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Abstract—We propose a novel gating mechanism applied
to Semantic Graph Convolutions for 3D applications, named
Semantic Graph Attention. Semantic Graph Convolutions learn
to capture semantic information such as local and global node
relationships, not explicitly represented in graphs. We improve
their performance by proposing an attention block to explore
channel-wise inter-dependencies. The proposed method performs
the unprojection of the 2D points (image) onto their 3D version.
We use it to estimate 3d human pose from 2D images. Both 2D
and 3D human poses can be represented as structured graphs,
exploring their particularities in this context. The attention layer
improves the accuracy of skeleton estimation using 58% fewer
parameters than state-of-the-art.

I. INTRODUCTION

Convolutional Neural Networks achieve the state of the art
results in regular-structured problems. However, many data
structures such as 3D Meshes and human skeletons can only
be represented by irregular structures (graphs) where CNNs
have limited applications. To tackle the limitations of common
CNNs, Graph Convolutional Networks (GCN) [1]–[3] have
been recently proposed. However, it still has some issues when
inferring the 3D position of points from their projected 2D
version—the conventional GCNs process nodes with arbitrary
topologies. The learned kernel is shared for all edges. It
only considers the first-order neighbors of each node (local
operation). Hence, the global structure of the graph is not
completely exploited [3].

Semantic Graph Convolutions (SGC) network [3] learns
the semantic information encoded in a given graph. It learns
channel-wise weights for the edges and combines them with
kernel matrices, improving the power of graph convolutions.
It tackles the limitation of the original GCN, allowing the
unprojection from a 2D skeleton to a 3D one. However, it
still has some limitations; for example, it does not consider
features and channel-wise inter-dependencies.

In this paper, we propose a novel gating mechanism ap-
plied to SGCs named Semantic Graph Attention (SGAT). We
enhance the analysis of global correlation, which is crucial for
understanding human actions [4]. Our new layer can learn both
channel-wise weights for edges, combine them with kernel
matrices, and features inter-dependencies over channels. This
work also proposes a novel neural network architecture used
for 3D pose estimation from 2D joints. The main feature of
this approach is our attention layer combined with Semantic
Graph Convolutions.

Given a 2D human pose as input, we predict the locations
of its corresponding 3D joints in a 3D coordinate space.
The proposed method achieves state-of-the-art performance
for predicting a 3D human pose from their 2D skeleton (12%
better than the previous works). Furthermore, it has 58% fewer
parameters than the original SGC model. We evaluated our
approach in the following three datasets: Human 3.6M [5],
COCO [6] and MPI-INF-3DHP [7].

This approach can be used as a part of a 3D real-time pose
estimation tool, useful for human animation. Since this method
uses as input only 2D keypoints, captured from an RGB video
using ordinary cameras, and it also demands fewer parameters
than other known methods, it can be implemented in ordinary
devices. In summary, our main contributions are:
• A novel attention layer for semantic graph convolutions

based on a simple but effective gating mechanism;
• A novel lightweight architecture for 3D human pose

estimation based SGCs with performance enhanced by
our attention layer.

II. RELATED WORK

A. Graph Neural Networks

Graph Neural Networks (GNN) is a framework to un-
derstand and explore graph structure relationships [8]–[10].
In GNNs, the node representation vector is computed by
aggregating and transforming the data representation of its
neighbors. As an evolution, Graph Convolutional Networks
(GCNs) [1], [2] where introduced to deal with spectral and
spatial problems. But, they also have limitations, such as
the kernel of an operation is shared by all nodes. Zhao et
al. [3] propose the so-called Semantic Graph Convolutional
Networks (SemGCN) that captures the global and semantic
information of nodes relationships. On the other hand, it
aims to approximate convolutions by learning a channel-
wise weighting vector, and each spatial kernel has a shared
transformation matrix. Moreover, it does not consider inter-
dependencies between channels.

Veličković et al. [11] present the Graph Attention Net-
works which operate on graph-structured data. They use self-
attentional methods by stacking layers, implicitly enabling
different weights to different nodes in a neighborhood. In this
work, we additionally aim to learn independent weights for
the edges.



Fig. 1: Our proof of concept model for 3D human pose estimation and computer animation. Here we capture 2D keypoints
e interactively regress them to a 3D domain. After we generate 3D motion files and 3D animations in an Open Source 3D
creation suite. Also, the quality of the 3D pose output highly depends on the 2D inputs.

