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Abstract—lt is undeniable that aerial images can provide useful
information for a large variety of tasks, such as disaster relief,
and urban planning. But, since these images only see the Earth
from one point of view, some applications may benefit from
complementary information provided by other perspective views
of the scene, such as ground-level images. Despite a large number
of public image repositories for both georeferenced photos and
aerial images (such as Google Maps, and Street View), there
is a lack of public datasets that allow studies that exploit
the complementarity of aerial+ground imagery. Given this, we
present two new publicly available datasets named AiRound and
CV-BrCT. Using both, we tackled the scene classification task
in 2 different scenarios. The first one has a fully-paired image
set, while the second has missing samples. In both situations,
we used deep learning and feature fusion algorithms. To handle
missing samples, we proposed a content-based image retrieval
framework.

Index Terms—deep learning; machine learning; remote sens-
ing; image classification; multi-modal machine learning; metric
learning; cross-view matching;

I. INTRODUCTION

Satellite images become more accessible to civilian appli-
cations each year. New technologies are enabling the wide
usage of better and cheaper images in comparison with the
past few decades. Nowadays, it is also possible to access
many free remote sensing image repositories with a variety
of spatial, spectral and temporal resolutions [1]. Images with
aerial perspective give us a unique view of the world, allowing
the capture of relevant information (not provided by any other
type of image) that may assist in several applications, such as
automatic geographic mapping and urban planning [2]–[4].

Despite the clear benefits of optical aerial imagery, the fact
that they are always looking from the same perspective of
the Earth may limit their use. More precisely, the presence of
vegetation cover, clouds or simply the need of more detailed
on-the-ground information can decrease the effectiveness of
such images in some applications. Because of this, in some
scenarios (known as multi-view), it is crucial to combine
complementary information of aerial and ground images in
order to efficiently tackle a problem. Such combination of
multiple sources images can benefit many applications in
different fields, like 3D human pose estimation [5], geo-
localization of places [6], and urban land use [7]. Motivated by
these benefits, several approaches [8]–[12] have been proposed
to exploit multi-view datasets to face distinct tasks. Although

important, it is not easy to find multi-view datasets for specific
image tasks, given the difficulty in creating and labeling
such data. In fact, as far as we know, there is no publicly
available multi-view (aerial and ground) dataset for the scene
classification task in the literature.

Due to the lack of publicly available multi-view (aerial and
ground) datasets for image classification tasks in the literature,
in this dissertation1 we present two novel multi-view image
datasets. The main purpose of creating these datasets is to
make them publicly available so that the scientific community
can carry out image classification experiments in multi-view
scenarios. One of the datasets is composed of 11, 753 triplets
of images, each of which consisting of a ground scene, a high-
resolution aerial image, and a multi-spectral aerial image. The
images are unevenly divided into 11 classes, including airport,
bridge, church, forest, lake, park, river, skyscraper, stadium,
statue, and tower. An interesting property of our dataset is
that it was designed to contain a high intra-class variety, so
it was composed with selected places from all around the
world. The other dataset is composed of 24k pairs of images,
each one containing a ground-level scene and a high-resolution
aerial image. Those pairs are labeled into 9 different classes,
which include apartment, hospital, house, industrial, parking
lot, religious, school, store, and vacant lot.

In this dissertation, we designed a series of experiments
to exploit the complementary information that pairs of aerial
and ground-level images have. In those experiments, we used
our datasets to evaluate several state-of-the-art convolutional
neural networks (ConvNets) for the scene classification task.
To assess the gains from the supplementary information pro-
vided by aerial/ground imagery, we evaluated several feature
fusion techniques, including early and late fusion. Those algo-
rithms were incorporated with 8 different ConvNets. We also
compared the fusion algorithms and analyzed which classes
benefit more from them. Since it is not always possible to
acquire pairs of aerial + ground images, we also proposed a
framework to handle this problem. The main purpose of it is
to ensure a way of exploring the complementary information
that both images have in a missing data scenario. To evaluate
this framework, we simulate a scenario, where we have all
the samples from a specific view but do not have their

1This work relates to a MSc dissertation.



