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Abstract—End-to-end methods facilitate the development of
self-driving models by employing a single network that learns
the human driving style from examples. However, these models
face problems of distributional shift problem, causal confusion,
and high variance. To address these problems we propose two
techniques. First, we propose the priority sampling algorithm,
which biases the training sampling towards unknown obser-
vations for the model. Priority sampling employs a trade-off
strategy that incentivizes the training algorithm to explore the
whole dataset. Our results show uniform training on the dataset,
as well as improved performance. As a second approach, we
propose a model based on the theory of visual attention, called
TVAnet, by which selecting relevant visual information to build
an optimal environment representation. TVAnet employs two
visual information selection mechanisms: spatial and feature-
based attention. Spatial attention selects regions with visual
encoding similar to contextual encoding, while feature-based
attention selects features disentangled with useful information
for routine driving. Furthermore, we encourage the model to
recognize new sources of visual information by adding a bottom-
up input. Results in the CoRL-2017 dataset show that our spatial
attention mechanism recognizes regions relevant to the driving
task. TVAnet builds disentangled features with low mutual
dependence. Furthermore, our model is interpretable, facilitating
the intelligent vehicle behavior. Finally, we report performance
improvements over traditional end-to-end models.

I. INTRODUCTION

End-to-end is an attractive solution for self-driving because
it simplifies the development of driving models. Perception,
prediction, and control are learned simultaneously without
implicit programming of the human driving style, reducing
development cost and time. However, these approaches are
sensitive to distributional shift problems due to bias in the
naturalistic driving datasets [1]. Moreover, end-to-end models
have high variance, hence it is sensitive to initialization
and sample order in training. We address these problems
through the training algorithm and the driving model. Based
on prioritized experience replay [2], we propose priority sam-
pling which prioritizes model training on unknown samples
(high loss). However, sampling based only on training loss
prioritizes outliers in the database. We solve this problem
by incentivizing the exploration in the database with UCT
(Upper Confidence Bound 1 applied to trees) [3]. Our results
show uniform training across the whole dataset, as well as a
reduction in the error of the control signals.

Our main contribution is a model based on the theory of vi-
sual attention (TVA) [4], called TVAnet. The goal of our model
is to build an optimal representation of the environment (state
st) by selecting relevant visual information for the driving task.
Two mechanisms are used for this purpose. First, we build a
visual encoding zt that abstracts the input visual information
biased into relevant regions (spatial attention). Unlike self-
attention [5], the selection of regions in TVAnet is based on
similarity with a top-down encoding, which represents the
driving context. However, this approach is sensitive to omit-
ting information not encoded in the top-down encoding. To
incentivize the exploration of new visual information sources,
we add a bottom-up input to the visual attention mechanism.
Then, the second mechanism (feature-based attention) selects
the useful information present in the encoding zt of the visual
input. Previous works [6], [7] use feature attentional maps on
the dimensions of visual coding, while our attentional maps are
applied to the relevant directions in the feature space. Relevant
directions are estimated through disentangling visual encoding
zt into interpretable features, which represent a unique visual
knowledge. Finally, the vehicle state st is constructed from the
selected features. Overall, our model recognizes the relevant
and useful entities for driving. Also is an interpretable model,
one can visualize the selected regions and features.

II. RELATED WORK

End-to-end for self-driving car. End-to-end models [8]–
[12] use a convolutional neuronal network (CNN) to encode
the visual environment and a recursive network to encode
the dynamics of the vehicle and environment. Furthermore,
these models can follow navigation instructions via high-
level control command input [8], [11], defined by a planning
module. All inputs information is encoded and then decoded
by the controller to compute control signals. However, this
encoding is not optimal for complex environments, as it can
introduce irrelevant information to the controller. Our proposed
solution is a mechanism that filters out non-useful information
according to the driving context. On the other hand, another
important limitation of these methods is the shift distribution
[1]. Most proposals address this problem employing data
augmentation [8], [11]. It is also proposed to use database
subsampling [11], [12], and oversampling [10] algorithms,
adding biases over the training. We propose a priority sampling



algorithm for training, which overcomes the limitations of
previous proposals by compensating for the introduced biases.