Considering traditional convolutional neural networks, sev-
eral papers aim to model global context for feature extraction.
An example is Squeeze-and-Excitation (SE) networks [12] that
analyzes channel-wise feature responses by explicitly model-
ing inter-dependencies between channels. This approach can
be remodeled and adapted to other neural network techniques.
Another example is Global Context Networks [13] that adapt
the SE block, in convolutional neural networks, for global-
context modeling.

Our formulation surpasses previous works by reducing
the reprojection error, drastically reducing the computational
complexity, and the quantity of parameters (Section 5).

Fig. 2: Our model for the neural network to estimate the 3D
keypoints. Note that we have here 2 internal blocks that uses
semantic graph structures followed by an attention block. Also,
at the end of each internal block we also have a residual
operation.

B. Pose Estimation and Motion Capture

Wei et al. [14] introduced the Convolutional Pose Machines
(CPMs) that combines the advantages of convolutional neural
networks with pose machines. CPMs consist of a sequence
of convolutional layers that repeatedly produce 2D confidence
maps for the location of each body part. We use a CPM in
our experiments to generate a 2D skeleton, the input for our
3D model.

Following the success of 2D pose estimation models, several
papers propose an end-to-end model to predict the 3D human
pose given in-the-wild images. One with the best accuracy
results was obtained by Wang et al. [15]. They present
a 3D Human Pose Machine with self-supervised learning,
where they developed a multi-stage system composed of three
neural network models involving two dual learning tasks.
They generate transformations for 2D-to-3D pose and 3D-
to-2D pose projection. The 2D-to-3D pose model regresses

intermediate 3D poses by transforming the pose representation
from the 2D domain to the 3D, receiving the features extracted
by a 2D pose machine as input. In contrast, the 3D-to-
2D pose projection contributes to refine the intermediate 3D
poses. However, their approach looks pretty costly, consider-
ing computational resources, even in a high-end GPU. Our
approach only focuses on efficiently predict 3D poses, not
using sophisticated frameworks as in this approach.

Mehta et al. [16] present the first real-time method to
capture the 3D pose in a stable, temporally consistent manner
using a single RGB camera, named VNect. Their formulation
uses real-time regression for 2D to 3D projection and creates
a kinematic skeleton fitting method for coherent kinematic
analysis. XNect [17] is an evolution of this work that also
predicts the 3D pose of Humans and even infer the bones
rotations. They present a real-time approach for multi-person
3D motion capture at over 30 fps. They both present com-
plex frameworks to generate 3D poses and motion capture
information. Our model focuses on a lightweight approach to
generate 3D poses from 2D data, which is similar to stage
2 from XNect, but surpasses its results considering the error
metric of this stage.

In a different approach, Martinez et al. [18] propose a
simple feed-forward neural network that receives the 2D joint
locations and predicts 3D positions. They “lift” the ground-
truth 2D joint locations to 3D space. However, this also has
limitations, such as it does not maintain the bone proportion
for all bodies. Zhao et al. [3] has expanded this work by
using Semantic Graph Convolutions. Their architecture can
also be extended to use attention modules. Our approach
minimizes the reprojection error and network complexity using
the attention layer, a way to model inter-dependencies in
Semantic Graph Convolutions. Furthermore, we use bone
vector constraints and joints measures in the loss function to
reduce the reprojection error.

Kocabas et al. [19] propose the Video Inference for Body
Pose and Shape Estimation (VIBE), which predicts the param-
eters of SMPL body model [20] for each frame of a video. It is
a sophisticated adversarial learning framework to discriminate
between real human motions and the results produced by
temporal pose and shape regression networks.

In contrast with these previous works, we present a
lightweight framework for computer animation using 3D
human pose estimation. For this purpose, our model does



not need any specialized hardware or even high-end GPU
configurations. Furthermore, our model only predicts the 3D
keypoints location, leaving the rotation information for future
work.

III. GRAPH CONVOLUTION

In this section, we present the main aspects of our new
attention model for Graph Convolutional Neural Networks
called Semantic Graph Attention. The primary motivation is
to create a new network model that learns both channel-wise
weights for edges and channel inter-dependencies. The edges
are combined with kernel matrices allowing an understanding
of the global channel inter-dependencies without non-local
layers.

