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Abstract—Despite of the substantial success of Convolutional
Neural Networks (CNNs) on many recognition and representation
tasks, such models are very reliant on huge amount of data
to allow effective training. In order to improve the generaliza-
tion ability of CNNs, several approaches have been proposed,
including variations of data augmentation strategies. With the
goal of achieving more effective retrieval results on unsuper-
vised learning scenarios, we propose a representation learning
approach which exploits a rank-based formulation to build a
more comprehensive data representation. The proposed model
uses 2D and 3D CNNs trained by transfer learning and fuse
both representations through a rank-based formulation based
on manifold learning algorithms. Our approach was evaluated
on an unsupervised image retrieval scenario applied to action
recognition datasets. The experimental results indicated that
significant effectiveness gains can be obtained on various datasets,
reaching +56.93% of relative gains on MAP scores.

I. INTRODUCTION

In the past years, image-based human action recognition has
become a very active topic of research, involving diverse ma-
chine learning and computer vision techniques [1]. In general,
it focuses on identifying a person’s action or behavior from
images and is an important branch among studies of human
perception and computer vision systems [1], [2]. The study and
analysis of human action has evolved from earlier schemes,
often limited to controlled environments, to recent advanced
solutions that can learn from millions of videos and apply to
almost every daily activity [3]. Research involving the most
important issues in a human action recognition related topics,
e.g., on how to create adequate data representations with a
high level abstraction, have become increasingly relevant [4].
Recent solutions have applications in domains such as visual
surveillance, human-computer interaction, image, and video
retrieval, and are challenging due to variations in movement
performance and interpersonal differences [5].

Recently, most of the successful results on many of these
applications rely on deep learning techniques, which have
gained a notable reputation on diverse domains, including
image retrieval, object classification and detection [2]. In this
scenario, the literature highlights the importance of machine
learning decisive tools, such as neural networks, and the
growing and constant need to improve its related techniques.

Currently,data-driven approaches often outperform hand-
crafted methods [6], [7]. The Convolutional Neural Networks
(CNNs), mainly inspired by biological processes and the
human vision system [6], have become popular particularly
due to the ability in handling large amounts of data and the
advances in hardware’s technology [8]. Notably, CNNs tend
to require a minimal level of pre-processing when compared
to other image classification algorithms [8]. Other CNNs
capacities include performing feature extraction jointly with
classification in an end-to-end manner; learn to optimize the
features during the training phase directly from the raw input;
process large inputs with great computational efficiency; adapt
to different input sizes; and are immune to small transforma-
tions in the input data, including translation, scaling, skewing
and distortion [7].

However, despite such advantages, CNNs often require a
huge amount of data for the training stage, which can lead to
the limitation of their use in many situations. Therefore, CNNs
have to be able to circumvent their inherent characteristics,
including their data starving aspect, because of their large
amount of learnable parameters to estimate [9]. Additionally,
the CNN’s performance may degrade sharply when training
data are limited [10]. This is one of the reasons why data
augmentation strategies can be applied to improve the gener-
alization of CNNs [11], reducing the bottlenecks associated
with high requirements on the amount of training data and,
consequently, obtaining significant accuracy gains.

To overcome those shortcomings, in this paper, we propose
a representation learning approach, that exploits a rank-based
formulation to build more comprehensive and effective repre-
sentations based on the same amount of data. Our approach
is used on an unsupervised image retrieval scenario applied
on action recognition datasets. A 2D CNN trained through
transfer learning is employed to extract initial features, used to
compute rankings. The rankings define a sequence of images,
which is subsequently used as input to a 3D CNN in order to
extract additional features. The rankings are computed based
on both 2D and 3D CNNs features and fused with well
established manifold learning methods.

An experimental evaluation was conducted to assess the
effectiveness of the proposed representation learning approach.



The experiments were performed on three public image
datasets for action recognition activities. A challenging unsu-
pervised scenario is considered on image retrieval tasks. The
obtained results show that our approach yields significant ef-
fectiveness gains, reaching +56.93% of relative gains on MAP
scores for the Stanford-40 dataset. Visual analysis was also
conducted to evaluate the impact of the proposed approach.