Visual attention for self-driving car. Models based on
visual attention use a spatial saliency map [10], [13]–[16] to
prioritize regions of the input image that contain information
relevant to driving. It is notice these models are interpretable
[10], [13], which facilitates error analysis and behavioral
analysis. The proposed attention mechanisms are based on
soft-attention [13], [15] or self-attention models [10], [16].
Also, attention mechanisms in spatial-temporal features [10]
have been proposed. In these proposals, the attentional maps
are guided by visual input, omitting the driving context. On
the other hand, we propose that information filtering should
be guided by top-down processes, i.e., attention mechanisms
should enhance information relevant to the driving routine.

III. THEORY OF VISUAL ATTENTION

TVA [4] defines visual attention as the bias competence
of visual categories in the encoding in the visual short-term
memory (VSTM). In this context, saying that the object x
belongs to the visual category i is equivalent to saying that x
has the feature i. The encoding rate v(x, i) in the VSTM is
defined as:

v(x, i) = η(x, i)βi
wx∑
z∈S wz

, (1)

where η(x, i) is the force of sensory evidence that x has the
feature i, βi is the perceptual bias of the feature i, and wx is
the attention weight of the object x. Equation 1 suggests two
attention mechanisms: object and category-based attention.
Object-based attention is modulated by wx/

∑
z∈S wz , where

the attentional weights are calculated by the weight equation:

wx =
∑
j∈R

η(x, j)πj , (2)

where πj is the pertinence of category j, and R is the set of all
visual categories. On the other hand, feature-based attention
is modulated by a perceptual bias βi associated with feature
i. Bundesen et al. [17] proposed the hypothesis multiplicative
interaction:

βi = Apiui, (3)

where A is the level of alertness, pi is the subjective prior
probability of being presented with feature i, and ui is the
subjective importance of identifying feature i.

IV. AN INTERPRETATION OF TVA

TVA defines the membership of an object x to a category
i as “object x has feature i”, where a feature defines some
property of object x such as color, shape, texture, etc. This in-
formation can be encoded by a CNN in a feature vector space.
However, the TVA equations employ categorical membership
values (scalar). We redefine category membership to make
both concepts compatible. Let z ∈ Rd be a visual encoding
of the object x obtained by a deep neural network. Consider
a decomposition z =

∑
i f i, where {f i} is a collection of

interpretable features1 with respect to the output signal. We set
f i = îzi, where î = f i/ ‖f i‖ is an unit or direction vector
which defines the category (meaning), and zi = ‖f i‖ quantify
the sensory force of the category i in the visual encoding z.
Thus:

z =
∑
i∈R

îzi, (4)

where R is a basis, and zi quantifies the contribution of the i-th
dimension. If the set R is a orthogonal base, each î expresses a
mutually exclusive knowledge about the object. This condition
facilitates the compute the sensory strength of the category i
in the object x:

z · î = zi. (5)

However, a general case may not admit a decomposition
as shown in equation 4, since it is not always possible to
obtain a basis whose vectors are interpretable. We suggest a
decomposition as:

z =
∑
i∈R′

îzi +H, (6)

where R′ is a subset of R such that {î} are linearly separable,
and H is a non-interpretable vector. The vectors zi are
independent ofH , otherwiseH can be a linear combination of
zi and therefore partially interpretable. However, the indepen-
dence between categories i limits the hierarchical development
of knowledge. Individual entities of semantic knowledge in
humans are organized into higher-order conceptual categories
that include elements with similar properties [19]. This orga-
nization is the support of inductive generalization in humans,
which is a skill desired in artificial intelligence for out-of-
distribution generalization [20]. We suggest that the building
of representation with hierarchical semantic knowledge is
desirable. However, these representations do not admit the
decomposition given by equation 6. To address this problem,
we propose to first construct a base representation x with
hierarchical semantic knowledge. Then, this representation is
transformed into a representation z that admits the decompo-
sition given by equation 6. The advantage of this strategy is
that we can construct several representations zk from x so that
each representation set admits a decomposition with different
interpretable features of x.