A. Graph Convolutional Networks

Following principles of regular Convolution Neural Net-
works, a Graph Convolution Network can be considered a way
to deal with arbitrary graph structures [1], [2], [21]. This is
highly related to our approach to analyze human pose as a
structured graph.

Convolutional Graph Networks (GCNs) share the filter
parameters in the graph. The GCNs training stage consists
in learning structures capable of processing graph information
from the node matrix X ∈ RN×D (N nodes containing D
features) and the adjacency matrix A ∈ R‖N‖×‖N‖ [1], [2].

Each layer is a non-linear function as follows:

H(l+1) = f(H l,A), (1)

where H is the output of each layer and H0 = X . Rewriting
this equation, we have:

f(H l,A) = σ(AH lW l), (2)

where σ represents the ReLU activation function and W the
weight matrix of the network layer. There are some limitations
to this approach because the multiplication by the matrix A
would only consider features from the neighborhood, but not
from the node itself. This problem is addressed by adding the
identity matrix to A (A′ = A+ I).

Furthermore, A′ should be an unitary matrix to do not scale
the vector of features. We reach it by normalizing A′ rows
using the Normalized Laplacian Matrix D−1/2AD−1/2, where
D−1 is the inverse of the diagonal matrix with the degree
of the graph nodes. We add these concepts to equation 2 as
follows:

f(H l,A) = σ(D
′−1/2A

′
D

′−1/2H lW l). (3)

There are two clear disadvantages to make the graph convo-
lution considering a regression to work on nodes with arbitrary
topologies. The first one is the kernel matrix W is shared by all
the edges. As a result, the relationships of neighboring nodes,
i.e. internal structure, are not well explored. This is also a
limiting factor because the receptive field is fixed with ones
[3], the second disadvantage.

A CNN with a convolution kernel of size k × k learns k2

different transformation matrices. The transformation matrices

decode features within the kernel spatial dimension. This
formulation can be approximated by learning a vector of
weights ~ai for each position of a pixel in an image or a graph
node, and then combining them with a shared transformation
matrix W [3].

We can transform an image to a graph by considering the
pixels as nodes, and two neighbor pixels being connected
by an edge (8-connect neighborhood). So, a kernel size k

affects all pixels distant less than d =
k − 1

2
. We can extend

this approach for GCNs by considering that a convolution
in a graph using a kernel of size d affects all nodes in a
neighborhood of size d [3].

GCNs cannot handle directly with regression problems due
the issue that convolution filter shares the same weight matrix
for all edges. Furthermore, the filters just operate in a one step
neighborhood. As a solution, Zhao et al. [3] propose to add the
weight matrix M to the graph convolution process described
by:

f(H l,A) = σ(φ(A′ �M)H lW l), (4)

where the matrix M is a parameter to be learned on the
network and φ is a softmax function that normalizes the entries
of each node, � is an element-wise multiplication (Hadamard)
that returns mij if aij = 1 or negative values with large
exponents after the softmax. In this approach, A works like
a mask that forces this to the i node in the graph and σ is
a ReLU activation. Also as proposed by Zhao et al. [3], this
formulation can be extended to consider multiple channels as
in traditional convolutions. In our experiments, we use PreLU
instead of ReLU activation because it shows a performance
improvement.

Fig. 3: An example of our 3D human pose aproach to generate
animations with a single RGB camera. The 2D data is captured
with a 2D pose network and after processed by the 3D neural
network.At a final stage, we use the captured data in a 3D
animation suite.

B. Attention block for SGC

This section presents our first contribution: we propose a
method to enhance the runtime and reduce the complexity of
Semantic Graph Convolution Networks called Semantic Graph
Attention. The intuition here is to allow the neural network
to perform feature recalibration, i.e., emphasize more relevant



features and suppress less meaningful information. In other
words, to give weights to the features over channels of SCGs,
in a similar way to the SE-NET [12]. This also can be related
to Global Context Networks [13] when applying attention to
graph networks. We aim to solve precision and computational
complexity issues, considering both space storage and time
complexity, from previous related works.

