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Abstract—Image segmentation is an ill-posed problem by
definition, as it is not always possible to automatically select which
object appearing in an image is the object of interest. To deal with
this issue, prior knowledge in the form of human-given markers
can be included in the segmentation pipeline. Even though user
interaction can drastically improve segmentation results, it is an
expensive resource, and finding ways to reduce human effort
on an interactive segmentation loop is of great interest. In this
work, we propose a new segmentation layer to be used with deep
neural networks, which allows us to create and train in an end-
to-end fashion a marker creation network. To train the network,
we propose a loss function composed of: a segmentation loss
using the proposed differentiable segmentation layer; and a set
of regularization functions that enforce the desired characteristics
on the produced markers. We showed that by using the proposed
layer and loss function, we can train the network to automatically
generate markers that recover a good segmentation and have
desirable shape characteristics. This behavior is observed on the
training dataset, as well as on four unseen datasets.

I. INTRODUCTION

The recent boom in learning by deep neural networks con-
stitutes a disruptive advance in computer vision [1] making it
possible to effectively solve many problems such as object de-
tection [2], localization [3], and classification [4]. In contrast,
the general problem of image segmentation remains difficult
despite the significant improvements achieved thanks to deep
learning. One of the issues related to image segmentation is
that it is by definition an ill-posed problem. For instance, in a
binary segmentation scenario in which we segment the image
into foreground and background instances, it is not possible
to define in an unsupervised way which object appearing in
an image is the object of interest for a specific user. Hence,
in many cases, user supervision is still required to produce
satisfactory segmentations.

One way to introduce user-given knowledge in the seg-
mentation process is to provide cues indicating the location
of objects of interest in the image. These cues are called
markers (or seeds) and can take different shapes and forms,
including scribbles [5]–[7], bounding boxes [8], points [9], and
image regions [10], [11]. Also, many works study different ap-
proaches for producing marker-based segmentations, ranging
from the classic graph-based works relying on watersheds [6],
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Fig. 1: Example of an automatically generated marker. (a) Im-
age. (b) The object markers generated by the marker cre-
ation network. (c) A background marker created from the
background segmentation ground-truth. (d) The marker-based
segmentation with respect to the markers on (b) and (c).

[12], graph cuts [8], [13], random walks [7], geodesics [5]
and shortest paths [14], to the more recent works based on
convolutional neural networks [9], [15], [16].

In general, an interactive procedure allows the user to
iteratively refine or edit the markers until a satisfactory seg-
mentation result is obtained [17], [18]. In complex images,
i.e., with a large number of objects or with objects that are not
easily distinguishable from the background, a user might need
to input many cues to produce an acceptable segmentation. In
this context, studying ways to reduce the effort requested from
a user during an interactive segmentation procedure is of great
interest.

In this work, our main contribution is a novel method to
train a network for generating markers, using a segmentation
layer based on an extension of the widely used marker-based
segmentation method presented in [10]. In the original method,
markers are propagated to the closest regions of the image,



according to a distance associated to a hierarchy of partitions
of the given image. Other works proposed similar strategies
to produce a marker-based segmentation, such as the ones
based on shortest paths [14] and fuzzy connectedness [19]. In
the extension, named fuzzy-marker-based segmentation [20],
a fuzzy connection value is computed from the pixels of the
image to each marker. Then, each pixel receives the label from
the “closest” marker, according to the fuzzy connection values.

By using the proposed segmentation layer, we are able to
train the network in an end-to-end fashion, meaning that the
segmentation method is embedded as a layer of the deep
network architecture. A similar approach is used in [21], where
a Random Walker segmentation is used in the process of
training a network to learn edge weights of a graph, which
are subsequently used to produce a segmentation. In this work,
for a given image and a cue about an object of interest, we
want our network to propose a set of object and background
markers that can be characterized as good markers. As defining
optimal markers is complex, we select the following desirable
features of good markers: (i) being able to recover the correct
segmentation when used as input in the chosen marker-based
segmentation method, and; (ii) being easily editable by a
user, which could either select, discard or modify parts of a
marker during an interaction phase. Based on these features,
we propose a loss function composed of a combination of a
segmentation loss with a set of regularization functions applied
on the markers.