The remainder of this paper is organized as follows. Sec-
tion II presents the proposed representation learning approach.
Section III discusses the CNNs models and Section IV de-
scribes the manifold ranking methods. Section V discusses
the experimental evaluation and Section VI the conclusions.

II. RANK-BASED REPRESENTATION LEARNING

This section presents the proposed rank-based representa-
tion learning approach. Section II-A introduces the main ideas
and provides a general view of our method. Section II-A
defines the image retrieval model and 2D CNN represen-
tation. Section II-C details the 3D CNN representation and
Section II-D discusses the fusion of 2D and 3D representations
based on manifold learning.

A. Overview

Despite of the substantial success of CNNs on many recog-
nition and representation tasks, such models are very reliant on
huge amount of data to allow effective training and to avoid
overfitting. In order to improve the generalization ability of
these networks, several approaches have been proposed. Data
augmentation, for instance, encompasses a suite of techniques
that enhance the size and quality of training datasets, aiming at
representing a more comprehensive set of possible data [12].

In an analogous direction, we propose the construction of
a more comprehensive and effective data representation for
image retrieval by exploiting transfer learning and manifold
learning algorithms through a rank-based formulation. The
main goal is to achieve more effective retrieval results based
on representation, provided for unsupervised scenarios, where
no labeled data is available.

Figure 1 illustrates the main steps of the proposed repre-
sentation learning approach. Firstly, we use a transfer learning
formulation based on a 2D CNN trained in another large-scale
dataset. The 2D CNN features are used to rank the images
from the analyzed dataset (step 1). The computed rankings
define the sequence of images that are used as input to a 3D
CNN. The 3D CNN is also trained by transfer learning and the
features extracted are used to compute other sets of rankings
(step 2). In the last step, both rankings defined by 2D and
3D CNNs are fused by manifold learning algorithms (step 3),
in order to compute the final retrieval results. Each step is
detailed and formally defined in the next sections.

B. Image Retrieval through 2D CNN Representation

This section introduces the notation used for image retrieval
and ranking tasks, based on related work [13]–[15] and for-
mally defines the 2D CNN representation. Let x denotes an
image, it can be formally defined by a pair (Dx, Ix), where:

• Dx is a finite set of points (pixels) in N2, e.g., Dx ⊂ N2

• Ix : Dx → N3 is a function that assigns to each pixel
p ∈ Dx a vector I(p) ∈ N3 (when a color in the RGB
system is assigned to a pixel).

Let X={x1, x2, . . . , xn} be an image collection, where
n denotes the size of the collection. Ranking and retrieval
tasks are performed based on features extracted from the
images. Typically, 2D CNNs trained on large-scale datasets
as Imagenet [16] are used to extract features for unsupervised
tasks through transfer learning. The last fully connected layer
are often exploited for feature extraction. In this way, a feature
extractor can be formally defined as a function f2, where the
subscript notation refers to a 2D CNN feature. Formally, the
function f2 : X → Rd computes a d-dimensional vector
for a given collection image, such that v2i = f2(xi) and
v2i = [v2i1, v2i2, . . . , v2id].

A distance function that computes the distance between two
images according to the distance between their corresponding
feature vectors can be defined as ρ: Rd×Rd → R+. Therefore,
a distance between two images xi, xj can be computed by
ρ(v2i,v2j). A general image retrieval task based on extracted
features can be modeled as the computation of a ranked list
τ2q in response to a query image xq , according to the distance
function ρ. The top positions of ranked lists are expected to
contain the most relevant images with regard to the query
image, such that the length L of ranked images are often
considered, with L � n. We also refer to neighbors as a
small set of similar images given by the top-k ranked images,
such that k � L� n.

The ranked list τ2q can be defined as a permutation (x1, x2,
. . . , xL) of the subset XL ⊂ X , which contains the L most
similar images to query image xq , such that and |XL| = L.
Formally, a permutation τ2q is a bijection from the set XL

onto the set [nL] = {1, 2, . . . , L}. For a permutation τq , we
interpret τ2q(xi) as the position (or rank) of image xi in the
ranked list τ2q . If xi is ranked before xj in the ranked list of
xq (i.e., if τ2q(xi) < τ2q(xj)), then ρ(v2q , v2i) ≤ ρ(v2q , v2j).

