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Abstract—The ionizing radiation that propagates through the
human body at Computed Tomography (CT) exams is known
to be carcinogenic. For this reason, the development of methods
for image reconstruction that operate with reduced radiation
doses is essential. If we reduce the electrical current in the
electrically powered X-ray tubes of CT scanners, the amount of
radiation that passes through the human body during a CT exam
is reduced. However, significant image noise emerges in the recon-
structed CT slices if standard reconstruction methods are applied.
To estimate routine-dose CT images from low-dose CT images
and thus reduce noise, the Conditional Generative Adversarial
Network (cGAN) was recently proposed in the literature. In this
work, we introduce the Gated Recurrent Conditional Generative
Adversarial Network (GRC-GAN) that is based on the usage of
network gates to learn the specific regions of the input image
to be updated using the cGAN denoising operation. Moreover,
the GRC-GAN is executed recurrently in multiple time steps. At
each time step, different parts of the input image are denoised.
As a result, our GRC-GAN better focus on the denoise criterium
than the regular cGAN in the LoDoPaB-CT benchmark.

I. INTRODUCTION

X-ray Computed Tomography (CT) is a key medical imag-
ing technology. Chest CT, for instance, is currently playing
a decisive role in the detection of COVID-19 [1]. However,
the ionizing radiation to which CT examinations expose the
patients are associated with severe health risks in the long
term [2]. This scenario is even more dramatic for patients with
health conditions that require recurrent CT scans [3], [4].

Low-Dose CT (LDCT) scans can be produced by reducing
the electrical current of the X-ray tube. However, severe
noise arises in the images generated from LDCT scans if
conventional reconstruction methods are used. To eliminate
the noise from the LDCT reconstructions and to preserve the
structural information of the tissues, several Deep Learning
methods have been proposed in the literature [5], [6]. Such
approaches guide the future of medical imaging since the US
Food & Drugs Administration (FDA) recently approved six
algorithms based on Deep Learning for improving different
imaging modalities [7]: the Deep Learning Image Reconstruc-

tion (GE Medical Systems, LLC.), the Advanced Intelligent
Clear-IQ Engine (Canon Medical Systems Corporation), the
SubtleMR (Subtle Medical, Inc.), the AI-Rad Companion -
Pulmonary (Siemens Medical Solutions USA, Inc.), the AI-
Rad Companion - Cardiovascular (Siemens Medical Solutions
USA, Inc.), and the SubtlePET (Subtle Medical, Inc.).

The Conditional Generative Adversarial Networks (cGANs)
are one of the most suited architectures for recovery of LDCT
images [8]. In this work, we propose the Gated Recurrent
Conditional Generative Adversarial Network (GRC-GAN),
which incorporates concepts of Convolutional Gated Recurrent
Unit (ConvGRU) [9] to improve the prediction performance
of regular cGAN. While previously proposed recurrent GAN
architectures are designed to learn spatio-temporal dependen-
cies within a 3D volume [10]–[12], we apply recurrent calls
of a cGAN followed by convolutional gates that learn which
parts of the current solution should be suppressed or preserved
in the next GRC-GAN iteration.

The main contributions of this paper are: (i) we show
how to use recurrent networks driven by gates for updating
partial solutions within an image denoising problem; (ii) we
show an indication that new gated recurrent architectures have
the potential to outperform many encoder-decoder networks
previously proposed in the literature for image denoise since
this new model can change its focus at each iteration; (iii) we
present a method that improves the noise reduction obtained
by the cGAN [8] at the low-dose CT problem by more than
35% in terms of the Normalized Root Mean Squared Error
(NRMSE) measure; and (iv) our GRC-GAN, in contrast to
the cGAN, follows the recent theory of eXplainable Artificial
Intelligence (XAI) [13] since - by monitoring the 2D signals
at the gates - it can be observed that different parts of the input
image are the focus of the denoise operation at each time step.



II. BACKGROUND

A. Conditional Generative Adversarial Networks (cGANs)

The GAN architecture [14] is based on the interaction of
two neural networks: a Generator (G) and a Discriminator (D).
While G is trained to generate new data distributions, D is
trained to predict whereas a given input data is (i) a sample
from the real-world or (ii) a simulation from G. Both G and
D are then trained to compete to each other. At the end of
this process, it is expected that G generates outputs almost
indistinguishable from real samples. Mathematically, the GAN
training stage is defined by the following minimax problem in
terms of the value function V (D,G):

min
G

max
D

V (D,G) =

E [log D(y)] + E [log (1−D(G(z)))] ,
(1)

where E(Z) is the expected value for the random variable Z,
z is an input noise, and y is a real sample, D(k) → 1 if the
signal k comes from a real data distribution, and D(k) → 0
if k is a simulated signal.

