
An Investigation of 2D Keypoints Detection on
Challenging Scenarios using Depthwise Separable

Convolutions: A Hand Pose Estimation Case Study
(supplementary material)

Sibgrapi paper ID: 104

I. TRAINING1

In this section, we detail the training procedures for each2

module, describing loss and training hyperparameters such as3

learning rate and optimizers. For all configurations, we follow4

the training procedure described by Zimmermann and Brox5

[1].6

HandSegNet training: We train HandSegNet for hand7

segmentation on R-train for a total of 40, 000 iterations on8

the dataset, using a standard softmax cross-entropy loss and a9

batch size of 8. We have used the Adam optimizer [2] with10

a learning rate scheduler, beginning with 10−5 for the first11

20, 000 iterations on the dataset, and decaying by a scale12

of 10 each 10, 000 iterations. The architecture proposed for13

HandSegNet is exposed in Table I.14

TABLE I
SUMMARY OF THE HANDSEGNET ARCHITECTURE, WHICH RECEIVES A
256X256 RGB IMAGE AS INPUT AND OUTPUTS THE CORRESPONDENT

HAND MASK.

# Layer type Layer shape
- Input image (256, 256, 3)
1 Convolution + ReLU (256, 256, 64)
2 Convolution + ReLU (256, 256, 64)
3 Maxpool (128, 128, 64)
4 Convolution + ReLU (128, 128, 128)
5 Convolution + ReLU (128, 128, 128)
6 Maxpool (64, 64, 128)
7 Convolution + ReLU (64, 64, 256)
8 Convolution + ReLU (64, 64, 256)
9 Convolution + ReLU (64, 64, 256)
10 Convolution + ReLU (64, 64, 256)
11 Maxpool (32, 32, 256)
12 Convolution + ReLU (32, 32, 512)
13 Convolution + ReLU (32, 32, 512)
14 Convolution + ReLU (32, 32, 512)
15 Convolution + ReLU (32, 32, 512)
16 Convolution + ReLU (32, 32, 512)
17 Convoluition (32, 32, 2)
18 Upsampling (256, 256, 2)
19 Argmax (256, 256, 1)
- Output hand mask (256, 256, 1)