Dataset Image Type Publicly
Available

Paired Aerial &
Ground Images

Total of
Samples

Number of
Classes Task Year

Aerial RGB Ground Multispectral

CV-USA [16] 3 3 7 3 3 ∼ 44k - Cross-View Matching 2015
Cities [17] 3 3 7 7 3 ∼ 156k - Cross-View Matching 2015

Pasadena Urban Trees [10] 3 3 7 3 3 ∼ 100k 18 Object Detection 2016
Vo and Hays [18] 3 3 7 3 3 ∼ 1m - Cross-View Matching 2016

Brooklyn and Queens [19] 3 3 7 3 3 ∼ 213k - Instance Segmentation 2017
Urban Environments [20] 3 3 7 7 3 ∼ 18k - Cross-View Matching 2017

CV-ACT [12] 3 3 7 3 3 ∼ 128k - Cross-View Matching 2019
Buildings [8] 3 3 7 7 3 ∼ 261k 4 Classification 2019

Ile-de-France land use [7] 3 3 7 7 3 ∼50k 16 Classification 2019
CV-London [21] 3 3 7 7 3 ∼2k - Image Synthesis 2020
AiRound [22] 3 3 3 3 3 ∼35.4k 11 Classification 2020
CV-BrCT [22] 3 3 7 3 3 ∼48k 9 Classification 2020

TABLE I: Properties of other datasets found in the literature that are similar to AiRound and CV-BrCT.

correspondent pairs from the other domain.
The remainder of this document is structured as follows.

Section II introduces the datasets, the used feature fusion
algorithms and our missing data framework. Section III briefly
discusses some of the results obtained in this dissertation. And
lastly, in Section IV we conclude our work.

II. METHODOLOGY

A. Datasets

Recent advances in satellite data acquisition and cloud
computing, access to high-resolution satellite images and other
types of data was made easier. Despite the great advantages
that aerial images provide, some applications demand infor-
mation that an aerial perspective may lack. In these cases,
an alternative solution is to use complementary perspectives
of the same location, i.e., ground-level view, to better seek
such information [13]–[15]. Due to the high demand for
images to be used in multi-view tasks, naturally some multi-
view datasets were proposed in the literature. In Table I, we
summarize some datasets that are similar to the novel ones
proposed for this dissertation.

Differentiating our datasets from the ones in Table I, some
of the existing datasets were designed in a way that each
image pair can be seen as a class. Such datasets do not
contain groups of classes that share the same label, which ends
up making its use for image classification impractical. Other
datasets are quite different from the ones proposed here, given
that the main task for which they were proposed is different.
That difference resides in the fact that those problems require
different types of label as input and also generates distinct
outputs (bounding boxes and segmentation). Relating to multi-
view image classification datasets, two datasets [7], [8] are
quite similar to both datasets proposed here. However, neither
of these existing datasets are publicly available, while ours
are.

1) AiRound: The first dataset is named AiRound, and is
composed of 11, 753 images distributed into 11 classes, includ-
ing: airport, bridge, church, forest, lake, park, river, skyscraper,
stadium, statue, and tower. Each sample is composed of a
triplet, that contains images in 3 distinct points of view: (i)
a ground perspective image; (ii) a high resolution RGB aerial
image; and (iii) a multi-spectral image from the Sentinel-2

satellite. All the images collected for this dataset correspond
to real places around the world.

This dataset was created using two methods. In the first, to
download the samples, two types of metadata were required:
(i) the name of the place; and (ii) its correspondent geograph-
ical coordinates. These metadata were collected using web
crawlers in various lists of Wikipedia web pages.

Given the metadata, the RGB aerial images were collected
using Bing Maps API2. The zoom level was empirically
selected in order to adapt a proper vision for the samples of
each class.

In order to collect the ground level samples, it was
checked if the correspondent class exists in the Google Places’
database. If the sample class exists, a query was built using
this place’s geographical coordinates as input. The outputs
returned by this API were all manually checked, and if they did
not correspond to the class, a second protocol was performed.
The second protocol was used for cases that the class did not
exist in Google Places database or the image retrieved did not
correspond to the query requested. This protocol consists of
crawling the top 5 images from Google Images using, as query,
the place’s name. Finally, an image was manually selected to
represent each sample on AiRound, the best instance between
the 5 images downloaded.