In Section II, we describe the proposed marker learning
architecture. In Section III we define the segmentation layer
and describe its properties. The segmentation loss and regular-
ization functions are detailed on Section IV. The experimental
setup and results are presented in Section V. Finally, in
Section VI we draw our conclusions and discuss future works.

II. MARKER CREATION NETWORK

In this section we present the proposed architecture for
learning markers, combining neural networks and the new
segmentation layer based on the fuzzy-marker-based image
segmentation method [20].

The main goal of our network is to produce a pair of
markers (one for the object and one for the background) for
a given image and an object location cue. The object location
cue is a binary map with the same size as the input image,
indicating where the object of interest is located. We set the
object location cue as a part of the input since it would not be
possible for the network to properly decide which is the object
of interest that should be marked on an image containing
multiple appearing objects.

The output of the network consists of an object marker and
a background marker. The markers proposed by the network
are maps with the same size as the input image, containing
values between 0 and 1. Locations that belong to the marker
contain values close to 1, i.e., the generated object marker
contains values close to 1 on locations where the object of
interest appears. It is desired that the markers proposed by
our network are able to produce a robust object segmentation

and, moreover, that the markers can also be easily editable by
a user during an interactive process.

To generate such markers, our goal is to train a deep
convolutional neural network f(I; θ), parametrized by θ. The
symbol I denotes the input of the network, which is a pair of
an image and an object location cue. To learn the parameters θ,
we propose to minimize a loss function composed of two main
parts: (i) a segmentation loss LSeg computed over a marker-
based segmentation S(f(I; θ)) produced using the markers
proposed by the network, and (ii) a set of regularization
functions Li, ..., Lk computed over the markers, to enforce
some desirable shape characteristics on the produced markers.
The total loss to be minimized, named Lmarker, is defined by:

Lmarker(f(I; θ)) = LSeg(S(f(I; θ)), Ŝ)+
∑
i∈k

λiLi(f(I; θ)),

(1)
where Ŝ is a ground-truth segmentation for the input image,
and λi is a weighting factor for the regularization Li.

To train our marker creation network in an end-to-end
fashion, the segmentation module S(f(I; θ)) must be differen-
tiable with respect to the output of the network f . To achieve
this, we propose a novel segmentation layer based on the
fuzzy-marker-based segmentation method [20], which is an
extension of the classical segmentation method proposed by
Salembier and Garrido in [10].

An overview of the proposed architecture can be seen in
Fig. 2. We can observe that we have the image concatenated
to the object location cue as input of the marker creation
network. From the given input, a pair of object and background
markers is generated. Then, with the output markers, a fuzzy-
marker-based segmentation is computed, using our proposed
segmentation layer. Also, a set of regularization functions
is computed over the proposed markers. In other words,
during the training of the network, the loss is based on a
combination of the capacity of the markers of producing a
good segmentation, and the quality of the marker shape.

The total loss is minimized when the segmentation produced
from the generated markers is precisely the ground-truth seg-
mentation and when the markers match desired characteristics
enforced by the regularization functions. The desirable marker
characteristics include having a small size, being composed
by a low number of connected components, being smooth,
and being localized far from the boundary of the object. The
regularization functions used in this work are defined and
explained in Section IV.

III. SEGMENTATION LAYER

When training our network to generate markers, we want
that the created markers produce good segmentations when
used on a marker-based segmentation method. Since we do
not have reference markers for evaluating their qualities,
we propose a novel segmentation layer, which allows us to
evaluate the capacity of the markers to produce a good seg-
mentation, needing only a reference segmentation. Reference
segmentations in the other hand are easier to define, and are
widely available on image segmentation datasets.
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Fig. 2: Overview of the marker creation network training pipeline. The network takes as input the images concatenated with an
object location cue, and generates a pair of markers. These markers are then used to produce a fuzzy-marker-based segmentation.
The total loss is a combination of a segmentation loss and a set of regularization functions computed over the proposed markers.

The segmentation layer is based on the fuzzy-marker-based
segmentation (FMBS) method [20], which is an extension of
the classical marker-based segmentation proposed in [10]. In
the remainder of this section we define the fuzzy-marker-based
segmentation layer, and we start by giving some preliminary
notions.