Taking each image xi ∈ X as a query image xq , a set of
ranked lists T2 can be computed, containing one ranked list for
each image in the collection. The computation of T2 can be
accelerated through similarity search approaches [17], based
on indexing or hashing structures. Each ranked list establishes
a similarity relationship among the query image and all images
in the collection X . Therefore, the set T2 encodes a rich source
of similarity/dissimilarity information about the collection X .

C. 3D CNN Representation

While in 2D CNNs, convolutions are applied on the 2D
feature maps to compute features from the spatial dimen-
sions [18], 3D CNNs are applied to capture the motion infor-
mation encoded in multiple contiguous frames [19]. In general,
3D convolutions are performed in stages of CNNs to compute
features from both spatial and temporal dimensions [20].

The visual modality information contained in a video can
be defined as a sequence of images (or frames), such that σ =
(xt1, xt2, . . . , xtm), where the subscript ti denotes the tempo-
ral dimension and m denotes the number of images/frames in
the video. 3D CNNs are often employed to extract features
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Fig. 1: Illustration of the proposed Representation Learning approach based on 3D CNN and Manifold Ranking.

from videos, e.g., represent the visual information encoded in
a video on a d-dimensional vector representation which is used
for retrieval and machine learning tasks.

Although the images sequences may be typically defined by
a video, it can also be defined by a ranked list. Our hypothesis
considers that a ranked list computed in response to a query
image can encode relevant contextual similarity information
about the image, in replacement to the temporal dimension.
In fact, it often provides a diversified representation about the
respective class, once top positions are expected to contain
different relevant images of the same class of the query image.

A ranked list computed based on a 2D CNN representation
is exploited in order to determine the sequence. Let kr denotes
the size of the sequence defined by the ranked list. Let
N2(xq, kr) be the set of kr most similar to xq according to
the 2D CNN feature and ranked lists and defined as:

N2(xq, kr) = {C ⊆ X , |C| = kr ∧ ∀xi ∈ C,
xj ∈ X − C : τ2q(i) < τ2q(j)}.

(1)

The sequence σq is a permutation defined as a bijection
from the set N2(xq, kr) onto the set {1, 2, . . . , kr}, which
follows the order of the ranked list τ2q . If xi is ranked
before xj in the sequence σq (that is, if σq(xi) < σq(xj)),
then τ2q(xi) ≤ τ2q(xj). A sequence can be defined for
each image xi ∈ X in order to compute a set of sequences
S = {σ1, σ2, . . . , σn}. Each sequence can be analyzed by a
3D CNN aiming to extract novel features. Formally, a 3D
CNN can be defined as a function f3 : S → Rd, that

computes a d-dimensional vector for an image sequence, such
that v3i = f3(σi) and v3i = [v3i1, v3i2, . . . , v3id].

Analogously to 2D CNN features, ranked lists can be
computed based on 3D CNN features. The ranked list τ3q
can be also defined as a bijection from the set XL onto the
set [nL] = {1, 2, . . . , L}, such that if τ3q(xi) < τ3q(xj), then
ρ(v3q , v3i) ≤ ρ(v3q , v3j).

Every image xi ∈ X can also be taken as a query image
xq , in order to obtain a set of ranked lists T3. In this way, the
features extracted for each image xi by a 3D CNN encode
not only spatial information, but also contextual similarity
information from its ranked list τ2i. Once the sequences
processed by 3D CNNs contain a more diversity representation
for the images, the set of ranked lists T3, it is expected
to improve the generalization provided by the representation
and, consequently, improving the comprehensiveness often
evaluated by the recall measure.

D. Manifold Ranking Fusion

The sets of ranked lists computed based on both 2D and 3D
CNN features encodes relevant and complementary similarity
information. While the set T2 provides the original and more
precise similarity information, the set T3 provides a more
diverse similarity representation. Therefore, such information
can be combined to achieve a more effective similarity mea-
sure and ranking.

Manifold learning approaches have been recently exploited
to improve and combine the set of ranked lists [14], [15], [21].