Relating to the Sentinel-2 images acquisition, we followed
exactly the same protocol that was proposed by [23]. In this
protocol, Google Earth Engine [1] was used to download the
data using the place’s geographical coordinates. After careful
analysis, we decided to resize all images to 224x224 pixels, a
resolution that could cover most of the classes’ areas.

After working with this methodology for a while, we
noticed that it was not scalable because of limited metadata
(per class) available in the Wikipedia lists. Due to this, we
decided to move to another, more scalable, method. So, a
second methodology was applied to build this dataset, the
metadata were obtained from the publicly available data of
the OpenStreetMap3, and collected using the Overpass API4.
These lists consist of only geographic coordinates, for most

2https://docs.microsoft.com/en-us/bingmaps/
3www.openstreetmap.org/
4https://overpass-turbo.eu/

https://docs.microsoft.com/en-us/bingmaps/
www.openstreetmap.org/
https://overpass-turbo.eu/


of the classes, with exception of the classes forest, lake, river,
and park, which we collected only places that have a name
assigned to it. The lists are then fed to scripts that utilize
the Google StaticMap API5, to collect the aerial images, and
the Google StreetView API6, to collect the frontal images.
Except for the zoom parameter, which was set to a proper value
per class empirically, the default values of the Google APIs
were used for the aerial images. Since we could not retrieve
street-level images for the classes forest, lake, river, and park,
we used their names in a query to a Google Images crawler.
We followed the same protocol used in the first methodology
to download images from these classes. To download the
Sentinel-2 images, we also applied the same protocol used
in the first methodology. Finally, since we gathered a large
collection of locations, we ignored points where we could not
retrieve an image from each view.

2) CV-BrCT: The CV-BrCT dataset, which stands for
Cross-View Brazilian Construction Types, comprises ap-
proximate 24k pairs of images split into 9 urban classes, i.e.,
apartment, hospital, house, industrial, parking lot, religious,
school, store, and vacant lot. The pairs are composed of images
from two different views: an aerial view, and a frontal view
of a location.

The lists of coordinates used to build this dataset were col-
lected using the second methodology used to build AiRound
dataset, which was applied to all classes, except Vacant Lot,
which was manually annotated. To download the samples, we
also use the same APIs of the second methodology previously
described. Finally, it is important to mention that we decided
to not collect Sentinel-2 samples for this dataset. This decision
was made considering the nature of all the classes, which
only include objects that would not benefit from Sentinel-2’s
resolution.

B. Feature Fusion

To enhance scene classification results, we evaluated several
models for early and late fusion in order compare both
approaches. In this work, those techniques were applied to fuse
aerial/ground/satellite features, acquiring new information, and
using them to enhance the final predictions.

1) Early Fusion Methods: The early fusion strategy per-
formed in this work consists of using the first feature extraction
layers of the target network as a backbone. This backbone
is replicated to aerial and ground images. The fusion of the
features is made by applying a concatenation layer on the low-
level features, which results in a tensor that contains twice
as many kernels as the original ones. The choice of where
those concatenations were performed is based on the total of
kernels that each convolution layer has. So, in order to be
possible to fully explore pre-trained models, we decided to
concatenate those feature vectors before the first convolution
layer that doubles its amount of kernels in the target network.
In this way, we ignore the convolution that duplicates this

5https://developers.google.com/maps/documentation/maps-static/intro
6https://developers.google.com/maps/documentation/streetview/intro

amount of kernels and substitute it for a fusion that also
duplicates the amount of feature vectors. Figure 1 represents
the early fusion methodology proposed for this work. The first
Le layers (blue and green blocks in the figure) represent the
early feature extraction process, which is made individually for
each view. After a few layers, the features are concatenated
and transported to the remainder of the architecture, which
was used as a base (yellow block in the figure). After that,
when the high-level features are extracted, the classification
process is performed.

Legend
Early	Layers	(Aerial)

Early	Layers	(Ground)

Late	Layers	(Fusion)

...

Fig. 1: Example of the proposed early fusion methodology.