A. Preliminary notions

As in the original marker-based segmentation method pro-
posed in [10], the FMBS produces a segmentation based on an
indexed hierarchy produced from the input image. We define
the image domain as a finite nonempty set, denoted by V .
We define a hierarchy H (on V ) as a set of subsets of V
such that: (i) V is an element of H; (ii) for every element x
of V , the singleton {x} belongs to H; and (iii) for any two
elements X and Y of H if the intersection of X and Y is
nonempty, then X either includes Y or is included in Y .

Let H be any hierarchy, any element of H is called a region
of H. An indexed hierarchy (on V ) is a pair (H, ω), where H
is a hierarchy and where ω is a function from H to R+ such
that: (i) ω(X) = 0 if and only if X is a singleton; and (ii) for
any two regions X and Y of H, if X is included in Y , then
we have ω(X) < ω(Y ).

Let H be a hierarchy and let X and Y be two regions
of H. The region X is a parent of Y and Y is a child of X
if Y is included in X and if any region of H which is proper
superset of Y is also a superset of X . A region R of H is
called a leaf (resp. root) of H if it is not the parent (resp.
child) of any region of H. It can be observed that V is the
only root of H and that the set of leaves of H is precisely
the set of all singletons on V . It can also be noticed that any
non-root region X of H has a unique parent, which is denoted
by par(X) in the following. A hierarchy H is considered a
binary hierarchy if any non-leaf region has exactly two distinct
children.

Hereafter, the pair (H, ω) denotes an indexed binary hier-
archy, that is an indexed hierarchy such that H is a binary
hierarchy.

In [20], the proposed method relies on ultrametric distances
for producing a segmentation. The ultrametric distance as-
sociated to an indexed hierarchy (H, ω), denoted by dH, is

defined as a function from V × V to R+ such that, for any
two elements x and y of V , the value dH(x, y) is the index
of the smallest region of H which contains both x and y:

dH(x, y) = min {ω(X) | X ∈ H, x ∈ X, y ∈ X} . (2)

B. Fuzzy-marker-based segmentation

The marker-based segmentation defined in [10] relies on
crisp markers to produce a segmentation. In the FMBS,
markers are fuzzy, and can indicate the location of an object
with different intensities on distinct locations on the image. In
the FMBS, the fuzzy markers are represented by fuzzy sets.

A fuzzy set (on V ) is defined as a function from V to the
real interval [0, 1]. In [20], the FMBS if defined based on fuzzy
connection values of elements in V to fuzzy markers. Let O
be a fuzzy marker, and let x be an element of V . The fuzzy
connection value of x to O (for (H, ω)), denoted by CfH(x,O),
is defined by:

CfH(x,O) = min{α(O(y))(1−O(y) + dH(x, y)) | y ∈ V }, (3)

in which α is a decreasing function such that α(1) = 1
and α(0) is strictly greater than the maximal value of dH,
i.e., α(0) > max{dH(x, y) | x ∈ V, y ∈ V }.

Finally, the FMBS segmentation with respect to two fuzzy
markers, denoted here by SH(O,B) is given by:

SH (O,B) =
{
x ∈ V | CfH(x,O) < CfH(x,B)

}
. (4)

In other words, the fuzzy-marker-based segmentation of V
for (O,B) is the set that contains every element of V with a
fuzzy connection value to O smaller than to B. The intuition
behind this definition is that the elements that belong to
the segmentation are closer to the object marker than to the
background marker.

In [20], an efficient algorithm for computing the FMBS
is proposed. The algorithm relies on the structure of a tree
representation of the indexed hierarchy. It is shown that with
one pass over the tree from leaves to root, followed by one pass
from root to leaves, followed by one pass over the elements
of V , we can compute the fuzzy connection values for every
element of V to a fuzzy marker in linear time with respect to
the size of V .
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Fig. 3: Toy example of the FMBS. Image on (a) and an
indexed hierarchy (H, ω) associated to the image on (b). Fuzzy
object marker O on (c) and fuzzy background marker B on
(d). On (e), the resulting FMBS with respect to markers O
and B. Finally, the ground-truth segmentation on (f). In
the segmentation and in the ground-truth, values equal to 1
represent elements that belong to the object segmentation. We
set α(x) = 6− x for this example.