The Conditional GAN (cGAN) [15], is a GAN extension
where both generator (G) and discriminator (D) are condi-
tioned on prior information x. In this case, the cGAN training
stage is extended as:

min
G

max
D

V (D,G) =

E [log D(y|x)] + E [log (1−D(G(z|x)))] ,
(2)

Fig. 1 illustrates the cGAN architecture proposed in [8] for
noise reduction of LDCT images. In such approach, x is the
LDCT image associated to the normal dose CT image y, and
z|x→ x.

Fig. 1. The cGAN architecture for noise reduction of LDCT images [8]: G
is trained to estimate a normal dose reconstruction ỹ from the LDCT image
x given as input, and D is trained to distinguish whereas a given input is a
real sample y or an estimation ỹ.

B. Convolutional Gated Recurrent Unit (ConvGRU)

Initially proposed for processing sequential data, the GRU
[16] is a gated recurrent architecture where (i) a hidden state
ht is propagated through the network execution along t time
steps to hold information about the t− 1 previous executions,
and (ii) gates control whether the previous hidden state should
be updated or ignored during the current computation.

From the original GRU, the convolutional GRU (ConvGRU)
[9] was developed to handle 2D images. In this work, we use
a simplified ConvGRU (illustrated in Fig. 2) where ht is the
GRU output xt itself. Furthermore, R : Rm×n×s → Rm×n,
U : Rm×n×s → Rm×n, and O : Rm×n×s → Rm×n×s are
convolutional neural networks that represent the reset/forget,
update, and output gates, respectively.

In such architecture, the reset/forget gate defines how much
of the information carried from all previous time steps should
be forgotten. On the other hand, the update gate controls how
much of the past information should be passed to future stages.
Finally, the output gate introduces new information to the
solution based on the parts of the input data defined as relevant
by the reset/forget gate.

Fig. 2. The ConvGRU architecture used in this work: the hidden state ht is
equal to the output x̃t. Furthermore, R, U , and O are the reset, update, and
output gates, respectively.

Mathematically, the output x̃t in this ConvGRU architecture
is computed as follows:

x̃t = O(R(x̃t−1) · x̃t−1) · U(x̃t−1) + (1− U(x̃t−1)) · x̃t−1

(3)

III. RELATED WORKS

The works previously published in the state-of-the-art that
are closely related to our research are divided into two main
categories: (i) methods for recovering LDCT image recon-
structions using GANs; and (ii) new recurrent architectures
based on GANs. Starting from the regular cGAN architecture
for LDCT [8], different solutions were proposed by changing
the loss function [17], using a more complex Generator
network G [18], and even including a third network into the
architecture to estimate image sharpness [19]. Nevertheless,
there is no recurrent GAN previously published in the lit-
erature to recover LDCT reconstructions to the best of our
knowledge.

Despite being extensively used for learning spatio-temporal
dependencies from sequential data [10], [11], recurrent meth-
ods can also embed the structure of traditional iterative al-
gorithms. This way, Qin et al. [20] and Mardani et al. [21]
proposed recurrent methods based on multiple iterations of
GANs for artifact suppression in Magnetic Resonance (MR)
imaging. However, our GRC-GAN differs from [20], [21] due
to the use of update and reset gates that drive the cGAN



execution at each iteration t considering the computation of
the previous t− 1 time steps.

IV. PROPOSED METHOD

The main idea behind our Gated Recurrent Conditional
Generative Adversarial Network (GRC-GAN) relies on the
usage of network gates to drive recurrent executions of the
cGAN for image denoising. More precisely, we define the
expected behavior of such gates in Hypothesis 1:

Hypothesis 1. considering the reset/forget, update, and out-
put gates from the regular ConvGRU, we hypothesize that:

(a) the reset/forget gate can learn the location of the noise
within a 2D input xt−1, and subsequently attenuate the
noise in those regions;

(b) the update gate is able to learn the regions of the
solution computed by the output gate that are more
accurate than the input xt−1. Therefore, by constraining
the focus of the output gate to a smaller area, its
precision increases.