2) Late Fusion Methods: The late fusion strategy per-
formed in this work is illustrated in Figure 2. One should note
that the softmax scores were used to combine the results. For
the experiments, we used 5 different classic late fusion algo-
rithms [24]. Those include: sum, minimum, majority voting,
weighted sum, and product.
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Legend
Full	CNN	(Satellite)

Full	CNN	(Aerial)

Full	CNN	(Ground)

Prediction	Layer

Fig. 2: A typical late fusion pipeline. As can be seen, each
ConvNet is trained individually and their outputs are combined
using a late fusion algorithm, resulting in the final prediction.

C. Classification with Missing Data

Due to the undeniable importance of studying techniques
to handle missing data for multi-modal machine learning [7],
[25]–[27], in this dissertation, we also decided to propose

https://developers.google.com/maps/documentation/maps-static/intro
https://developers.google.com/maps/documentation/streetview/intro


a framework to tackle this task. This framework operates
using a retrieval approach, viz. cross-view matching. Since
neither AiRound nor CV-BrCT datasets have missing pairs
for any sample, we simulate a missing data scenario on them
to test our framework. In this simulation, we have ground-
level images but remove their correspondent pairs from the
aerial domain. Our missing data framework is represented in
Figure 4.

In our simulation, both datasets were split according to the
protocol illustrated by Figure 3. One may note that the aerial
samples from the test suites do not exist. To supply these data,
we decided to re-use the validation set of aerial images as a
database for the content-based image retrieval task. The reason
that we decided to re-use such data is because we wanted to
have as much data as possible to test our framework. And,
since those validation sets were not used to update weights
during the training phase, we argue that this strategy is fair.

Test Set
Validation Set
Train Set
Legend

Ground
Images

Aerial
Images

Missing Data: Aerial

Fig. 3: This figure represents the exact scheme that was used
to split AiRound and CV-BrCT datasets for missing data
experiments.

In the training procedure, three different networks are
trained, two of which are used for image classification, and
one for image retrieval. Unlike the cross-view matching task,
in our missing data classification approach, we do not have
image pairs in the testing phase. Because of that, we performed
two major changes in the original training protocol. The first
modification in the training procedure consists of using as
input random samples from the same class, instead of only
image pairs. This is because in the testing phase of our missing
data scenario, there is no original correspondent pair to the
query (Figure 3). So, it is better to train the encoders to
approximate samples of the same class, instead of just using
image pairs.

The second change was performed in the batch construction.
Since most of the recent cross-view matching networks [6],
[12], [28], [29] uses the exhaustive mini-batch strategy7, we

6Cross-view matching is essentially a geo-localization task, which involves
data from aerial and ground domains. The main objective of this task is to
estimate the corresponding image pair from one domain, given a query from
the other domain.

7The exhaustive mini-batch strategy was proposed by [18] to maximize the
number of triplets within each batch. Since defining a negative sample for
triplet training is essentially a hard task [30]–[33], this technique proposes
to use all samples (excluding the positive anchor to the triplet) as negative
anchors. To formally define this technique, consider β as the batch size. In
each iteration of exhaustive mini-batch strategy, there is a total of β × 2 ×
(β − 1) triplets. This is because in each batch we have β positive pairs, and
this strategy uses all the batch not-paired samples as negative anchors, so for
each ground image and/or aerial image, there is also β − 1 negative pairs,
resulting in 2× (β − 1) negative triplets, totaling β × 2× (β − 1).

also applied it. Because of that, we only used batches that
contain exactly one sample of the same class from aerial
and ground domains. So, it ensures that samples from same
class of the query will never be used as negative anchors. It
is important to mention that the decision of modifying the
construction of batches was inspired by the semantic triplet
loss, proposed by [34].

αi×j = 2× (1− FgF
ᵀ
a ) (1)

Figure 4 shows how the inference process is performed in
our framework. In the first step, a forward through the retrieval
network is executed in the entire test set. All the output feature
vectors are stored in two different matrices, being Fa the aerial
features matrix, and Fg the ground one. After that, a distance
matrix αi×j is calculated using Fa and Fg , as can be checked
in equation 1.