C. Differentiable segmentation layer

To train the marker creation network in an end-to-end
fashion using traditional gradient descent methods, we must
be able to back-propagate the segmentation error through our
model. For that, the segmentation layer, highlighted in blue
in Fig. 2, must be differentiable with respect to the markers
proposed by the network. Here we explain how we create such
layer using the FMBS method.

To compute the FMBS of an image with respect a given
hierarchy and a pair of markers (object and background), we
must get the fuzzy connection value of each element of the
image to the object marker and to the background marker,
using Equation 3.

Let O be a fuzzy marker, and let (H, ω) be an indexed
hierarchy associated to V . We can observe in Equation 3 that
for the fuzzy connection value of an element x ∈ V to a
marker O, there is an element y ∈ V that minimizes the
equation. We call this element y the closest element to x for
a marker O, and we denote it by x∗O. Intuitively, if we do a
small modification on the value of the closest element O(x∗O),
this will lead to a small modification on the fuzzy connection
value of x to the marker O. If an element x ∈ V is mislabeled
after a FMBS with respect to two markers O and B, we know
which are the closest elements x∗O and x∗B that should have
their values altered on O and B to fix the labeling of x.

A toy example of a FMBS is illustrated on Fig. 3. We can

observe that the element b of the toy image shown in Fig. 3a is
mislabeled in the segmentation shown in Fig. 3e, according to
the ground-truth illustrated in Fig. 3f. With Equation 3, we can
get the value CfH(b,O), as well as the closest element b∗O ∈ V
that minimizes CfH(b,O). For the example illustrated in Fig. 3,
the closest element b∗O is the element b ∈ V , and its fuzzy
connection value to O is CfH(b,O) = 3.99. For marker B, we
have that the closest element b∗B is also the element b ∈ V ,
and CfH(b, B) = 2.75. So, to correct the segmentation of the
element b, we must modify the values of O(b) and B(b).

In practice, for a pair of markers O and B we can get
the closest elements x∗O and x∗B for every x ∈ V . Then, we
compute the fuzzy connection value of the elements x ∈ V to
a marker O directly by:

CfH(x,O) = α(O(x∗O))(1−O(x∗O) + dH(x, x
∗
O)). (5)

Having the fuzzy connection values of the elements in
V to the markers O and B, instead of producing a crisp
segmentation with Equation 4, we use a soft-min to get
a soft segmentation differentiable with respect to the fuzzy
connection values:

SfH(O,B) =
e−βC

f
H(x,O)

e−βC
f
H(x,O) + e−βC

f
H(x,B)

, ∀x ∈ V,

where β is a positive real number. As β tends towards infinity,
the soft-min tends to the traditional minimum.

The output of the segmentation layer is given by SfH(O,B).
We can finally compute a segmentation loss with respect
to SfH(O,B), get the gradients with automatic differentiation,
and minimize the segmentation loss with standard gradient
descent algorithms.

Additionally, for computing the gradients efficiently, we can
use the algorithm proposed in [20] to get the closest vertices
for every element of V . With two passes over the hierarchy
followed by one pass over V , we can compute the closest
vertex x∗O for every x ∈ V (for a marker O) in linear time
with respect to the size of V .

IV. LOSS AND REGULARIZATION FUNCTIONS

To measure the quality of the generated markers during the
training of our network, we combine the segmentation loss
with a series of regularization functions. These regularization
functions allow us to favor some desirable features on the
produced markers. Here, we define the regularization functions
that will be used in this work.

For the same image, a network can propose numerous
distinct markers that are able to recover a good segmentation.
In a scenario where the user can continue to interact after
the network generates markers, we want these markers to
be simple and easily editable. An intuitive way to delineate
the characteristics of such good markers is by thinking about
how humans usually interact with an interactive segmentation
system. Simple human-given markers are usually represented
by a few points and simple strokes, generally located near the
center of the objects of interest. Based on this form of human-
given markers we define some desirable marker characteristics.



We then propose four regularization functions that allow us
to achieve markers that have such characteristics, and these
functions are described in the following.

The first characteristic we want to have in a marker is to be
small. If we consider the object segmentation ground-truth as
a marker, it would be capable of retrieving the ground-truth
segmentation when used with a marker-based segmentation
method. Although, it does not resembles a human marker in
any sense, and editing the ground-truth mask for correcting a
segmentation can be quite laborious. To avoid markers that are
too large, we define our first regularization function, denoted
by Lsize.