Ranking and retrieval tasks are often performed by pairwise
comparisons of points in a high-dimensional feature space,
using Euclidean-like distance functions. However, traditional
pairwise measures ignore the complex similarity arrangements
and the structural information of the dataset manifold. In order
to address such limitations, manifold learning methods have
been proposed based on more global measures, capable of
taking into account the structure of datasets and providing a
more effective similarity measurement.

The main objective of the rank-based manifold learning
method is to exploit the similarity information encoded in
the set of ranked lists, being able to capture global similarity
information encoded on the dataset manifold. Based on such
analysis, a new and more effective set of ranked lists can be
computed, improving the effectiveness of ranking and retrieval
tasks. Considering the two sets of ranked lists T2 and T3, given
by 2D and 3D CNNs, a manifold ranking fusion task can be
defined as a function fm:

Tf = fm(T2, T3) (2)

The set Tf is expected to contain more effective ranked lists
which can be used in retrieval tasks.

III. 2D AND 3D CNN MODELS

This section discusses the 2D and 3D CNN features used
to instantiate the proposed representation learning approach.

A. 2D CNN

The pre-trained model used for the extraction of initial
features in order to generate a first set of rankings of the
images is a variant of Residual Network (ResNet), proposed
by He et al. [22], named ResNet-18. This model has 18 layers
with learnable parameters and was trained for the classification
task on the ImageNet [16] dataset.

The ResNet architecture is a special case of the CNN archi-
tecture which popularized the idea of “skip connections”, also
known as shortcut connections. According to He et al [22],
“with increasing network depth, accuracy becomes saturated
and then degrades rapidly”. To solve this problem, they used
residual blocks, whose underlying idea is to include a short-
circuit mechanism between every two layers of the ordinary
network, adding the input directly to the output. In this way,
the more layers, the smaller the change of each layer to the
input, making residual networks easy to optimize and achieve
higher accuracy when the depth of the network increases,
producing results that are better than non-residual networks.

This model was chosen due to its excellent results in
many tasks. A similar network implemented by the same
authors, but with greater depth, ranked first place in ImageNet
detection, ImageNet localization, COCO detection, and COCO
segmentation at ILSVRC COCO 2015 competitions. The
implementation of the model used in our experiments was
taken from a Github repository1 and is coded in Python and
Pytorch [23] framework.

1https://github.com/pytorch/vision/blob/master/torchvision/models

B. 3D CNN
For the video feature extraction, we used a pre-trained

ResNet 3D Model proposed by Monfort et al. [24]. This model
is an Inflated 3D ResNet, defined by the process proposed by
Carreira et al. [25], where using a pre-trained 2D model, all
the polling kernels and filters are inflated to a third dimension,
to be able to deal with the temporal dimension (filters N ×N
become N × N × N ). The weights are then replicated from
the 2D kernel, over the temporal dimension. The reason
behind this procedure is that 3D models contain much more
parameters than their equivalent 2D, because of their third
dimension. And also this procedure has proven to improve the
learning efficiency and performance of 3D models, compared
to a initialization from scratch.

The 3D model was inflated from the best 2D ResNet of
Monfort et al. [24] and trained on the Moments in Time [24]
dataset, which has more than 1 million videos, distributed in
339 distinct classes. This 3D model is based on ResNet-50,
which has 50 layers with learnable parameters and is fed with
16 video frames sampled at 5 fps. Among the architectures
and approaches executed by Monfort et al. [24], the inflated
3D Resnet was the one that stood out the most. The 3D model
used in our experiments was also implemented in Python and
Pytorch [23] framework and its code was taken from a public
Github repository2

IV. MANIFOLD RANKING METHODS

This section discusses two manifold ranking methods used
to instantiate the proposed approach. Both methods are used
to fuse the ranked lists of 2D and 3D CNNs and are publicly
available on the framework UDLF3.

A. LHRR
The method called LHRR (Log-based Hypergraph of Rank-

ing References) [21] uses a hypergraph model to explore the
similarity information and transform it into ranking models.
Graphs are commonly represented by sets of vertices (nodes)
and their corresponding connections (edges or links). Hyper-
graphs, on the other hand, are a generalization of these graphs
that allow the connection of any number of vertices and the
representation of higher-order similarity relations.