PoseNet training: We initialize the first 17 layers with15

the weights of the Convolutional Pose Machines model [3],16

and initialize all other layers randomly. We begin by training17

PoseNet on R-train for 30, 000 iterations using a batch size18

of 8 and a L2 loss. Again, we use the Adam optimizer with19

a learning rate scheduler, beginning with 10−4 for the first 20

10, 000 iterations, 10−5 for the next 10, 000 iterations and 21

10−6 until the end. We then proceed to train PoseNet on S- 22

train, following the same hyperparameters as training in R- 23

train. The architecture for PoseNet is exposed on Table II. 24

II. ENVIRONMENT 25

We conducted the experiments listed in this work on a 26

virtual environment created with the Anaconda distribution. 27

Virtual environments serve to help manage dependencies and 28

to isolate projects from the operating system, meaning that 29

updates and changes to the system’s settings will not affect 30

the environment configuration. The virtual environment uses 31

the Python programming language in the version 3.7.4 in an 32

Ubuntu GNU/Linux 16.04 x64 host operating system. 33

We configured the virtual environment to use CUDA, a 34

parallel computing platform, and a programming model devel- 35

oped by NVIDIA to accelerate the execution of applications 36

through GPU usage. For our setup, while we execute part of 37

the workload in CPU (processing and filtering images, for 38

example), the core of the operations are performed on GPU 39

(tensor operations, for example). The development environ- 40

ment for the usage of CUDA is the CUDA Toolkit, and the 41

version used for the experiments is the 10.0.130. 42

Alongside CUDA, we also configured our environment to 43

use NVIDIA cuDNN, the Deep Neural Network library, a 44

GPU-accelerated library of primitives for deep neural net- 45

works. These implementations have highly optimized standard 46

routines such as convolutions, pooling, and activation. Using 47

cuDNN allows us to focus on the architectural problems and 48

to train the models instead of spending time on low-level 49

GPU performance tuning. During the experiments, the cuDNN 50

version used was the 7.6.0. 51

The main framework used for training and evaluating was 52

Tensorflow [4], an open-source software library for machine 53

learning. This framework was chosen mainly due to the 54

optimizations found in the depthwise separable convolution 55

operation. We list the main packages installed in the environ- 56

ment related to the applications’ performance in Table III. 57

We executed the codes for training and evaluating all 58

proposed models in a desktop computer powered with an Intel 59

Core i7-4790K CPU, with 32 gigabytes of RAM. We executed 60



TABLE II
SUMMARY OF THE ORIGINAL AND PROPOSED PoseNet ARCHITECTURE. LAYERS FROM 1 TO 17 HAVE THEIR WEIGHTS PRE-LOADED FROM

CONVOLUTIONAL POSE MACHINES [3] AND WERE NOT SWAPPED FOR DEPTHWISE SEPARABLE CONVOLUTIONS.

# Original configuration Mixed configuration (ours)
Layer type Layer shape Layer type Layer shape

- Input from HandSegNet (256, 256, 3) Input from HandSegNet (256, 256, 3)
1 Convolution + ReLU (256, 256, 64) Convolution + ReLU (256, 256, 64)
2 Convolution + ReLU (256, 256, 64) Convolution + ReLU (256, 256, 64)
3 MaxPooling2D (128, 128, 64) MaxPooling2D (128, 128, 64)
4 Convolution + ReLU (128, 128, 128) Convolution + ReLU (128, 128, 128)
5 Convolution + ReLU (128, 128, 128) Convolution + ReLU (128, 128, 128)
6 MaxPooling2D (64, 64, 128) MaxPooling2D (64, 64, 128)
7 Convolution + ReLU (64, 64, 256) Convolution + ReLU (64, 64, 256)
8 Convolution + ReLU (64, 64, 256) Convolution + ReLU (64, 64, 256)
9 Convolution + ReLU (64, 64, 256) Convolution + ReLU (64, 64, 256)
10 Convolution + ReLU (64, 64, 256) Convolution + ReLU (64, 64, 256)
11 MaxPooling2D (32, 32, 256) MaxPooling2D (32, 32, 256)
12 Convolution + ReLU (32, 32, 512) Convolution + ReLU (32, 32, 512)
13 Convolution + ReLU (32, 32, 512) Convolution + ReLU (32, 32, 512)
14 Convolution + ReLU (32, 32, 512) Convolution + ReLU (32, 32, 512)
15 Convolution + ReLU (32, 32, 512) Convolution + ReLU (32, 32, 512)
16 Convolution + ReLU (32, 32, 512) Convolution + ReLU (32, 32, 512)
17 Convolution (32, 32, 21) Convolution (32, 32, 21)
18 Concat(16, 17) (32, 32, 533) Concat(16, 17) (32, 32, 533)
19 Convolution + ReLU (32, 32, 128) Depth. Sep. Conv. + ReLU (32, 32, 128)
20 Convolution + ReLU (32, 32, 128) Depth. Sep. Conv. + ReLU (32, 32, 128)
21 Convolution + ReLU (32, 32, 128) Depth. Sep. Conv. + ReLU (32, 32, 128)
22 Convolution + ReLU (32, 32, 128) Depth. Sep. Conv. + ReLU (32, 32, 128)
23 Convolution + ReLU (32, 32, 128) Depth. Sep. Conv. + ReLU (32, 32, 128)
24 Convolution (32, 32, 21) Depthwise Sep. Convolution (32, 32, 21)
25 Concat(16, 17, 24) (32, 32, 554) Concat(16, 17, 24) (32, 32, 554)
26 Convolution + ReLU (32, 32, 128) Depth. Sep. Conv. + ReLU (32, 32, 128)
27 Convolution + ReLU (32, 32, 128) Depth. Sep. Conv. + ReLU (32, 32, 128)
28 Convolution + ReLU (32, 32, 128) Depth. Sep. Conv. + ReLU (32, 32, 128)
29 Convolution + ReLU (32, 32, 128) Depth. Sep. Conv. + ReLU (32, 32, 128)
30 Convolution + ReLU (32, 32, 128) Depth. Sep. Conv. + ReLU (32, 32, 128)
31 Convolution (32, 32, 21) Depthwise Sep. Convolution (32, 32, 21)
- Output heatmaps (32, 32, 21) Output heatmaps (32, 32, 21)

TABLE III
OVERVIEW OF THE PACKAGES INSTALLED IN THE VIRTUAL ENVIRONMENT

THAT ARE PERFORMANCE-RELATED.