Weight equation. The equation 2 estimates the attentional
weight of an object from the pertinence of each category and
the strength of the sensory evidence that the object belongs
to those categories. Let ηx be a visual encoding of the object
x, and πi be a vector whose direction î defines a category
of interest, and whose magnitude πi defines the relevance of
that category. We estimate the sensory evidence of object x to
category i by:

ηxi = projπi
ηx =

ηx · πi
π2
i

πi =
ηx · πi
πi

î. (7)

1A representation z is interpretable if it contains information about
the output signal y [18]. Therefore, in a fully interpretable representation
I(z, y) = H(z) = H(y), where I(•) is mutual information and H(•) is
entropy.



Note that (ηx · πi) /πi = ‖ηxi ‖. If x admits a decomposition
given by equation 6, and i is a linearly separable feature, then
ηxi is the magnitude of the i-th dimension contribution, i.e.
the sensory evidence of the category i in the object x. Then,
η(x, i) = ‖ηxi ‖ in the equation 1. Therefore, we calculate the
attentional weight of the object x by:

wx =
∑
i∈R

η(x, i)πi =
∑
i∈R
‖ηxi ‖ ‖πi‖ , (8)

where R is the set of relevant features. From equation 7:

wx =
∑
i∈R

ηx · πi
πi

πi = η
x ·
∑
i∈R

πi = η
x · F, (9)

where F contains the pertinence of all relevant features to the
current task.

Perceptual bias. The multiplicative hypothesis of Bundesen
et al. [17] suggests that the perceptual bias βi associated with
feature i is a product of the level of alertness A, the subjective
prior probability pi of being presented with feature i, and the
subjective importance ui of identifying i-th feature. Replacing
in the rate equation we obtain:

v(x, i) = η(x, i)βiαx = η(x, i)Apiuiαx, (10)

where αx = wx/
∑
z∈S wz , S is the set of all objects in the

visual scene. We are interested in estimating the categories of
objects selected by the weight equation. Then, the probability
of categorizing an object x with the category i [21], given that
the object x has been chosen by the equation 9:

p(i|x) = η(x, i)Apiuipx∑
j∈R

η(x, j)Apjujpx
=

piη(x, i)ui∑
j∈R

pjη(x, j)uj
, (11)

where η(x, j) =
∥∥ηxj ∥∥. Let uj be the magnitude of the vector

uj whose direction defines a useful category j. Also, we know
that ηxj = projuj

ηx, then η(x, i)ui = ηx · uj . Replacing in
the equation 11:

p(i|x) = pi [η
x · ui]∑

j∈R
pj [ηx · uj ]

, (12)

where ηx is the visual encoding of the object x, and ui is a
vector whose magnitude is the utility of category i.

V. METHODS

Inspired by TVA, we propose a model that filters relevant
visual information for the driving task in order to build
an optimal state st. Our proposal is shown in Figure 1a,
where a backbone based on convolutional neural networks is
divided into two blocks: low encoder (LE) and high encoder
(HE). We use equation 9 for spatial attention, assuming that
spatial attention can be approximated to object-based attention
by combining the spatial attention weights of objects in
the environment. Note that this approximation depends on
spatial discretization indeed a fine discretization will better
approximate spatial attention towards object-based attention.
We employ the spatial attention mechanism between LE and
HE since the visual encoding output of LE has an adequate

level of discretization (receptive field not large) and a good
level of abstraction of visual information. On the other hand,
we use equation 12 for feature-based attention, where we
replace the subjective prior probability pi with the probability
that feature i is present in the current input. The feature-based
attention mechanism is employed after HE since it has the
highest level of visual abstraction. Note that our model is
recursive (Figure 1a). The processing is non-selective in the
first time step, i.e., the selection of regions is random. Then,
the feature-based attention mechanism selects the relevant
features for the current driving routine (defined by the control
command ct), in order to construct the vehicle state st. This
selection of relevant features is used in the second time step
(selective processing), where spatial regions are selected based
on prior knowledge of features relevant to driving (top-down).