For the remainder of this section, let O be a marker pro-
posed by our network, let ŜO be the ground-truth segmentation
for the object represented by the marker O, and let V be the
image domain. The first regularization function, called size
regularization, is given by:

Lsize(O, ŜO) =

∑
x∈V O(x)∑
x∈V ŜO(x)

. (6)

In other words, this function is minimized when the marker is
small compared to the total size of the object.

We also wish that the generated markers are not placed
near or over the borders of the object of interest. Users tend
to concentrate their initial interactions in the center of the
object, and to add markers near the borders for necessary
corrections [16]. Based on this, we propose the distance map
regularization, which is defined by:

LDmap(O,DmapO, ŜO) =

∑
x∈V O(x)DmapO(x)∑

x∈V ŜO(x)
, (7)

in which for a marker O, DmapO is computed based on the
euclidean distance map (EDT) of the ground-truth of O. The
value DmapO(x) for an element x in V is given by:

DmapO(x) = 1−
EDTŜO

(x)

max(EDTŜO
(x))

,

where EDTŜO
(x) is the euclidean distance from x to the clos-

est point that does not belong to the object represented by ŜO.
In other words, this regularization function is minimized when
there is no element with high value near the border of the
object.

Additionally, we also want our marker to contain a low
number of connected components. In order to minimize the
number of connected components on the generated markers,
we propose to use a third regularization function, which is a
topological loss function based on persistent homology [22].
With the use of persistent homology, we can compute the
robustness and presence of various topological features at
different scales of the proposed markers.

To get the persistent homology of a marker O, we must
consider the upper-level sets of O at various scales. The upper-
level set of O at a scale p, denoted by TO(p), comprises the
set of elements x ∈ V such that O(x) > p. Beginning with p
equal to 1, as we decrease the value of p, more elements

are included in TO(p), and different topological features are
formed and destroyed by the inclusion of such elements.
The persistent homology consists in counting the different
topological features (such as connected components, holes,
and hollow voids) found on each TO(p) for different levels
of p.

The only topological feature we are interested in this case
is the number of connected components. When analysing the
features at different scales, we know at which value p a
connected component appears, and at which value it disap-
pears. We call these values the birth time and death time of
each connected component, denoted by b and d, respectively.
To minimize the number of connected components, use the
component regularization function, defined by:

Lcomp(O; l) =

i≤l∑
i=1

(1− |bOi − dOi |2) +
i≤k∑
i=l+1

|bOi − dOi |2, (8)

in which l is the desired number of connected components,
and k is the total number of features found for O. For more
details on the topological loss, the reader may refer to [22].
Furthermore, in this work we use an efficient implementation
of this topological loss based on component trees [23].

Finally, to avoid noisy markers and to produce smooth ones,
we apply a total variation regularization. The markers consid-
ered in this work are 2D maps of width W and height H , and
every element x in a marker O has a pair (j, k) associated to
it, representing its vertical and horizontal position. The third
regularization is a total variation regularization, defined by:

TV (O) =
∑
j∈W
k∈H

|O(xj,k)−O(xj+1,k)|+ |O(xj,k)−O(xj,k+1)|

LTV (O, ŜO) =
TV (O)√∑
x∈ŜO

ŜO(x)

(9)

The total variation regularization is minimized when neigh-
bouring pixels have similar values across the marker.

The terms in the denominator of the total variation, distance
map and size regularizations are included to make these losses
invariant to the size of the object of interest.

V. EXPERIMENTS

In this section we describe our experimental setup, the pro-
posed evaluation metrics, the results computed over different
datasets, and a quantitative and qualitative analysis of our
method.

A. Experimental setup

Datasets. In this work we conducted experiments over five
distinct datasets. For training, we use the MSRA10K saliency
dataset [24]. This dataset is composed of 10.000 samples.
Each sample consists in an RGB image, along with a mask
representing its segmentation ground-truth. We split the dataset
into two subsets, with 9000 images for training and 1000



Fig. 4: Results for samples of the MSRA10K validation set. From left to right: input image; saliency map representation
of the hierarchy constructed for the input image; object markers proposed by the network superimposed over the saliency
map; background markers produced from the ground-truth segmentation, superimposed over the saliency map; resulting fuzzy-
marker-based segmentation; and segmentation ground-truth.

images for validation. Additionally, during training we also
make use of data augmentation to enrich the dataset.