Package name Version
cudatoolkit 10.0.130

cudnn 7.6.0
keras-gpu 2.2.4

numpy 1.16.4
opencv-python 4.1.1.26

python 3.7.4
scipy 1.3.1

tensorflow 1.13.1

the CUDA operations on an NVIDIA RTX 2080 Ti, with 1261

gigabytes of RAM using the driver version 410.93.62

III. EXAMPLES FROM THE AUGMENTED DATASET63

In this section, we show a few examples of cases created on64

the augmented dataset. In Figure 1, we show an example of65

how the images are affected by the defocused lens simulation.66

In Figure 2, we show examples of images with the motion blur67

filter applied, simulating motion. In Figure 3, we show the68

proposed pipeline to generate images with occluded regions69

and on Figure 4 we show examples created using this pipeline.70

Finally, on Figure 5 and Figure 6 we show examples from the71

TABLE IV

Train set Ratio original mixed
Mean Median AuC Mean Median AuC

Standard - 16.958 6.095 0.733 17.608 6.313 0.723

Trained on
S-train

0.1 18.372 6.207 0.722 19.135 6.427 0.711
0.2 22.085 6.412 0.697 22.902 6.663 0.686
0.3 28.583 6.731 0.662 29.854 6.980 0.651

Trained on
S-train*

0.1 18.725 6.426 0.717 18.939 6.663 0.710
0.2 21.444 6.497 0.696 21.222 6.563 0.699
0.3 27.783 6.843 0.667 27.717 6.800 0.670

Quantitative evaluation of dense and depthwise architectures on S-val*
processed with occlusion, following the metrics proposed by Zimmermann
and Brox [1].

Gaussian Noise and Salt & Pepper sets compared with the 72

original images. 73



Fig. 1. An image from the S-val* set that was selected and processed using
Gaussian blur. (a) Original image, without processing. (b) Original image
blurred with Gaussian blur with kernel size of 7 × 7, (c) 13 × 13 and (d)
21× 21.

Fig. 2. An image from the S-val set that was selected and processed using
horizontal motion blur. (a) Original image, without processing. (b) Original
image blurred with horizontal motion blur with kernel size of 15 × 15, (c)
30× 30 and (d) 45× 45.

Fig. 3. Full pipeline of the occlusion process. (a) We estimate the bounding-
box using ground-truth annotations. (b) We expand the bounding-box with a
15% margin. (c) We select a random point inside the bounding-box and use
it to (d) draw a square over the image.

Fig. 4. An image from the S-val set that was selected and processed adding
occlusion. (a) Original image, without occlusion. (b) Square with the 0.1, (c)
0.2 and (d) 0.3 parameters that control the size of the square.



Fig. 5. Original image from the training set against its augmentation with
Gaussian noise.

Fig. 6. Original image from the training set against its augmentation with
S&P noise.



REFERENCES74

[1] C. Zimmermann and T. Brox, “Learning to Estimate 3D Hand Pose from75

Single RGB Images,” Proceedings of the IEEE International Conference76

on Computer Vision, vol. 2017-October, pp. 4913–4921, 2017.77

[2] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”78

arXiv preprint arXiv:1412.6980, 2014.79

[3] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional80

pose machines,” in Proceedings of the IEEE Conference on Computer81

Vision and Pattern Recognition, 2016, pp. 4724–4732.82

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.83

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,84

A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,85

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,86

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,87

P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,88

P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,89

“TensorFlow: Large-scale machine learning on heterogeneous systems,”90

2015, software available from tensorflow.org. [Online]. Available:91

https://www.tensorflow.org/92

https://www.tensorflow.org/

	Training
	Environment
	Examples from the augmented dataset
	References