Through this framework, we can compute a top-k image
ranking to a query by using Equation 2. In this formula, α
represents the distance matrix (computed using Equation 1), q
represents the correspondent line to the query image in matrix
α, and k corresponds to the ranking size.

Rank(q, k) = argmin(αq,c, k) ∀c ∈ [0, j) (2)

The second step of Figure 4 is where the classification is
performed. First, through a forward process, we calculate the
softmax scores for the query image q using the ground CNN.
After that, we execute inference processes through aerial CNN
for all images contained in the ranking, saving all the scores
returned by the network.

Finally, to calculate the final prediction, we use both soft-
max scores returned by the inferences, and calculate a fusion
of them using the product fusion [22].

III. EXPERIMENTS

We carry out 4 different sets of experiments in order to
evaluate if it is possible to exploit complementary information
from aerial and ground images. The first one consists of
networks trained using only one view, and it is used to
check if the networks with Aerial+Ground fusions lead to
improvements. For the second set, we carry out experiments
using the proposed early fusion methodology. For the third
set of experiments, we employed late fusion algorithms using
different types of views. Lastly, for the fourth set, we employed
experiments using our missing data framework.

A. Single-View Classification

1) AiRound: The results for AiRound for the experiments
using a single type of image are presented in Table II.

2) CV-BrCT: The results for CV-BrCT for the experiments
using a single type of image are presented in Table III.

B. Early Fusion

1) AiRound: In Table IV, comparing the same architecture
models, it is notable that most of the results show improve-
ments, as compared to the 1-view results reported in Table II.



Query
Ranking

Prediction

Retrieval
CNN

Ground
CNN F.E.

Aerial
CNN F.E.

Aerial
CNN F.E.

Mean
Fusion

Statue

Step 1: For each query image, using the retrieval CNN, retrieve a image ranking
                                     composed by images of the other domain.

Step 2: Use the query images and the late fusion of their correspondent retrieved 
                    ranking (returned on step 1) on the inference process.

Product
Fusion

Fig. 4: Testing pipeline of the schema proposed to simulate a
missing data scenario. Since there is not any paired image on
the proposed test sets, in Step 1, an inference on a cross-view
matching (retrieval) network is performed to acquire possible
candidates. In this inference, all the ground images are used
as queries, and for each query, the retrieval network returns a
ranking of aerial images, taken from the test set of the dataset.
In Step 2, the classification process is performed. One may
note that the features extracted from the images of the ranking
are fused before being used to classify the query image. As a
last step, the result of the fusion of this ranking is combined
with the ground image (query) features, resulting in the final
prediction.

Network
Input Data

Aerial Ground

B. Acc. F1 B. Acc. F1

AlexNet 0.76± 0.01 0.76± 0.01 0.71± 0.01 0.70± 0.01
VGG 0.82± 0.01 0.81± 0.01 0.76± 0.01 0.76± 0.01

Inception 0.85± 0.01 0.84± 0.01 0.78± 0.01 0.78± 0.01
ResNet 0.81± 0.01 0.80± 0.00 0.75± 0.01 0.75± 0.01

DenseNet 0.84± 0.01 0.84± 0.01 0.77± 0.01 0.77± 0.02
SqueezeNet 0.76± 0.00 0.76± 0.01 0.72± 0.02 0.72± 0.02

SENet 0.83± 0.01 0.83± 0.01 0.77± 0.01 0.76± 0.01
SKNet 0.84± 0.01 0.84± 0.01 0.77± 0.01 0.77± 0.01

TABLE II: Results in terms of F1 Score of the evaluated
models for AiRound dataset. Bold values represent the best
results achieved for each input data domain.