Non-selective processing. During the first time step, the
relevant categories to the driving task are unknown to the
agent, so it is not possible to use equation 9. Hence, the
selection of spatial regions is randomized, i.e. the visual
encoding is a non-selective processing. On the other hand, we
compute the task-relevant features from the visual encoding z,
using the equation 12. This selection is employed to build the
agent state and in the selection of spatial regions in the second
stage (selective processing). For this purpose, we estimate
p(i|x) (equation 12) as a measure of feature relevance. Our
model uses low-level and high-level encoders. The output of
the high-level encoder is a visual encoding z without spatial
dimensions, i.e. z encodes the whole receptive field of the
input. Then, zt contains the information of all the elements of
the visual scene biased with the spatial attention mechanism:

z ≈
∑
l∈L

αlη
l, (13)

where αl and ηl are the bias and sensory evidence at the
spatial region l respectively. We estimate the subjective prior
probability pi of being presented with category i as:

pi ≈

∑
l∈L

αlη(l, i)∑
l∈L

∑
j∈R

αlη(l, j)
=

[∑
l∈L

αlη
l

]
î[∑

l∈L
αlηl

][∑
j∈R

ĵ

] =
z · î
z · ω̂

(14)

where η(l, j) = ηl · ĵ, ηl is the visual encoding in the spatial
position l, and ω̂ =

∑
j∈R ĵ. By replacing in equation 12:

p(i|z) =

z · î
z · ω̂

[z · ui]∑
j∈R

z · ĵ
z · ω̂

[z · uj ]
=

[
z · î

]2 [
u · î

]
∑
j∈R

[
z · ĵ

]2 [
u · ĵ

] , (15)

where z · ui = z ·
[(
u · î

)
î
]

=
[
z · î

] [
u · î

]
. Equation

15 shows that the probability of selecting category i grows
quadratically with the magnitude of z in the i direction, while
it grows linearly with the utility of feature i. As in equation
12, we can define the direction î with ui.However, we propose
that defining the direction with î = zi/ ‖zi‖ is better because
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Fig. 1. Our proposed network architecture. In the figure, LE: low-level encoder, HE: high-level encoder, SR: speed regularization network, CD: command
decoder, LN: layer normalization, GN: group normalization, C: concatenate, �: dot product, }: spatial element-wise product, ⊗: matrix multiplication.

the computation of zi gives information about the relevant
features contained in z. Therefore, the process of computing
zi can be understood as disentangling the z representation.
We define F i = zi =

[
z · î

]
î, then:

p(i|z) =
F 2
i

[
u · F i

Fi

]
∑
j∈R

F 2
j

[
u · F j

Fj

] =
Fi [u · F i]∑

j∈R
Fj [u · F j ]

, (16)

where F i is a feature obtained from the encoding of the visual
scene. Therefore, the probability that feature i is encoded in
state s is equal to the normalization-by-sum of the similarity
between F i and u weighted by the magnitude of sensory
evidence of F i. Finally, we compute the state as the expected
value of feature F i given i ∼ p(i|z):

s = Ei∼p(i|z) [F i] =
∑
i∈R

βiF i, (17)

where βi = p(i|z). Note that βi operates as a category bias.
Selective processing. The spatial selection mechanism de-

scribed in equation 9 employs the feature selected in the
first time step, where we set F = s because s contains the
features used by the agent multiplied by an importance bias
to the driving task (contextual encoding). We compute the
attention map α at spatial position l as αl = wl/

∑
i∈L wi

The spatial attention map emphasizes regions with relevant
features estimated in the previous time step, i.e., it is oriented
from prior knowledge of the scene, intentions (selection), and
driving goals. We call this mechanism top-down processing.
Equation 9 assumes that z admits a decomposition given by
equation 6, and the relevant features contained in the state s are
linearly separable. However, the set of relevant features may
have been related to each other, moreover, it would be difficult
to find a space where every direction î is independent of each
other. For such a reason, our model build multiple attention
maps α so that the resulting spaces admit the decomposition
given by equation 6. Then, top-down encoding xTD is equal to
the combination of applying all the attention maps. However, a
model guided only by this mechanism may have an important
drawback: it would not be able to recognize a new relevant
element in the scene that is different from the previously
known elements. We solve this problem by introducing a

bottom-up input, guided only by the sensory strength of the
input. Hence, the complete attention mechanism is:

xt = (1− ϕ)xBU
t + ϕxTD

t , (18)

where ϕ is a gate that controls the effect of top-down
and bottom-up processing, xBU

t are features obtained by the
bottom-up mechanism, xTD

t are features obtained by the top-
down mechanism, and xt is the complete representation.
Note that bottom-up is a mechanism that operates with raw
sensory input, while top-down depends on superior perception
processes, i.e. the agent has control over this process.