The recurrence strategy to design the GRC-GAN does
not involve learning spatio-temporal correlations within 3D
reconstruction volumes. Instead, successive executions of the
GRC-GAN over 2D slices individually intend to denoise image
regions not recovered by the network on earlier executions.
This idea guides our second hypothesis about the GRC-GAN:

Hypothesis 2. the noise that remains after the first execution
of the cGAN for image denoising can be solved by recur-
rent calls to the same model. At each execution, both the
reset/forget and update gates are able to guide the processing
into different features of the input data.

Our proposed architecture is illustrated in Fig. 3. From
the regular cGAN architecture, the GRC-GAN is obtained by
replacing the cGAN generator (G) with a ConvGRU with G
as its output gate. During the training stage, the weights of the
networks R, U, G, and D are simultaneously updated according
to:

min
R,G,U

max
D

V (R,U,G,D) =

E [log D(y|x̃T )] + E [log (1−D(x̃T )] ,
(4)

where x̃T is the ConvGRU output defined in Equation (3) for
T time steps, and x0 is the LDCT image x.

V. EXPERIMENTS

A. Database

The LoDoPaB-CT dataset [22] is composed of more than
40,000 CT scan slices of ∼ 800 patients selected from the
LIDC/IDRI database [23]. In the LoDoPaB-CT dataset, the
radiation dose attenuation is simulated by introducing Poisson
noise into the projection data. Thus, low-dose and normal-dose
reconstructions are obtained for each scan. All samples from
the dataset were reconstructed using the regular Filtered Back-
Projection (FBP) [24]. Fig. 4 shows examples of low-dose and
normal-dose reconstructions for two scans.

Moreover, in favor of research reproducibility and compa-
rability among solutions, the LoDoPaB benchmark is already
divided into different subsets for training (35,820 images),
validation (3,522 images), and testing (3,553 images).

B. Network Parameters

Our proposed GRC-GAN was built using the G and D
networks from the cGAN described in [8], and the R and
U as elementary networks composed of only three convolu-
tional layers. The complete description of those networks are
presented in the Tables I to III.

In the training stage, we used the Adam optimization algo-
rithm to solve Equation (4) with learning rates αG = 2×10−4

for the network G and αD = 10−4 for the network D, and
number of GRC-GAN recurrences r = 2.

TABLE I
THE ARCHITECTURE OF THE NETWORKS R AND U IS COMPOSED OF

THREE CONVOLUTIONAL BLOCKS STACKED.

Block Layer Kernel Act. Function Output Size

1
Conv 2D 3x3

LeakyReLU 362x362x32
BatchNorm 2D

2
Conv 2D 3x3

LeakyReLU 362x362x32
BatchNorm 2D

3 Conv 2D 3x3 Sigmoid 362x362x1

TABLE II
ARCHITECTURE OF THE NETWORK G USED IN THIS WORK. THIS IS THE
GENERATOR NETWORK USED IN THE CGAN OF WOLTERINK et al. [8].

Block Layer Kernel Act. Function Output Size

1
Conv 2D 3x3

LeakyReLU 362x362x32
BatchNorm 2D

2
Conv 2D 3x3

LeakyReLU 362x362x32
BatchNorm 2D

3
Conv 2D 3x3

LeakyReLU 362x362x32
BatchNorm 2D

4
Conv 2D 3x3

LeakyReLU 362x362x32
BatchNorm 2D

5
Conv 2D 3x3

LeakyReLU 362x362x64
BatchNorm 2D

6
Conv 2D 3x3

LeakyReLU 362x362x128
BatchNorm 2D

7 Conv 2D 3x3 Tanh 362x362x1

C. Evaluation metrics

We used three metrics to quantify the accuracy of the
predicted normal-dose CT image ỹ concerning the real image
y, and they are: the Normalized Root Mean Squared Error
(NRMSE), Peak-to-Signal Noise Ratio (PSNR), and Structural
Similarity Index Measure (SSIM):

• The Normalized Root Mean Squared Error (NRMSE)
quantifies the dissimilarity between two signals based on
their subtraction. More precisely, it normalizes the square



Fig. 3. The architecture of the proposed GRC-GAN: from the regular cGAN [8], the GRC-GAN is obtained by replacing the network G with the ConvGRU
that has G as output gate. The ConvGRU output xt is iterated for a fixed number of time steps. The current solution is updated by R, U, and G at each step.