2) CV-BrCT: Comparing the Tables III and V, the results of
networks using only ground images were worse than the aerial
image models. Through the experiments, we noted that using
a network that merges and combines features of both images
from the start leads to no improvements, if we compare to

Network
Input Data

Aerial Ground

B. Acc. F1 B. Acc. F1

AlexNet [35] 0.75± 0.02 0.84± 0.01 0.54± 0.01 0.66± 0.01
VGG [36] 0.79± 0.03 0.87± 0.01 0.60± 0.02 0.71± 0.01

Inception [37] 0.80± 0.02 0.87± 0.00 0.60± 0.03 0.71± 0.01
ResNet [38] 0.78± 0.02 0.86± 0.01 0.58± 0.04 0.69± 0.02

DenseNet [39] 0.80± 0.02 0.87± 0.01 0.60± 0.01 0.71± 0.01
SqueezeNet [40] 0.70± 0.02 0.80± 0.01 0.56± 0.02 0.68± 0.01

SENet [41] 0.80± 0.02 0.87± 0.01 0.60± 0.01 0.71± 0.01
SKNet [42] 0.80± 0.03 0.88± 0.01 0.60± 0.02 0.71± 0.01

TABLE III: Results of the evaluated models for CV-BrCT
dataset. Bold values represent the best results achieved for
each training strategy, metric, and input data domain.

Early Fusion Network B. Acc. F1

AlexNet [35] 0.81± 0.02 0.80± 0.02
VGG [36] 0.84± 0.02 0.84± 0.02

Inception [37] 0.84± 0.01 0.84± 0.01
ResNet [38] 0.83± 0.02 0.83± 0.02

DenseNet [39] 0.83± 0.01 0.83± 0.01
SqueezeNet [40] 0.78± 0.02 0.77± 0.02

SENet [41] 0.84± 0.02 0.83± 0.01
SKNet [42] 0.86± 0.02 0.86± 0.02

TABLE IV: Results of the evaluated early fusion networks
for AiRound dataset. Bold values represent the best results
achieved for each training strategy and metric.

networks using only aerial images.

Early Fusion Network B. Acc. F1

AlexNet [35] 0.72± 0.02 0.82± 0.01
VGG [36] 0.76± 0.02 0.84± 0.02

Inception [37] 0.79± 0.03 0.87± 0.01
ResNet [38] 0.74± 0.02 0.83± 0.01

DenseNet [39] 0.72± 0.03 0.81± 0.01
SqueezeNet [40] 0.67± 0.04 0.79± 0.02

SENet [41] 0.78± 0.02 0.86± 0.01
SKNet [42] 0.80± 0.02 0.87± 0.01

TABLE V: Results of the evaluated early fusion networks
for CV-BrCT dataset. Bold values represent the best results
achieved for each training strategy and metric.

C. Late Fusion

1) AiRound: The late fusion results for the AiRound dataset
are presented in Table VI. Comparing the results using only
one type of data (Table II) with the fusion outcomes, it is pos-
sible to notice that the late fusion outperformed all approaches
using only one view. This corroborates our initial insight that
the combination of multi-source data could improve the results
for the scene classification task. In Table VI, the best overall
results were achieved by the DenseNet ( [39]) architecture.

2) CV-BrCT: The same set of late fusion experiments were
perfomed for CV-BrCT dataset. Overall, all fusion methods
improved the results of the networks trained with a single type.
The results across fusion methods are similar, although some
techniques show a consistent improvement, e.g., Weighted



Sum, and others do not appear to have a noticeable effect,
e.g., Minimum.

D. Aerial+ground fusion with missing data evaluation

1) AiRound: The results of our framework applied in the
AiRound dataset can be checked in Table VII. In these
experiments, a network trained using only ground images
is used as a baseline. This is because without performing
a retrieval using our framework, the only data available for
inference are the ground images.

Relating to the outcomes, all the networks downgraded
their results, compared to a network using only ground data,
using fusion with only the retrieved aerial images from the
top 1. However, as the ranking retrieved by CirVGG [29] is
increased, the results from Table VII improve. By using the
fusion of top 50 retrieved images, all the results from the
benchmarked methods were improved, comparing to the base-
line. Given this, as expected, the best outcome was produced
when using the retrieved top 100 images. The best result and
also the biggest gain by using the framework was achieved by
SKNet [42]. This network achieved a score of 0.77 in both
metrics, which consists of a gain of 0.03 comparing to the
baseline.