Considering the computation of features for each node,
the idea of adding weights via element-wise multiplication is
natural. We intend to identify inter-dependencies between node
features. For this purpose, we propose the following gating
mechanism for each channel after a regular SGC:

g = A′ � φ(M1)W
l
1H

l, (5)

where g is composed by a softmax φ function over the entries
of Matrix M1. This hidden layer performs a dimensionality
reduction that reduces drastically the input space by a factor
r, where the kernel size of W l

1 ∈ R
C
r ×C . The intuition

behind this layer is similar to Principal Components Analysis.
We perform a dimensionality reduction to a space that better
represents the data given a new basis. Consider that our
Graph Neural Network has input data contained in a 2D
space. The neural network project the data into a frequency
space in the first layer, as in a Fourier Transform. The first
block of our attention module evaluates features in frequency
space. It forces this neural network stage to consider the most
relevant ones as in an orthogonal transformation. In a gating
mechanism, the next block will use the data representation in
this new space, expanding the data to the original size and
given weights to the features as follows:

s(g) = α(A′ � φ(M2)σ1(g)W
l
2), (6)

where kernels W l
2 ∈ RC×C

r , σ represent a PRelu function,
α represents a sigmoid activation, C represents the number
of features and r is defined empirically. In our experiments,
we use a value r = 16, similarly to Hu et. al. [12]. With
the output of function s(g) for each channel, we perform an
element-wise multiplication operation to give weights to the
input data:

H l+1 = H l ◦ s(g). (7)

At the final process, the channels are also concatenated.
Such a gating operation allows us to consider more relevant
features after each convolution operation, and thus refine our
regression process for the following pose estimation case.

As we will see in our experiments, this formulation en-
hanced our neural network’s overall performance and drasti-
cally reduced its complexity.

IV. 3D POSE ESTIMATION FRAMEWORK

As a second contribution, we propose a 3D human pose
estimation framework. The method presented in the previous
section takes as input a 2D human skeleton. We can use any
method to calculate these 2D joints from a single RGB image.

It is noteworthy that we do not consider temporal coherence
and rotation issue.

Each module is independent in our architecture in terms of
video processing, inference of captured skeletons, information
transmission, and 3D animation. Since all models are decou-
pled, we can use different 2D pose networks to extract the
2D keypoints. The user can choose the best model for the
respective application. Figure 1 illustrates the elements of our
framework.

The framework starts by calculating the 2D keypoints for
each person in a given image using a 2D neural network. Our
3D model only needs the 2D keypoints as input. It makes our
architecture flexible and not dependent on a specific 2D pose
model to generate keypoints.

Afterward, our neural network exploits the power of the
semantic graph convolution with a gating mechanism. Our
model has an input layer with an SGC followed by batch
normalization and a PRelu activation. The building blocks of
our network’s internal layers are composed of two SGC layers,
also followed by batch normalization and PRelu activation.
The output of the second SGC layer is used as the input for
our gating mechanism. This is repeated twice, and the blocks
also use residual connections. We consider 128 channels for 16
graph nodes in the internal layers, where each node represents
a human keypoint. The output layer comprises an SGC layer
with the 16 nodes and the 3D positions as output data. In the
next section, we will show validation of this architecture via an
ablation study. Figure 2 illustrates the design of our network
that still has a residual layer for refinement purposes. Our 3D
network model was trained over 100 epochs, using the Adam
optimizer with a learning rate of 1e−3, rate decay of 0.5, and
batches of size 64. We also use the Xavier normal function
to initialize the weights of each layer. Furthermore, we use a
function based on the Mean per joint position error [5], [22]
and its derivative [23] for our loss function as:

L(J) =
1

N

N∑
i=1

‖(f(Bj)−Bj)‖22 +
∥∥(f ′(Bj)−B′j)

∥∥2
2
, (8)

where f(B) are the 3D joints coordinates predicted by our
neural network, B are the corresponding ground-truth.

We built our framework aiming to be lightweight and
accessible. It does not need any specialized hardware or
high-end GPUs. Thus, it allows the creation of experiences
based on pose estimation in ordinary devices. Furthermore,
it is straightforward and customizable. As proof of concept,
we generate BVH files, which is a character animation file
format, with the captured data. The data can be used in
computer animation, where we export the captured information
to commercial and Open Source 3D animation suites, as we
can see in Figure 3.