Along with the MSRA10K, we evaluate our method over
four unseen datasets, which are described in the following.
We use the Weizmann single object [25], composed of 100
images, and with three ground-truth segmentations proposed
by different users for each image. During our experiments we
only use the first ground-truth. We also use the Weizmann
Horses [26], which contains 328 images of horses, with a
segmentation mask for each image. We also use the GSCSEQ
dataset [27], which is composed 151 images taken from
the GrabCut [8], Pascal VOC [28] and Alpha matting [29]
datasets. The GSCSEQ contains the ground-truth mask for
each image and also contains scribble information, although
in our experiments we only consider the images and ground-
truths. Finally, we also test our method on the Pascal VOC
2012 segmentation dataset [28]. This dataset contains 1464
images for training and 1449 images for validation. Each
image can contain more than 1 object (of the same or different
class), but we only consider 1 object per image, and treat the
rest of the image as background.

Marker proposal network. In this work we use a U-net
network [30], with a Resnet18 [31] encoder. The input of the
network is the RGB image concatenated to a binary object

cue mask, ending in a four-channel 320× 320 input. For the
encoder, with the exception of the first layer, we use the pre-
trained weights on the ImageNet dataset. For our network, as
for the pre-trained weights, we use the available model imple-
mentation from the Segmentation models pytorch library [32].
We use a sigmoid activation function in the output, which
consists of a 1-channel 320×320 mask, representing the object
marker.

In the experiments presented in this work, we only learn the
object marker, and use an euclidean distance transform of the
background segmentation as a fixed background marker for
each image. Additionally, we use the segmentation ground-
truth as the object location cue. The goal of the presented
experiments is to show that we can learn good markers with
the proposed marker creation network, without using optimal
markers as reference. In future works, we aim to use weaker
cues indicating the object location, as well as learning both
the object and background markers simultaneously.

Optimization. We use the Adam optimizer with a learning
rate of 5×10−4. We set the batch size equal to 20, and we train
the network for 2250 steps. During training, we use a soft Dice
loss [33] as the LSeg term. The values of each weight λ for
the total loss were manually tuned, and set to: 20 for the Lseg ,
10 for Rsize, 3 for RDmap, 0.01 for RTV , and 0.1 for Rcomp.



Finally, the value of β is set to 25.
Hierarchy computation. The FMBS produces a segmenta-

tion based on a pair of markers and a hierarchy produced
over the input image. The hierarchies in this work are
computed with a watershed by area hierarchy [34] created
over a 4-adjacency graph weighted by the structured edge
detector (SED) gradient [35].

B. Evaluation metrics

The evaluation procedure and metrics used to evaluate the
markers generated using our method are described in this
section.

During training, we resize the images to a fixed size of
320×320, and the network output is a fuzzy marker, i.e., taking
values in [0, 1], also with size of 320×320. During our evalu-
ation process, we compute the markers using our network, and
resize them to the original image size. For computing some
of the evaluation metrics regarding the geometric properties
of the proposed markers, the markers must be binary. So,
we binarize the markers generated by the network by using
Otsu’s threshold [36], and the produced background markers
by taking the values higher than a threshold, set at 0.5. We
finally compute a dilation with a disk structuring element of
radius 4 followed by an erosion with a disk structuring element
of radius 3, to connect nearby components that have small gaps
between them.

Let O and B be binarized markers, and let Si(O,B) be
the segmentation with respect to the markers O and B for an
image Vi. Let Ŝi be the segmentation ground-truth for Vi.
The first evaluation metric used is the vastly used IoU
segmentation metric, defined as follows:

IoU(Si(O,B), Ŝi) =
Si(O,B) ∩ Ŝi
Si(O,B) ∪ Ŝi

(10)

In the second metric, we evaluate the relative size between
the proposed markers and the object of interest. This is
computed with the size regularization metric over the binarized
markers. For a given marker O and a segmentation ground-
truth ŜO, the relative size metric is given by Rsize(O, ŜO).

The third metric measures the number of connected com-
ponents on each proposed marker. We denote the number of
connected components of a marker O by CC(O).