VI. IMPLEMENTATION

Our model receive two inputs: an RGB image It ∈ Ra×b×3
and a command control ct ∈ R4, where a, b are the width and
height. The command control inputs are encoded with one-hot
encoding, and it represents four driving routines: “straight”,
“turn-left”, “turn-right”, or “follow lane”. The command de-
coder network is a 16-neuron perceptron with ReLU activation
function. The low and high encoder are the two halves of the
ResNet-34 network.The first half has a visual encoding output
ηt ∈ RH×W×d1 . While the second half has a visual encoding
output zt ∈ Rd2 . The output of the spatial attention module is
xt ∈ RH×W×d1 . While the output of the features module is
the state st ∈ Rn×ds . On the other hand, the hidden state of
LSTM is ht ∈ Rdh . Approach of Xu et al. [22] was used to
initialize the LSTM. Finally, our architecture has two outputs:
the action at ∈ R3, and the velocity vt (regularization method).

A. Spatial attention

The spatial attention module selects spatial regions with
features relevant to the task. Our implementation is based
on equation 9. We replace normalization-by-sum by Softmax,
since this function builds sparse attention maps. Moreover, we
use the notation of transformers [5]:

α = Softmax
(
QKT

√
d1

)
(19)

where Q ∈ Rh×L×d1 is the query, K ∈ Rh×n×d1 is the key,
α ∈ Rh×L×n is the spatial attention map, L = H×W , h is the
number of heads, and n is the number of tasks. At each head,
property 6 is locally satisfied. We compute the query Q by
1×1-convolution network with input ηt. While we compute the
key K by a perceptron that has the previous state as input st−1.



Additionally, we compute the value V ∈ Rh×L×d1 by an 1×1-
convolution network with input ηt. Then, we calculate the top-
down encoding with xTD = VW SA

O , where W SA
O is a weight of

the linear transformation. For simplicity, we make xBU = ηt,
since ηt encodes the sensory strength of the input features. The
bottom-up and top-down encodings are combined through a
GRU-type gating [23]. We employ layer normalization in the
input st−1, and group normalization in the input ηt.

B. Feature-based attention

Our implementation is based on equation 16. We replace
normalization-by-sum with Softmax, since this function con-
structs sparse attention maps.

β = Softmax
(
‖V ‖1
ds

QKT

√
ds

)
, (20)

where Q ∈ Rn×ds×1 is the query, K ∈ Rn×ds×m is the key,
V ∈ Rn×d2×m is the value, β ∈ Rn×m×1 is the feature
attention map, ds is the state depth, m is the number of
features, and n is the number of tasks. We compute the key K
by a perceptron with input ct ∈ R16 which is the coding of the
control command. On the other hand, we compute the query
Q by a perceptron with input the concatenation F = [Fz, Fh],
where Fz ∈ Rn×ds×m/2 is calculate from the visual encoding
zt ∈ Rd2 , while Fh ∈ Rn×ds×m/2 is compute from the
previous hidden state ht−1 ∈ Rdh of the LSTM. Note that
zt contains information about the content of the visual scene,
and ht−1 contains information about the variations of zt and
the vehicle dynamics. Likewise, we compute the value V by a
perceptron with input the concatenation F = [Fz, Fh]. Finally,
we calculate (equation 17): s = V β, where s ∈ Rn×ds is the
internal state of the agent, and n is the number of sub-tasks.

C. Policy

We have described two mechanisms of visual information
selection that depend on a running task. However, self-driving
is a complex task that requires the simultaneous execution of
a set of subtasks [24]. We work with two main sub-tasks:
steering angle control and velocity control. The first controls
the direction changes with the steering angle output. While the
second control the car speed changes with two outputs: throttle
and brake. Our model assumes that each subtask requires a
different type of information. Then, each sub-task has its sub-
state, so that st = [sst, sv], where sst and sv are the sub-
states of steering angle and speed control respectively. For
this reason, we propose that each task makes a selection of
its relevant features using equation 16. Furthermore, each task
selects spatial regions with relevant features using equation 9.
We employ a dense block for each sub-task since it showed
good results in locomotion tasks [25].