V. EXPERIMENTAL RESULTS

A. Datasets

Following the standard protocol, we evaluated the proposed
method using the Human3.6M dataset for 3D human pose



Protocol Direct Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD Smoke Wait WalkD Walking WalkT Average
Martinez et al. ICCV’17 [18] 51.8 56.2 58.1 59 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Yang et al. CVPR’18 [24] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Mehta et al. SIGGRAPH’17 [16] 62.6 78.1 63.4 72.5 88.3 93.8 63.1 74.8 106.6 138.7 78.8 73.9 82.0 55.8 59.6 80.5
Hossain & Little ECCV’18 [25] 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3

Pavllo et al. CVPR’19 [23] 45.1 47.4 42.0 46.0 49.1 56.7 44.5 44.4 57.2 66.1 47.5 44.8 49.2 32.6 34.0 47.1
Dabra et al ECCV’18 [26] 44.8 50.4 44.7 49.0 52.9 43.5 45.5 63.1 87.3 51.7 61.4 48.5 37.6 52.2 41.9 52.1

Zhao et al CVPR’19 (SH) [3] 48.2 60.8 51.8 64.0 64.6 53.6 51.1 67.4 88.7 57.7 73.2 65.6 48.9 64.8 51.9 60.8
Zhao et al CVPR’19 (GT) [3] 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8

Our Model (SH) 43.45 49.16 51.18 50.51 63.56 62.54 43.31 45.50 70.12 87.78 56.58 49.04 53.15 40.96 46.01 54.19
Our Model (CPM) 52.3 62.8 60.4 62.14 87.73 79.76 58.33 60.44 85.42 88.64 69.82 64.69 66.67 52.92 55.19 69.5
Our Model (GT) 34.01 40.18 31.86 35.91 38.55 47.64 39.4 34.03 44.51 60.76 37.27 37.86 39.08 29.51 31.67 38.82

TABLE I: Results under Protocol 1 on Human3.6M (no rigid alignment in post-processing). We show the results of our model
(trained and tested with ground truth data(GT) and 2D predictions from a Convolutional Pose Machine (CPM) and a Stacked
Hourglass (SH). Note that, on average, our model surpasses the previous state-of-the-art approach considering GT and SH
predictions. The results of all approaches are obtained from the original papers.

estimation. This dataset is publicly available, containing more
than 3 million images and 3D data captured by a MoCap
system and the calculated 2D joints. The dataset includes data
from 7 people performing everyday activities such as walking,
eating, discussing, etc.

We adopt in our model evaluation the two metrics pro-
posed in the paper that originated the dataset Human3.6M
considering different approaches to split the data for training,
validation, and testing. The first protocol, called Mean Per
Joint Position Error (MPJPE), consider all four camera views
for all subjects. We used five subjects for training (1, 5, 6, 7,
and 8) and 2 for testing (9 and 11). Furthermore, we calculate
the error of the predictions and the ground-truth after aligning
them with the root joint in our experiments represented by the
pelvis keypoint. The second protocol is called Mean per-joint
position error after rigid alignment (P-MPJPE), which differs
from the first protocol only on the alignment. We used the
same division mentioned above for training, validation, and
testing.

Moreover, we utilize a rigid transformation to align the pre-
dictions with the ground-truth data. All errors were analyzed
in millimeters. We also use the COCO dataset [6], a state-
of-the-art dataset for 2D human pose estimation in the wild.
We use this dataset to generate 2D input for our method in a
qualitative evaluation.

In a second experiment, we use the MPI-INF-3DHP dataset.
It was built over a state-of-the-art markerless motion capture
system and provided ground truth 3D annotations for human
poses. This can be used as an alternative dataset to Human3.6,
where it offers an extensive range of human motions, in-
teractions with objects, and more varied camera viewpoints.
In addition to Human 3.6 and 2D pose neural networks, we
test our approach with this dataset to evaluate the accuracy
and generalizability of our learned model. We also use the
3D Percentage of Correct Keypoints (PCK) as an evaluation
metric. As proposed by Mehta et al. [7] , we pick a threshold
of 150mm for the error, corresponding to roughly half of the
head keypoint size.

B. 2D to 3D keypoints

Our method can be seen as an unprojection of 2D joint
locations to 3D positions. First, we train our network con-
sidering the ground truth for 2D and 3D joint positions

from the Human3.6M. However, for a fair evaluation of our
method, we also train our network with 2D predictions from a
Convolutional Pose Machine [14], and we also test a Stacked
HourGlass pre-trained with the MPII dataset [27]. It is natural
to say that our model depends on the quality of the output of
a 2D pose detector and achieves the best results when we use
as input the ground-truth 2D joint locations.