Low dose CT Normal dose CT

Fig. 4. Samples of low-dose (left) and normal-dose (right) chest CT
scans from the LoDoPaB-CT dataset used in this work. Both samples were
reconstructed with the regular Filtered Back-Projection (FBP) technique.

TABLE III
ARCHITECTURE OF THE NETWORK D USED IN THIS WORK. THIS IS THE

DISCRIMINATOR NETWORK USED IN THE CGAN OF WOLTERINK et al. [8].

Block Layer Kernel Act. Function Output Size

1

Conv 2D 3x3
LeakyReLU

178x178x128

BatchNorm 2D
Conv 2D 3x3

LeakyReLU
BatchNorm 2D

Conv 2D 3x3
LeakyReLU

BatchNorm 2D

2

Conv 2D 3x3
LeakyReLU

86x86x64

BatchNorm 2D
Conv 2D 3x3

LeakyReLU
BatchNorm 2D

Conv 2D 3x3
LeakyReLU

BatchNorm 2D

3

Conv 2D 3x3
LeakyReLU

40x40x1
BatchNorm 2D

Conv 2D 3x3
LeakyReLU

BatchNorm 2D
Conv 2D 3x3

4 FullyConnected 256

5 FullyConnected Sigmoid 1

root of the average of the squared errors between the
signals ỹ and y:

NRMSE(ỹ, y) =

√
1
N

∑N
i=1(ỹi − yi)2

ymax − ymin
(5)

where N is the dimension of both ỹ and y.
• The Peak-to-Signal Noise Ratio (PSNR) measures the

signal fidelity with respect to corrupting noise. It com-
putes the ratio between the highest possible signal power
and the average power of the error:

PSNR(ỹ, y) = 10 · log10

(
MAX2

y

1
N

∑N
i=1(ỹi − yi)2

)
(6)

where MAXy is the maximum possible value of the
signal y.

• The Structural Similarity Index Measure (SSIM) [25]
performs quality assessment based on the degradation of
structural information. More precisely, the SSIM index
combines the evaluation between ỹ and y in relation to
luminance (l), contrast (c), and structure (s):

SSIM(ỹ, y) = [l(ỹ, y)α · c(ỹ, y)β · s(ỹ, y)γ ]

l(ỹ, y) =
2µỹµy + c1
µ2
ỹ + µ2

y + c1

c(ỹ, y) =
2σỹσy + c1
σ2
ỹ + σ2

y + c2

s(ỹ, y) =
σỹy + c3
σỹσy + c3

(7)

where µ represents the average of the signal ỹ or y,
and σ2 its variance. Furthermore, σỹy is the co-variance,
and c1, c2, and c3 are variables that work to stabilize the
division with weak denominator. Finally, α, β, and γ are
weights usually set as 1.

D. Results and Discussion

From the trained GRC-GAN, we extracted the signals R(x0)
and U(x0) computed for a given input data x0 in order to



evaluate Hypothesis 1 about the role of each gate to compose
the final solution. Fig. 5 shows the input image x0 in (a),
the position of the greatest errors in x0, i.e., {||x0 − y|| >
ε1|P (||x0− y|| > ε1) = 0.15} in (b), the pixels most likely to
be forgotten according to the reset/forget gate, i.e., {R(x0) <
ε2|P (R(x0) < ε2) = 0.15} in (c), and pixels most likely
to be updated according to the update gate, i.e. {U(x0) >
ε3|P (U(x0) > ε3) = 0.15} in (d).

x0 ||x0 − y|| > ε1

(a) (b)
R(x0) < ε2 U(x0) > ε3

(c) (d)
Fig. 5. Signals that illustrates the cGAN execution according to our Hypothe-
sis 1 defined in section IV: an input low-dose reconstruction x0 (a), the pixels
of x0 with the most significant noise with respect to its ground truth y (b),
the pixels indicated by R(x0) to be mostly forgotten in the current time step
(c), and the pixels indicated by U(x0) to be primarily updated in the current
time step (d).

We can see that the pixels with the highest noise levels
in x0 are the most indicated to be forgotten by R(x0) and
updated by U(x0). The gates output is not discrete, but we
show them this way to help our visualization. Those results
compose evidence in favor of our first hypothesis presented in
section IV.

In order to evaluate Hypothesis 2 about the effect of
recurrent calls of the network for different denoising regions
of the image, Fig. 6 highlights the pixels with higher noise at
(a) the input image x0, (b) the partial solution after the first
iteration, and (c) the final solution after the second iteration.
The proposed model reduces the noise that remained after the
first denoise iteration in the second iteration. Thus, we also
have strong evidence on the validation of our Hypothesis 2.