Classification Model

VGG [36] DenseNet [39] SKNet [42]Data Used
B. Acc. F1 B. Acc. F1 B. Acc. F1

Only Ground 0.74± 0.02 0.74± 0.02 0.75± 0.01 0.74± 0.02 0.74± 0.02 0.74± 0.02

Top 1 0.70± 0.02 0.69± 0.01 0.71± 0.02 0.71± 0.01 0.70± 0.02 0.70± 0.02
Top 5 0.73± 0.01 0.73± 0.00 0.74± 0.02 0.74± 0.02 0.74± 0.01 0.74± 0.01

Top 10 0.74± 0.01 0.74± 0.00 0.75± 0.01 0.74± 0.01 0.75± 0.01 0.75± 0.01
Top 50 0.75± 0.01 0.75± 0.01 0.76± 0.01 0.75± 0.01 0.76± 0.01 0.76± 0.01
Top 100 0.76± 0.01 0.76± 0.01 0.76± 0.00 0.76± 0.00 0.77± 0.01† 0.77± 0.02†

TABLE VII: Classification results in the proposed missing data
scenario using the AiRound dataset. The red coloring indicates
a downgrade compared to the baseline, while the blue coloring
represents an upgrade. The values in bold indicate the best
result for each metric and network, while the † symbols mark
the best overall results for each metric.

2) CV-BrCT: Table VIII contains the results achieved by
our missing data framework. Just like happened for the
AiRound dataset (Table VII), the framework downgraded the
baseline results by using only the first image retrieved by
CirVGG. By using the top 5 ranking fusion, we achieved some
gains for VGG [36] and DenseNet [39]. Despite that, we did
not achieve any gain for SKNet [42]. We also highlight that

using the remaining rankings (top 10, 50, and 100) did not
lead to better results. The best results and also improvements
were achieved by DenseNet [39]. Those results were achieved
by using the top 5, 10, 50, and 100 ranking fusions, resulting
in a score of 0.72 in F1 score metric and 0.66 in balanced
accuracy. Comparing to the baseline, this represents a gain of
0.03 and 0.02 in F1 score and balanced accuracy, respectively.

Classification Model

VGG [36] DenseNet [39] SKNet [42]Data Used
B. Acc. F1 B. Acc. F1 B. Acc. F1

Only Ground 0.64± 0.04 0.68± 0.06 0.64± 0.03 0.69± 0.02 0.65± 0.02 0.71± 0.01

Top 1 0.59± 0.01 0.65± 0.02 0.59± 0.00 0.66± 0.02 0.58± 0.02 0.65± 0.03
Top 5 0.65± 0.01 0.70± 0.02 0.66± 0.02† 0.72± 0.00† 0.65± 0.01 0.71± 0.02
Top 10 0.65± 0.01 0.70± 0.02 0.66± 0.02† 0.72± 0.01† 0.65± 0.01 0.71± 0.02
Top 50 0.65± 0.01 0.70± 0.02 0.66± 0.03† 0.72± 0.01† 0.66± 0.02 0.71± 0.02
Top 100 0.65± 0.01 0.70± 0.02 0.66± 0.03† 0.72± 0.01† 0.65± 0.02 0.71± 0.02

TABLE VIII: Classification results in the proposed missing
data scenario using the CV-BrCT dataset. The red coloring
indicates a downgrade compared to the baseline, while the blue
coloring represents an upgrade. The values in bold indicate the
best result for each metric and network, while the † symbols
mark the best overall results for each metric.

IV. CONCLUSION

In this dissertation, we proposed two novel cross-view
image datasets that can be used for multi-purpose tasks. Those
datasets were named AiRound and CV-BrCT, and can be
downloaded in our project’s web page (http://www.patreo.
dcc.ufmg.br/multi-view-datasets/). Using those datasets, we
performed a series of experiments to address the important task
of fusing features from images of different perspectives, which
resulted in a publication in an international journal paper [22].
Lastly, we also address the task of multi-view missing data
classification that resulted in a framework, which achieved
promising results, i.e., improvements compared to the use of
networks with only one-view data. It is important to mention
that the publication of this framework is still on progress.

For future work, we plan to explore different possibilities
to perform missing data completion. One good alternative is
to simulate the opposite scenario to the one used in this work,
i.e., a situation where images from an aerial perspective are
available, while their correspondent pairs from the ground
domain are not. Other aspects that could be exploited are the
use of different metric learning losses, different architectures,
or even clustering algorithms.