Based on the ranking references, the representation of hy-
pergraphs is constructed. To build a contextual representation
of data samples, the hyperedges approach is used. Following
a log-based function, weights are assigned to images in each
hyperedge. Through it, it is possible to explore the encoded
similarity information. Such similarity is obtained through the
result of the product of the similarities with their respective
hyperedges. The goal then is to obtain a more effective sim-
ilarity function. The idea of this new unsupervised calculated
set and a new computed similarity function is to use them
to improve the effectiveness of the final ranking results. The
LHRR method is used in manifold ranking tasks, to improve
the effectiveness of retrieval results, since it is capable of
identifying more reliable similarity relations and capturing the

2https://github.com/zhoubolei/moments models/
3https://github.com/UDLF/UDLF

https://github.com/pytorch/vision/blob/master/torchvision/models
https://github.com/zhoubolei/moments_models/
https://github.com/UDLF/UDLF


geometric structure of datasets. The LHRR [21] can also be
used for rank fusion tasks, which is the objective that we used
the method in this work.

B. BFS-Tree

Using a tree structure, the BFS-Tree Manifold Learning
(Breadth-First Search Tree of Ranking References) algo-
rithm [15] is applied to exploit the similarity information
encoded in the ranking references. In order to obtain the
top-k ranking results, the Breadth-First Search Tree (BFS)
provides a hierarchical representation of the ranking results, by
encoding the first and second-order neighborhood relationships
obtained through ranking references. Calculated based on the
rank correlation measures, the edge weights assigned to the
elements of the tree represent the similarity.

To discover underlying similarity relationships, the BFS-
Tree is exploited. Tree elements are represented based on
their path to the root and their respective weights. Between
the leaves, new connections are established. Such connections
make it possible to discover new relationships of similarity.
A tree structure also allows, in addition to new similarity
connections, to analyze the frequency of elements in the tree.
Commonly, a solid indication of similarity can be obtained
by the co-occurrence of elements at different levels of the
tree structure, while a low occurrence can be an indication of
noise. Thanks to the consideration of similarity information
extracted from all constructed trees, it is possible to compute
a more global and effective similarity measure between pairs.

V. EXPERIMENTAL EVALUATION

This section describes the experimental evaluation con-
ducted to assess the effectiveness of the proposed approach.
Section V-A describes the datasets and the experimental proto-
col. Section V-B discusses the results and Section V-C presents
a visual analysis.
A. Datasets and Experimental Protocol

Three public datasets were used in our experimental evalu-
ation, described in the following:

1) Willow Actions Dataset: The Willow Actions [26] is
composed of 911 static images distributed in seven classes of
actions. Its images were extracted from Flickr and have only
one of seven actions (Interact with Computer, Photograph,
Playing Instrument, Riding a Bike, Horseback Riding, Run-
ning, and Walking). In general, they have a simple background,
without many elements beyond the action.

2) Ikizler Dataset: The second dataset, named Ikizler
Dataset [27], is a collection of 1972 images, divided into ten
classes (boxing-punching, dining, handshaking, high-five, hug-
ging, kicking, kissing, partying, speech, and talking), where
each class has at least 150 images. This dataset is considerably
more complex than the Willow Actions, as it has classes with
very similar actions, such as handshaking and high-five.

3) Stanford 40 Actions Dataset: Finally, the third dataset
was the Stanford 40 Actions Dataset [28], composed of 9532
images and has 40 different action classes with at least 180
images for each category. Due to the higher number of classes,
compared to the others datasets, it becomes an even more

significant challenge to obtain an efficient retrieval in the
dataset. The images that form the dataset were extracted from
Bing, Google, and Flickr.

For all three datasets, the same parameters settings were
used. The parameter values of manifold learning algorithms
followed the default values available through the UDLF frame-
work [29]. Regarding the parameter kr, which defines the
neighborhood size of the proposed representation learning
method, we evaluate three different configurations {5, 10, 15}.
As for effectiveness measures, we considered Precision and
Mean Average Precision (MAP).