In relation to the final reconstructions of the GRC-GAN
versus the regular cGAN, Fig. 7 shows two samples of low-
dose CT slices recovered by each method. We also show the

||x0 − y|| > ε1 ||x1 − y|| > ε1

(a) (b)
||x2 − y|| > ε1

(c)
Fig. 6. Error maps that support our Hypothesis 2 defined in the section IV:
the noise level in the input image (a) is highly decreased during the first
network iteration (b). Furthermore, much of the noise that remains after the
first iteration is reduced during the second denoise iteration (c).

regular FBP reconstruction (input) and the ground truth.
The error maps of each reconstruction shown previously are

highlighted in Fig. 8. In order to help the human visualization,
each error map in Fig. 8 was processed by the intensity
transform s = ||1 − r0.35||, where gray values of the input
and output pixels are represented by r and s, respectively.
Notice that such transform also inverted the gray values. Thus,
higher pixel values are darker. The error maps of the cGAN
reconstructions have areas much lighter than in the FBP error
maps, and this represents a clear denoise of the cGAN in
relation to the FBP input. However, the GRC-GAN error maps
are even lighter than the ones from the cGAN, indicating a
much higher denoise capacity of our proposed method.

Finally, we present the mean and standard deviation of
SSIM, PSNR, and NRMSE in Table IV for all the methods
evaluated over the test set comprising 3,553 CT slices. Those
results indicate an average improvement on the denoise accu-
racy produced by the GRC-GAN concerning the regular cGAN
of 17% and 36% when measured by PSNR and NRMSE,
respectively. Not surprising, there was no significant difference
in SSIM since the low-dose degradation observed in the
LoDoPaB-CT dataset does not involve the presence of artifacts
deforming the structural shape of the human internal tissues.

VI. CONCLUSION

In this paper, we described a new network architecture for
image denoise: the GRC-GAN. Inspired by the success of the
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Fig. 7. Two samples of the regular FBP reconstruction from low-dose CT
projections, the solutions obtained by the cGAN, our proposed GRC-GAN,
and the ground truth.

TABLE IV
AVERAGE AND STANDARD DEVIATION OF IMAGE QUALITY METRICS FOR

ALL THE METHODS EVALUATED OVER THE LODOPAB-CT TEST SET.

Method SSIM PSNR NRMSE
FBP 0.7949 (0.091) 24.2 (3.7) 0.21 (0.107)

cGAN 0.8804 (0.09) 25.8 (3.2) 0.17 (0.057)
GRC-GAN 0.8871 (0.094) 30.2 (3.9) 0.11 (0.069)

original cGAN, we designed a recurrent cGAN that includes a
reset/forget and an update gate to drive the model’s attention
during sequential executions for image denoising.

We conducted experiments using the LoDoPaB-CT dataset
[22]. It is composed of more than 40,000 CT scanning slices of
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Fig. 8. Error maps of the reconstructions showed in Fig. 7 enhanced by
s = ||1− r0.35|| to help human visualization. In such intensity transform, r
is the gray value of the input pixel, and s its respective output. Such intensity
transform also inverted the gray values to improve visualization. Thus, higher
gray values are darker. We can see that the error maps produced by the GRC-
GAN are much lighter than the ones produced by the cGAN. This indicates a
much higher denoise accuracy of the proposed GRC-GAN in relation to the
regular cGAN.

the human chest from 800 patients. Then, CT measurements
of low photon count were created from the original X-ray
projections with a parallel beam scan geometry. As a result,
the LoDoPaB-CT is a standard dataset to train and benchmark
learned low-dose CT reconstruction methods. According to
our experimental analysis, the network gates can detect the
regions of higher noise in the input image and then direct
the network effort to update these regions first. Moreover, the
recurrent executions showed themselves efficiently to improve
the denoise accuracy obtained in previous steps. Finally, the
average NRMSE of the reconstructions denoised by GRC-
GAN is 36% lower than those denoised by the cGAN, and
the average PSNR is 17% greater.

The results indicate that new gated recurrent architectures
may overcome many encoder-decoder networks currently used
in the state-of-the-art for image denoise. Moreover, our gated
model is part of a new generation of explainable artificial
intelligence since it can indicate its attention regions at each
time step.
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