Finally, we also propose a metric to measure the thinness
of the proposed markers. Ideally, if the proposed markers look
like scribbles or points located over the image, they should not
be too thick. To measure the thinness of a marker we measure
the relative size between a marker and a skeleton produced
over the marker. Let O be a crisp marker and sk(O) be
the skeleton produced from a skeletonization process applied
over O. The skeleton sk(O) is a binary map with the same
size of O, with values of 1 for the elements that belong to
the skeleton, and 0 for the remaining elements. The thinness
metric is defined by:

Thinness(O) =

∑
x∈V O(x)∑

x∈V sk(O)(x)
. (11)

TABLE I: Evaluation metrics for all datasets

IoU CC Rsize Thinness
MSRA10K 0.767 13.164 0.048 4.058

Weizmann One Object 0.733 14.02 0.053 3.835
Weizmann Horses 0.745 19.92 0.041 4.458

GSCSEQ 0.652 14.245 0.042 4.275
Pascal VOC 2012 0.590 12.322 0.720 4.056

In other words, this metric measures how many times a maker
is larger then its skeleton.

C. Results

We first evaluate our method over the MSRA10K dataset,
the one used to train the network. Qualitative results are
shown in Fig. 4. We can see in the figure some examples
of the MSRA10K dataset, with the generated object markers
and the produced segmentations. It is important to reiterate
that for the experiments in this article, we learn only the
object marker. We can observe that, for most cases, it is
possible to recover good object segmentations by using the
automatically generated markers. For the last case, on the
bottom row, the produced segmentation is not good despite
the markers being well-placed in the object of interest. This
happens since there are strong boundaries inside the object
in the constructed hierarchy, which makes the marker-based
segmentation more difficult. It is also possible to see that
the generated markers follow the desired shape characteristics,
which are enforced by the regularization functions. Although
some of the generated markers are placed near the borders
of the object, they are relatively small, smooth and contain a
small number of connected components.

In table I, the evaluation metrics are shown for all datasets,
with the results for the MSRA10K dataset (the one used for
training) highlighted in grey. The metrics shown are an average
over the validation sets of the MSRA10K and Pascal VOC
datasets, and over the complete dataset for Weizmann single
object, Weizmann Horses and GSCSEQ.

We can observe from the IoU metric that the network is
able to propose markers that recover a good segmentation
for the MSRA10K validation set, as well as for the unseen
datasets. The lowest IoU score was achieved on the Pascal
VOC dataset. This is expected, as the images from the Pascal
VOC dataset are more complex, containing multiple objects
with varied sizes, including very small objects in some cases.

The CC, Rsize, and Thinness metrics confirm that the
generated markers follow the desirable characteristics. The
average number of connected components over all datasets
is 14.73, showing that the proposed markers are not formed
by a very large number of components. Furthermore, the
markers are approximately 4 times thicker than their skeletons,
which have a thickness of 1 pixel, showing that they are also
thin. According to the Rsize metric, the proposed markers
are also small when compared to the objects of interest on
all datasets, with the exception of Pascal VOC dataset. Many
images on the Pascal VOC dataset contain very small objects,
and this explains why thin markers (4.056 times larger than



their skeletons) are relatively large with respect to the size of
the objects of interest.

VI. CONCLUSION AND FUTURE WORK

In this work, we have proposed a novel segmentation layer
that can be used together with neural networks to create an
end-to-end trainable marker learning architecture. In the limit
case where the fuzzy markers tend to be binary, the results
of the new proposed segmentation layer tend towards those of
the widely used marker based segmentation described in [10],
so that the proposed learned makers are adapted to (reduce the
effort of) the users of this popular method. We showed that
by using the proposed layer and a loss function composed
by a segmentation loss and a set of regularization functions
that control the shape of the markers, we can automatically
generate markers that recover a good segmentation and have
desirable shape characteristics. This behaviour is observed on
the dataset used for training, as well as on four unseen datasets.

In future works, we plan to continue the studies on the
marker learning problem, modifying the input for weaker ob-
ject location cues and exploring new regularization functions
that favour desirable features on markers. We would also like
to insert users in the training loop, to learn from their feedback
and corrections on the proposed markers in order to improve
the quality of those generated in the future.
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