Loss function is a linear combination of action error pre-
dictions (steer ast, throttle ath, and brake abr). We employ
1-norm as an error measure because its good correlation to
driving performance [26]. Loss function for actions is defined
as:

La = λs
∥∥ast − âst∥∥

1
+ λt

∥∥ath − âth∥∥
1
+ λb

∥∥abr − âbr∥∥
1
,

where âst, âth and âbr are the predict values of steer, throttle
and brake respectively; while ast, ath, abr are the real values.
The coefficients λst, λth, λbr weight the error of each action.

We employ a speed prediction regularization network for
two purposes. The first is to orient the hidden state of the
LSTM to it learn information about the driving dynamics [1].
The second function is to prevent gradient vanishing problem
[27]. The loss function with regularization is L = λaLa +
λvLv , where Lv = ‖v − v̂‖1, v and v̂ are the real and predict
values of velocity respectively. The coefficients λa, λv weight
the loss of action and regularization respectively.

VII. TRAINING ALGORITHM

We employ a non-uniformly sample method, based on
prioritized experience replay [2]. This algorithm was proposed
for deep Q-learning (DQN) to uniformize the training effec-
tiveness in the whole replay buffer since in DQN common
experiences are better learned (low TD-error), while rare
experiences could be unknown to the agent (high TD-error). To
solve this problem, the prioritized experience replay algorithm
assigns a priority to each experience, so that unknown samples
are more probable to be chosen for training.

We define the priority as pi = L at i-th sample, where L is
the training loss:The sampling probability is:

Pi =
pγi∑
k p

γ
k

(21)

where the parameter γ controls the relevance of the priority
sampling. For γ = 0, the sampling is uniform. However, the
algorithm might introduce a bias on outliers of the dataset.
Thus, few unknown samples that are difficult to resolve may be
selected many times due to its selection probability is high. As
a result, the network may forget to solve simple problems that
are common. To solve this problem of exploration-exploitation
trade-off, we propose to use UCT, so that the probability of
sampling the i-th sample at the j-th epoch:

P̂i,j = Pi,j + c

√
lnNj
ni,j

, (22)

where Pi,j is the sampling probability calculated with equation
21 (the priority is pi = Li, where Li is the loss value for
the training), Nj is the total number of sample selections,
ni,j is the number of times that the i-th sample was selected
until the j-th epoch, and c is the exploration parameter,
which theoretically is equal to

√
2 [3]. We normalize P̂i,j

such that
∑
i P̂i,j = 1. UCT introduces a compensation that

stimulates exploration: the sampling probability decreases with
the number of times the sample is selected.

However, priority sampling introduced a bias changing the
solution to training convergence. To address this problem,
Schaul et al. [2] uses importance-sampling (IS) weights:

wi =

(
1

N
· 1

P (i)

)ρ
(23)

where the parameter ρ controls the degree of compensation.
Weights are scaling to the maximum value for stability rea-
sons.



TABLE I
PARAMETERS SETTING USED IN OUR EXPERIMENTS.

Parameter Value Description
a, b 96, 192 RGB image shape
H,W 12, 24 Mid-level visual feature shape
d1 128 Depth of low encoder
d2 512 Depth of high encoder
ds 64 Depth of state
dh 1024 Depth of hidden state of LSTM
h 2 Number of heads in spatial attention
n 2 Number of tasks
m 32 Number of features
γ 1 Relevance of the priority sampling
ρ 1 Degree of IS compensation
c

√
2 ≈ 1.4 Exploration parameter (UCT)

λst 0.45 Loss coefficient of steering angle error
λth 0.45 Loss coefficient of throttle error
λbr 0.10 Loss coefficient of brake error
λs 0.05 Loss coefficient of speed regularization
λa 0.95 Loss coefficient of action error

TABLE II
PERFORMANCE COMPARISON.