We use two pre-trained networks in the tests: a Stacked
HourGlass trained on the MPII dataset [28] and a CPM with
the COCO dataset [6]. The COCO dataset skeleton has a
different configuration for the human body structure, following
the order of keypoints compared with Human3.6M. We convert
the output dictionary of this model to the Human3.6M and
train our 3D network. We use the Stacked HourGlass [27]
to a fair experiment to evaluate the 3D output for Human3.6
since the original SCG [3] and Martinez et al. [18], also use
this architecture.

All 2D keypoints were previously generated in this process.
The COCO skeleton has 18 joints considering five joints in the
head. The Human3.6M skeleton consists of 16 joints, and we
define the spine joint as the root joint. To convert to Human
3.6M and create the spine point, we consider the midpoint
between the lheap and rheap of COCO, and we discoursed
the thorax joint.

Also, in a second approach, we train our network on MPI-
INF-3DHP pose dataset [7], and we compare the performance
of our approach with different network architectures. This
dataset is more complex considering poses, clothing, and
skeleton structure. We use these data to evaluate the robustness
and generalizability of our method.

C. Ablation Study and Network evaluation

We have also analyzed the impact of the chosen hyper-
parameters and architecture on the final result in testing.
We trained our network with different configurations and
compared it to the baseline for SGCs [3] and the baseline for
3D Pose Estimation [18]. We considered the error analysis for
protocol 1. In the first test, our models were trained for over
100 epochs under three configurations, as we can see in Table
III. We first evaluate different design choices on a separate
validation set for Human3.6, and then, we use the best option
to compare to SGC [3] and Martinez et al. [18] on a test set.
The first is a model with two internal blocks and 64 channels,



Protocol Direct Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD Smoke Wait WalkD Walking WalkT Average
Martinez et al. ICCV’17 [18] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 38.0 47.7

Yang et al. CVPR’18 [24] 26.9 30.9 36.3 39.9 43.9 47.4 28.8 29.4 36.9 58.4 41.5 30.5 29.5 42.5 32.2 37.7
Hossain & Little ECCV’18 [25] 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1

Pavllo et al. CVPR’19 [23] 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Dabra et al. ECCV’18 [26] 28.0 30.7 39.1 34.4 37.1 28.9 31.2 39.3 60.6 39.3 44.8 31.1 25.3 37.8 28.4 36.3

Our Model (2 blocks, 128 ch) 27.95 34.19 30.88 30.23 32.70 39.90 31.03 30.33 42.01 47.89 33.50 31.99 33.29 25.40 26.92 33.22

TABLE II: Results of protocol 2 on Human3.6M under rigid alignment in post-processing. Tests where performed considering
model trained with ground truth data. Note that in most cases, our model surpasses the previous works. The results of all
approaches are obtained from the original papers.

the second is our regular model with two inner blocks, and in
the third, we use a model with four internal blocks and 128
channels. Table III shows that with the second configuration,
our model performs better than the baseline algorithm from
Zhao et al. [3] and the other two configurations.

In the second test, we compare our model with the state-
of-art approaches in a test set, for 2D joints to 3D pose
regression, following two configurations: with and without the
attention layer. Table IV reports the result. Also, we analyze
the impact of using as input 2D prediction from a CPM.
We use a network configuration with attention layers and
two blocks, and 128 channels per layer. Table V shows the
quality of 3D predictions highly depends on the input since
the error increases when we use a pre-trained CPM in the
COCO dataset. We compare our technique with 2 state-of-the-
art frameworks for 3D pose and shape estimation: XNect [17]
and VIBE [19]. These projects have a different research target
than ours. Still, we decided to compare our method due to
evaluation completeness as we can see our model surpass their
results when considering the ground truth for the Human3.6
dataset. However, as said before, our model depends highly on
the quality of 2D inputs; when we use the CPM predictions,
our performance is reduced.

Model # Parameters MPJPE (mm)
2 blocks and 64 channels 0.06 M 43.88

2 blocks and 128 channels 0.18 M 38.82
4 blocks and 128 channels 0.36 M 41.04

TABLE III: Evaluation of our parameters for the 3D pose
estimation model. The error is computing in the testing dataset.
As we can see, our best configuration has approximately 58%
fewer parameters than the baseline achieving the state-of-art
performance.

