively, on the other hand the quality of the
final image is expected to increase due to more precise vis-
ibility computations. For the hypothetical scenario where we
have as many clusters as VPLs, maximum quality is achieved
and the technique is indistinguishable from the original Instant
Radiosity [14]. This would obviously beat the purpose of
SSVP, that is reproducing plausible indirect lighting in real-
time. For this reason we also conduct an experiment to evaluate
the visual impact of increasing cluster numbers up to the tested
maximum of 32. The visual perception metric HDR-VDP-2
[15] is employed in this test to quantify the quality of an
image against another one of better quality.

The root-mean-square error obtained for 4 clusters is
0.1259, 8 clusters is 0.1020 and 16 clusters is 0.0806. The
smaller the value, smaller the difference between an image
and the reference being used. The main reasoning here is
that the more clusters, the higher is the overall quality of the
algorithm, therefore we try to obtain a score of how close
lesser configurations are to higher ones, better approaching
the ground truth for example.

C. Temporal Coherence

The problem of temporal coherence is a complex field that
has its own specific literature [16], for this reason we did not
devise any specific method to deal with it in SSVP. Mitigation
of possible temporal artifacts are handled by a few algorithmic
decisions during the course of the pipeline. First, we reuse the
sampling patterns between frames in order to prevent VPLs
from moving too much. Second, cluster seeds are initialized
from previous positions, preventing a jittered motion that could
cause quickly changing visibility maps. As a result, SSVP is
a stable technique for camera movements and smooth slow
light transitions. However, as a drawback of the low amount
of paraboloid maps used, some artifacts similar to black stripes
can happen during quick light movement as a side effect of
cluster centroids moving along surfaces.



(a) SSVP (One Bounce) (b) SSVP (Two Bounces) (c) Path-Tracing (Ground Truth)

Fig. 4. Difference between single-bounce (a) and double-bounce (b) lighting rendered by our technique when compared to the ground-truth (c) on the scene
Crytek Sponza.

(a) SSVP (One Bounce) (b) SSVP (Two Bounces) (c) Path-Tracing (Ground Truth)

Fig. 5. Difference between single-bounce (a) and double-bounce (b) lighting rendered by our technique when compared to the ground-truth (c) on the scene
Cornell Box.

(a) SSVP (One Bounce) (b) SSVP (Two Bounces) (c) Path-Tracing (Ground Truth)

Fig. 6. Difference between single-bounce (a) and double-bounce (b) lighting rendered by our technique when compared to the ground-truth (c) on the scene
Conference Room.

(a) SSVP (One Bounce) (b) SSVP (Two Bounces) (c) Path-Tracing (Ground Truth)

Fig. 7. Difference between single-bounce (a) and double-bounce (b) lighting rendered by our technique when compared to the ground-truth (c) on the scene
Sibenik Cathedral.



D. Discussion

To understand the results obtained by our tests and how
they relate to the technique we must restate our goals with this
work: extend cluster based indirect illumination methods to up
to two diffuse bounces quickly for hard real-time scenarios.
With this in mind, the algorithm alone must not exhaust the
entire budget of 16 milliseconds, otherwise there would be no
time for other tasks such as logics of physics updates.

Evaluation of the performance data present in Table I, shows
that SSVP is able to achieve frame rates of 13 milliseconds for
no more than 8 clusters, in a scene like Sponza for example
at FULL-HD resolution. The inclusion of a visual perception
metric such as HDR-VDP-2 confirms this configuration is
indeed the best trade-off in our case. We extend this observa-
tion to Conference Room and Sibenik Cathedral as well, both
performing well below the threshold for the same 8-cluster
configuration. The exception here being Cornell Box, its low
polygon count allowed it to perform well even for 32 Clusters.

To reach a conclusive answer for which configuration is
the optimal these values should be contextualized with the
frametime analysis. Whenever performance must be favored
instead of visual quality, only a few clusters (4 in this case)
are enough. If the user is aiming at a compromise solution, 8
Clusters still offer rates below 16ms and better quality.

The visual impact of adding the second-bounces is evident
even for low cluster counts. Our visual comparisons show how
much more detail is added to the scene, but our empiric experi-
ments suggest maintaining the proportion Second-Bounces per
Cluster equal or above 32, that means at least 32 new second-
bounce VPLs must be sampled per cluster to obtain a good
distribution of lights in the scene. That means for 4 clusters,
128 total second bounces are the minimum, for 8 clusters its
256, for 16 clusters its 512 VPLs and so on.

IV. CONCLUSION

Our method offers an extension to cluster-based methods for
many-light techniques. In this work we were able to reproduce
up to two diffuse bounces of light with a clusterization method
for VPLs with the help of a sampling approach that closely
matches the 2D projection of a circular paraboloid map.

The method proposed here achieves real-time frame rates,
proving itself to be fast enough to be applicable to hard
real-time conditions such as video games and capable of
performing under 16 milliseconds per frame while still offering
plausible quality when compared to a ground truth image.
The results of our method also present reasonably stable
temporal coherence for smooth and slow light transitions
and good coherence for moving cameras. Finally, because of
its specialization in a specific effect of global illumination,
possible future works to be explored include the addition of
participating media and other visual phenomena as well.

Finally, we consider the current generation of hardware en-
abled ray-tracing to bring many possibilities for hybrid global
illumination algorithms. Because rasterization still dominates
real-time rendering applications, general advances in this field
will probably require ray-tracing methods to coexist with them.

Next advances could particularly be employed in areas where
ray-tracing thrives such as mirror reflections and ray-traced
shadows, to extend and complement SSVP for instance.

V. PUBLICATIONS

During the development of this M. Sc. dissertation, we
obtained the publication [17], awarded one of the three best
conference papers at Sibgrapi 2020.

ACKNOWLEDGMENT

The authors would like to thank the National Council for
Scientific and Technological Development (CNPq) and its
project INCT-MACC for the financial support provided to
carry this research.

REFERENCES
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