B. Results
Tables I, II, and III present the results of the proposed ap-

proach on the Stanford 40 Actions, Ikizler, and Willow Actions
datasets, respectively. We can observe that fusion based on
manifold ranking methods (τf ) showed higher effectiveness
gains compared to the models isolation (τ2,τ3). We can also
notice that the scenario with neighborhood size kr = 5
achieved the best results in most of the scenarios considered
Although, in general, the use of the BFS-Tree method yielded
better results than LHRR, it is possible to notice that for the
Stanford 40 Actions and Ikizler datasets in the precision(P@x)
metric the LHRR outperforms the BFS-Tree at some depths
x (for values of x equals or lower than 10 for the Ikizler and
lower or equals than 15 for the Stanford).

The relative gains obtained by the proposed approach based
on manifold rank fusion are significant in all scenarios. Par-
ticularly, for the MAP metric, on the Stanford-40 dataset, the
absolute gains reach up to +12.73% in relation to the 2D model
(22.36% to 35.09%) and +9.72% comparing with the 3D
model (25.37% to 35.09%). Considering the Ikizler dataset and
MAP metric, the absolute gain is up to +12.61% in contrast to
the 2D model (33.65% to 46.26%) and 1.98% in regard to the
3D model (44.28% to 46.26%). Finally, on the Willow Actions
dataset, the absolute gains reach up to +14.9% comparing with
the 2D model (47.47% to 62.37%) and +9.68% in relation
to the 3D model (52.69% to 62.37%). Considering relative
gains, the results are even more impressive, with gains up to
+56.93%, +37.47% and +31.38% on Stanford-40, Ikizler and
Willow datasets, respectively.

C. Visualization Analysis
With the intention of enriching the discussion about the

proposed approach, we employed dimensionality reduction
methods to represent the impact of the method on a 2-D
projection of feature space. The analysis was performed on the
three aforementioned datasets, using the t-SNE [30] algorithm.

Figure 2, shows the visualizations of the application of t-
SNE on the datasets Stanford-40, Ikizler, and Willow Actions.
For each dataset, it presents respectively in a 2D plane, the
distance obtained from the features of the 2D model, followed
by the fusion of rankings of the 2D and 3D model by the
LHRR and BFS-TRee algorithms. As we can notice on the
representations, both approaches based on manifold ranking
fusion resulted in better separability of classes scenarios. The
same behavior can be observed for all datasets compared to the
initial ranking, obtained from the 2D CNN model in isolation.



TABLE I: Results of representation learning based on manifold ranking and 3D CNN on Stanford 40 Dataset.

Fusion P@5 P@10 P@15 P@20 P@30 P@50 P@100 MAP
2D CNN - 0.6170 0.5422 0.5049 0.4805 0.4476 0.4052 0.3431 0.2236
3D CNN (kr = 5) - 0.5653 0.4936 0.4626 0.4440 0.4203 0.3911 0.3490 0.2537
3D CNN (kr = 10) - 0.5431 0.4706 0.4400 0.4218 0.3979 0.3693 0.3283 0.2364
3D CNN (kr = 15) - 0.5246 0.4503 0.4204 0.4028 0.3797 0.3532 0.3162 0.2297
2D + 3D CNN (kr = 5) LHRR 0.6280 0.5655 0.5374 0.5193 0.4953 0.4635 0.4164 0.3234
2D + 3D CNN (kr = 10) LHRR 0.6191 0.5557 0.5286 0.5108 0.4850 0.4533 0.4072 0.3129
2D + 3D CNN (kr = 15) LHRR 0.6051 0.5429 0.5167 0.4982 0.4740 0.4430 0.3983 0.3078
2D + 3D CNN (kr = 5) BFS-Tree 0.6202 0.5565 0.5306 0.5161 0.4965 0.4730 0.4371 0.3509
2D + 3D CNN (kr = 10) BFS-Tree 0.6088 0.5466 0.5213 0.5062 0.4866 0.4623 0.4275 0.3416
2D + 3D CNN (kr = 15) BFS-Tree 0.6046 0.5389 0.5115 0.4951 0.4747 0.4522 0.4186 0.3352

TABLE II: Results of representation learning based on manifold ranking and 3D CNN on Ikizler Dataset.