Model # of Parameters MPJPE (mm)
SGC [3] 0.43 M 43.8

Martinez et al. [18] 4.29 M 45.5
Ours without attention (2 blocks and 128 ch) 0.16 M 46.71

Ours with attention (2 blocks and 128 ch) 0.18 M 38.82

TABLE IV: 3D pose regression errors and the parameter num-
bers of our networks with different settings on Human3.6M.
For each technique, we use the 2D ground truth data for the
training and evaluation.

We evaluated our 3D unprojection model following the
dataset Human3.6M. Table I shows the result using 2D ground-
truth of Human3.6M, CPM, and Stacked HourGlass predic-
tions for testing. The results are competitive and, on average,

Model MPJPE (mm) P-MPJPE (mm)
Ours (Ground Truth) 38.82 33.22

Ours (CPM detections) 69.5 54.09
Xnect [17] 63.6 -
VIBE [19] 65.6 41.4

TABLE V: 3D pose regression errors with different inputs.
We use 2D ground-truth from Human3.6M and 2D predictions
from a CPM. We compare our results with the stage 2 output
of Xnect [17]. The metrics for Xnect and Vibe were obtained
from the original papers.

Model MPJPE (mm) 3D PCK
Vnect [16] 124.7 76.7

M3DHP [7] 117.6 75.7
Mehta [29] 122.2 75.2

Xnect (stage 2) [17] 98.4 82.8
Xnect (stage 3) [17] 115.0 77.8

Kanazawa [20] 124.2 72.9
Kundu [30] 103.8 82.1
VIBE [19] 96.6 89.3

Ours (CPM) 105.17 81.27
Ours (GT H3.6) 80.28 91.0

Ours (GT) 76.39 92.0
TABLE VI: Comparison on the single person MPI-INF-3DHP
dataset. Top part are methods designed and trained for single-
person capture.The Xnect is multi-person method, however
we evaluate only single person predictions. We tested mod-
els trained over the 2D ground-truth from Human3.6M, 2D
predictions from a CPM, and ground truth data of MPI-INF-
3DHP.

our performance is better than the state-of-the-art. We consider
our model trained and tested with ground-truth data as an
upper bound of our method since it uses only 2D ground truth
(GT) as the input. Our technique outperforms the state-of-the-
art SGC, for 3D pose regression, [3] by 12.83% considering
Ground Truth and 12.19% considering a 2D Stacked Hourglass
[27] predictions. Also, our model with attention layers sur-
passes the model only with regular SGCs (without attention)
by almost 17%. It is noteworthy that our approach has much
fewer parameters, meaning that using the attention module
drastically reduces the network’s computational complexity
and improves the overall performance. We have approximately
58% fewer parameters than the baseline SGC [3] and 95%
fewer parameters than the model from Martinez et al. [18].



Fig. 4: Visual results of our method on in-the-wild images
from COCO dataset [6] . In most cases, our technique can
effectively predict 3d joints in different situations. Small errors
can be seen considering the image scale and camera projection.
In the last row, in an example with self-occlusion, our model
cannot predict data from incomplete data.

Most methods have sophisticated frameworks [23]–[25] or
learning strategies. They were trained and focus on in-the-wild
images, propose end-to-end frameworks to generate the 3D
pose directly from images, consider temporal information and
also use complex loss functions [23], [26]. Due to more data
variability and their proposed constraints to reduce prediction
error, they were expected to have better performance, including
ground truth. However, this is not true. Our model surpasses
the previous works, considering the MPJPE and P-MPJPE
for ground truth, proving the potential of the attention layer.
The tests consider each action of the motion capture dataset.
Table I shows the error in millimeters for each step following
protocol 1 MPJPE.