Model Loss Control signals
Train Eval. Steer Throttle Brake

CIL [8] 0.0334 0.1294 0.0537 0.2079 0.1569
CILRS [1] 0.0317 0.1231 0.0542 0.1982 0.1519
SA [13] 0.0569 0.0918 0.0557 0.1499 0.1118
CIL [8] + PS 0.0343 0.0798 0.0474 0.1226 0.0691
CILRS [1] + PS 0.0293 0.0790 0.0438 0.1266 0.0610
SA [13] + PS 0.0396 0.0758 0.0440 0.1187 0.0587
TVAnet (T-‖V ‖) 0.0263 0.0722 0.0364 0.1157 0.0647
TVAnet (T) 0.0288 0.0777 0.0334 0.1045 0.0594
TVAnet (D+‖F‖) 0.0224 0.0725 0.0332 0.0932 0.0593
TVAnet (D+‖V ‖) 0.0227 0.0731 0.0290 0.0957 0.0618

VIII. RESULTS

We evaluate our proposal on the CoRL2017 dataset [8].
The network and training parameters are defined in Table I.
We employ Xavier initialization, and the optimizer Adam with
parameters β1 = 0.7 and β2 = 0.85 based on [8]. Empirically
we set learning rate at 0.0001, which decays to one-tenth after
80 epochs. The parameters λ in Table I are based on [1].

A. Performance

The performance results are summarized in Table II, where
our proposal is compared with three self-driving models (CIL
[8], CILRS [1], and Kim et al. [13]). Note that the loss function
of our approach includes speed regularization. Our proposal
outperforms the proposals studied, since it obtains a lower
error in the control signals. An ablation study is presented:

Priority sampling. Table II shows the results of comparing
the three networks with and without priority sampling (PS).
CIL and CILRS are models that employ independent policies
for each control command. On the other hand, the proposal
of Kim et al. is based on soft-attention (SA), which estimates
a spatial attention map. The three networks improve when
trained with priority sampling: the error of the control signals
is reduced. Morever, we show that the SA model obtains a
lower evaluation loss than CIL and CILRS.
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Fig. 2. Percentile curves, plotted from the percentile values of the abscissa
and the ordinate. In the figure, Q1, Q2, and Q3 are the 1st, 2nd, and 3rd
quartile respectively. From left to right decreases the model’s knowledge about
the data.

UCT compensation. Figure 2a shows a comparison of the
percentile curve of the training loss of SA when not using
and using UCT. The training loss of the known samples is
lower when using UCT, however is higher with the weakly
known samples. This result suggests that the model trained
without UCT overfits on a subset of data and forgets how
to deal with unfamiliar samples, while priority sampling with
UCT uniformly learns the experiences of the database. Figure
2b shows the result for the validation loss, where priority
sampling with UCT presents a better generalization. Finally,
in Figure 2c we compare the percentile curve of the validation
loss when using SA and when using our model. The results
show that TVAnet outperforms SA in most cases. Note that
Figure 2c does not present the S-shape of Figure 2a, so the
training is uniform in both models.

Feature attention equation. Equation 20 differs from the
self-attention equation2 by the ‖V ‖1 /ds term. We evaluated
not using the scaling term (T-‖V ‖ in the Table II). The results
show that the evaluation loss is lower when using the self-
attention equation. However, this reduction is due to a smaller
error in the regularization. Our proposal obtains a lower error
in the control signals.

Features disentangled. We evaluate the benefit of using
disentangled features (D in the Table II) in the equation 20.
Our proposal with tangled features (T in the Table II) omits
the perceptron network of Figure 1c. Then, we compute Qz ,
Kz , Vz from zt, and Qh, Kh, Vh from ht−1. So, query is
Q = [Qz, Qh], key is K = [Kz,Kh], and value is V =
[Vz, Vh]. The results suggest that disentangling features before
the feature attention mechanism improves performance. We
noticed improvements in steering angle and throttle, however
the brake error increases by 0.0001.

Magnitude of sensory evidence in the feature attention
equation. We evaluated the definition of the magnitude of
sensory evidence of feature (Fi in equation 16) . In Figure 1c
we define the magnitude of sensory evidence of feature as the
1-norm of V . However, it can also be defined as the 1-norm of
the magnitude of the disentangled feature F = [Fz, Fh]. The
results in the Table II show a slight improvement in evaluation
loss when using the 1-norm of the untangled feature.