Network
Fusion Strategy

Sum M. Voting W. Sum Minimum Product†
B. Acc. F1 Score B. Acc. F1 Score B. Acc. F1 Score B. Acc. F1 Score B. Acc. F1 Score

AlexNet [35] 0.84± 0.00 0.84± 0.00 0.83± 0.01 0.83± 0.01 0.83± 0.01 0.83± 0.01 0.85± 0.01 0.85± 0.01 0.86± 0.01 0.86± 0.01
VGG [36] 0.88± 0.01 0.88± 0.01 0.88± 0.01 0.87± 0.01 0.88± 0.01 0.87± 0.01 0.89± 0.01 0.89± 0.01 0.90± 0.00 0.90± 0.00

Inception [37] 0.88± 0.01 0.88± 0.01 0.88± 0.01 0.87± 0.01 0.88± 0.01 0.87± 0.01 0.89± 0.01 0.89± 0.01 0.90± 0.00 0.90± 0.00
ResNet [38] 0.88± 0.01 0.87± 0.01 0.87± 0.01 0.87± 0.01 0.86± 0.02 0.86± 0.02 0.88± 0.01 0.88± 0.01 0.89± 0.01 0.89± 0.01

DenseNet [39]† 0.90± 0.01 0.89± 0.01 0.89± 0.01 0.89± 0.01 0.88± 0.01 0.88± 0.01 0.90± 0.01 0.90± 0.01 0.91± 0.01 0.91± 0.01
SqueezeNet [40] 0.85± 0.01 0.85± 0.01 0.85± 0.01 0.85± 0.01 0.85± 0.01 0.84± 0.01 0.86± 0.01 0.86± 0.01 0.87± 0.01 0.86± 0.01

SENet [41] 0.89± 0.02 0.89± 0.02 0.88± 0.02 0.88± 0.02 0.87± 0.01 0.87± 0.01 0.90± 0.01 0.89± 0.01 0.90± 0.01 0.90± 0.01
SKNet [42] 0.90± 0.01 0.89± 0.01 0.89± 0.01 0.89± 0.01 0.88± 0.01 0.88± 0.01 0.90± 0.01 0.90± 0.00 0.90± 0.01 0.90± 0.01

TABLE VI: Results of the evaluated late fusion techniques for AiRound dataset using fine-tuned models. Bold values represent
the best results achieved for each fusion strategy and metric. While the † symbols mark the best overall network and fusion
strategy.

http://www.patreo.dcc.ufmg.br/multi-view-datasets/
http://www.patreo.dcc.ufmg.br/multi-view-datasets/
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F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019.

[29] Y. Shi, X. Yu, D. Campbell, and H. Li, “Where am i looking at?
joint location and orientation estimation by cross-view matching,” in
IEEE/CVF Computer Vision and Pattern Recognition, 2020, pp. 4064–
4072.

[30] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric learn-
ing via lifted structured feature embedding,” in IEEE/CVF Computer
Vision and Pattern Recognition, 2016, pp. 4004–4012.

[31] H. Liu, Y. Tian, Y. Yang, L. Pang, and T. Huang, “Deep relative distance
learning: Tell the difference between similar vehicles,” in IEEE/CVF
Computer Vision and Pattern Recognition, 2016, pp. 2167–2175.

[32] K. Sohn, “Improved deep metric learning with multi-class n-pair loss
objective,” Advances in Neural Information Processing Systems, vol. 29,
pp. 1857–1865, 2016.

[33] Y. Zhao, Z. Jin, G.-j. Qi, H. Lu, and X.-s. Hua, “An adversarial approach
to hard triplet generation,” in European Conference on Computer Vision,
2018, pp. 501–517.

[34] M. Carvalho, R. Cadène, D. Picard, L. Soulier, N. Thome, and M. Cord,
“Cross-modal retrieval in the cooking context: Learning semantic text-
image embeddings,” in The 41st International ACM SIGIR Conference
on Research Development in Information Retrieval, ser. SIGIR ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
35â44.
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