Our results on Human3.6M under protocol 2 (using a rigid
alignment with the ground-truth), are shown in Table II. In
most cases, our method surpasses the previous works and has
better performance on average. Note that in some cases, our
model has similar performance or worse than the model from
Dabra et al. [26]. However, our approach has fewer param-
eters to compute and does not need complex anatomically
loss functions or a sophisticated, weakly supervised learning
framework. Also, on average, our model outperforms Dabra et
al. [26] by 8.3%. In Table VI, we compare the 3D pose output
on the MPI-INF-3DHP dataset [7] using the 3D Percentage of
Correct Keypoints (3DPCK - higher is better) and MPJPE. We

prove the robustness of our method, where for both metrics,
we surpass the previous state-of-the-art approaches when using
2D ground truth data. Again, note that most of these methods
are built over sophisticated frameworks and can predict multi-
person poses and shapes. In contrast, our method can be
seen as a 2D to 3D unprojection. Also, this test confirms the
hypothesis that our prediction quality highly depends on 2D
inputs. As we can see when considering the CPM detection,
our performance is reduced but still competitive. We also
tested our model trained on 2D ground truth data for Human
3.6 on MPI-INF-3DHP test data. As we can see, as said before,
we prove the robustness of our technique, outperforming the
previous works.

Moreover, considering runtime performance, our 3D net-
work took, on average, 10 seconds to evaluate 1062 poses.
The tests were performed in a GPU Nvidia RTX 2060 with
6GB of memory, where we repeat each test 1000 times. In
terms of the number of parameters, our network has 0.18M,
while the model proposed by Zhao et al. [3] has 0.43M. This
means that our network is lightweight and could be part of a
complete system that infers 3D human pose in real-time.

D. Qualitative and Visual Analysis

Figure 4 illustrates some results generated using images
from COCO dataset [6]. Our model can accurately predict 3D
poses from these images indicating that it effectively encodes
relationships among body joints and can generalize the results
to different situations. The input of the method is the 2D joints
generated using a Convolutional Pose Machine. However, our
model also has some limitations, as we can see in the last row
of figure 4. For example, when using data predicted by a CPM,
if the 2D detector output fails to detect all body keypoints, our
model can’t recover the missing information. Also, it is not
uncommon to see images with occluded or incomplete poses
for in the wild examples. Our model has difficulty dealing with
these cases. Both approaches proposed by Martinez et al. [18]
and Zhao et al. [3] have the same issue.

Figure 5 shows the results of our technique applied on
Human3.6M. In another approach, the input is generated by
the method from Schirmer et. al. [31], and from the output we
created a BVH model to generate the animation.

VI. CONCLUSIONS AND FUTURE WORK

We present a novel model for attention layers in Se-
mantic Graph Convolutions. With this approach, we build a
lightweight 3D human pose estimation model to project 2D
keypoints from the output of a convolutional pose machine
in a 3D space. Our model can be seen as an unprojection
from 2D to 3D keypoints. The combination of SGCs with
attention layers improves the performance and reduces the
overall complexity of our model, and we achieve state-of-the-
art performance with 58% fewer parameters. However, as said
before, the prediction quality depends on the 2D inputs. If
the 2D predictor fails in generating the correct input data, our
model will also fail to regress the data.



Fig. 5: Visual results of our method on Human3.6M [5]. As we can see, our method is robust but still has minor issues
considering joint rotations. As we said before, our model focus only on project the human keypoints in a 3D space.

Since this method uses a small set of parameters, we intend
to adapt it for applications in edge devices as future works.
We believe that our pose estimation model can be handy for
people to easily create 3D animations without any specialized
hardware.

REFERENCES

[1] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in neural information processing systems, 2016.

[2] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[3] L. Zhao, X. Peng, Y. Tian, M. Kapadia, and D. N. Metaxas, “Semantic
graph convolutional networks for 3d human pose regression,” in Pro-
ceedings of the IEEE CVPR, 2019, pp. 3425–3435.

[4] Q. Huang, F. Zhou, J. He, Y. Zhao, and R. Qin, “Spatial–temporal graph
attention networks for skeleton-based action recognition,” Journal of
Electronic Imaging, vol. 29, no. 5, p. 053003, 2020.

[5] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3. 6m:
Large scale datasets and predictive methods for 3d human sensing in
natural environments,” IEEE TPAMI, vol. 36, no. 7, pp. 1325–1339,
2013.

[6] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[7] D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko, W. Xu, and
C. Theobalt, “Monocular 3d human pose estimation in the wild using
improved cnn supervision,” in 2017 Proceedings of 3DV. IEEE, 2017,
pp. 506–516.

[8] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[9] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” arXiv
preprint arXiv:1812.08434, 2018.

[10] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.
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