2The self-attention equation is Softmax
(
QKT /

√
d
)

[5].
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Fig. 3. Spatial attention maps obtained in three driving routines (follow lane, right and left turn) and in the detection of cars and traffic lights.
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(a) Uncertainty coefficient between activations
of the features attention map (T1).
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(b) Uncertainty coefficient between activations
of the features attention map (T2).
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Fig. 4. Analysis of the attention maps and magnitudes of the features. We evaluate the disentangled features with the cosine distance (similarity measure).
In addition, we evaluate the activation of feature attention maps with uncertainty coefficient.

B. Spatial attention

We show some examples of spatial attention maps in the
Figure 3. The images are obtained by combining the attention
maps of the two heads of each sub-task: steering angle control
(T1) and velocity control (T2). Note that the attention maps
are mostly sparse. The attention maps in the follow lane and
right/left turn routines focus on the road line and sidewalk
edge. However, our model has preferences in specific regions
of the input image, so the attention mechanism could have
difficulties in recognizing road line or sidewalk edge in the
regions where it is not usually located. We note that velocity
control has a preference in the spatial region corresponding to
the road horizon, even when it is not visible (right/left turn).
On the other hand, the steering angle control of our model does
not focus on a specific region when performing the right/left
turn routines. Nonetheless, on some occasions, it focuses on
the road line.

We evaluate our proposal in critical driving situations. We
notice that the attention maps stay static when the car is

stopped. When the car is stopping, the attention maps focus on
the critical element (front car front or traffic light). However,
we notice that the agent focuses on the same spatial region
(image center) when detecting cars. The behavior is similar
when detecting traffic lights, where it focuses on the upper
right region of the image. Nevertheless, the agent does not
always focus on the traffic lights (the last row of Figure 3).
We suggest that the dataset could be responsible for these
errors since it contains sequences that omit the traffic light.
However, this hypothesis could not be proven in this study.

C. Feature attention

In the Figure 4, we analyze the disentangled features and
the feature attention maps. The features are sorted from
the mode of feature magnitude into two groups: the first
group corresponds to the features obtained from the visual
encoding zt (F1-F16), and the second group corresponds
to the features obtained from the hidden state ht−1 of the
LSTM (F17-F32). Figure 4a and 4b show the uncertainty
coefficients between activations of the features attention map



for each sub-task: steering angle control (T1) and velocity
control (T2). The uncertainty coefficient is computed with
U(x|y) = I(x, y)/H(x), where I(x, y) is the mutual informa-
tion between x and y, and H(x) is the entropy of x. We also
show the histogram of the uncertainty coefficients. The results
suggest a low dependence on the activation of the feature
attention map. The dependence is higher in the attention map
of T2, and in the attention map values obtained from the visual
encoding zt in T1.

Finally, we evaluate the similarity between the disentangled
features. Note that in the section IV we suggested that the
results of decomposing zt should be orthogonal features. We
evaluate this condition by means of the cosine distance in
Figure 4c. We also show the histogram of the cosine distance
values. The results show that the cosine distance is non-zero,
but low (in range [−0.2, 0.2]) in most cases. There are cases
where the cosine distance is high, which introduces biases in
the feature attention mechanism.

Limitations. The present work has evaluated our model and
training method on the CoRL2017 dataset [8]. As discussed
in Section VIII-B, the vehicle-traffic light interaction has not
been properly studied. In future work, we will evaluate our
approach on CARLA100 dataset [1], where the elements of
the driving environment play an active role.

IX. CONCLUSION

We propose a training algorithm and a self-driving model
based on TVA. We showed that (i) Priority sampling reduced
the error of the control signals in three networks: CIL [8],
CILRS [1], and Kim et al. [13]. (ii) Training with priority
sampling is uniform throughout the database and improves
the generalization of the model. (iii) The spatial attention
maps of our model help to understand the vehicle behavior.
However, our proposal has a spatial bias which could affect
the performance when changing the environment. (iv) Our
model built disentangled features with low similarity (cosine
distance) and the feature attention map has low activation
dependence. However, few disentangled features have high
similarities, which introduces a bias in feature selection. On
the other hand, our self-driving model showed performance
improvements when compared to the three networks studied.
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