Fusion P@5 P@10 P@15 P@20 P@30 P@50 P@100 MAP
2D CNN - 0.6578 0.5878 0.5539 0.5331 0.5073 0.4704 0.4136 0.3365
3D CNN (kr = 5) - 0.6859 0.6272 0.6045 0.5906 0.5698 0.5459 0.5048 0.4428
3D CNN (kr = 10) - 0.6629 0.6090 0.5871 0.5716 0.5530 0.5271 0.4855 0.4211
3D CNN (kr = 15) - 0.6258 0.5649 0.5377 0.5235 0.5062 0.4828 0.4437 0.3856
2D + 3D CNN (kr = 5) LHRR 0.6902 0.6334 0.6094 0.5947 0.5722 0.5413 0.4962 0.4445
2D + 3D CNN (kr = 10) LHRR 0.6835 0.6240 0.5980 0.5823 0.5597 0.5297 0.4835 0.4310
2D + 3D CNN (kr = 15) LHRR 0.6534 0.5982 0.5688 0.5545 0.5362 0.5092 0.4643 0.4115
2D + 3D CNN (kr = 5) BFS-Tree 0.6798 0.6328 0.6111 0.5961 0.5784 0.5546 0.5198 0.4626
2D + 3D CNN (kr = 10) BFS-Tree 0.6802 0.6222 0.5997 0.5877 0.5698 0.5454 0.5083 0.4519
2D + 3D CNN (kr = 15) BFS-Tree 0.6581 0.5978 0.5744 0.5608 0.5422 0.5185 0.4836 0.4275

TABLE III: Results of representation learning based on manifold ranking and 3D CNN on Willow Dataset.

Fusion P@5 P@10 P@15 P@20 P@30 P@50 P@100 MAP
2D CNN - 0.7745 0.7259 0.6959 0.6776 0.6479 0.5964 0.5011 0.4747
3D CNN (kr = 5) - 0.7524 0.7069 0.6859 0.6712 0.6483 0.6172 0.5463 0.5269
3D CNN (kr = 10) - 0.7324 0.6835 0.6591 0.6444 0.6207 0.5877 0.5197 0.5035
3D CNN (kr = 15) - 0.7183 0.6748 0.6553 0.6435 0.6261 0.6048 0.5434 0.5254
2D + 3D CNN (kr = 5) LHRR 0.7842 0.7423 0.7240 0.7106 0.6915 0.6628 0.5942 0.5924
2D + 3D CNN (kr = 10) LHRR 0.7748 0.7325 0.7172 0.7003 0.6785 0.6473 0.5786 0.5775
2D + 3D CNN (kr = 15) LHRR 0.7701 0.7268 0.7096 0.7003 0.6774 0.6434 0.5846 0.5801
2D + 3D CNN (kr = 5) BFS-Tree 0.7897 0.7447 0.7301 0.7168 0.7037 0.6773 0.6229 0.6237
2D + 3D CNN (kr = 10) BFS-Tree 0.7719 0.7360 0.7198 0.7059 0.6873 0.6589 0.6044 0.6048
2D + 3D CNN (kr = 15) BFS-Tree 0.7706 0.7338 0.7169 0.7058 0.6878 0.6588 0.6109 0.6086

In another visual analysis to assess the effectiveness of the
proposed approach, Figures 3, 4, and 5 illustrates the ranked
lists computed by the 2D CNN model and by the manifold
ranking fusion of 2D+3D by the BFS-Tree method. The red
borders indicate images that do not belong to the same class
of the query image. In this set of representations, it is possible
to visualize that the impact of our approach is especially
remarkable for certain instances of each dataset.

VI. CONCLUSION

In this paper, we proposed a representation learning ap-
proach, aiming to improve the comprehensiveness of represen-
tations and effectiveness of image retrieval. It uses rankings
generated by a pre-trained 2D model and builds a sequence
analyzed by a pre-trained 3D model. Both representations have
their rankings fused by manifold learning algorithms.

In the experimental evaluation, our approach achieved sig-
nificant effectiveness gains on retrieval tasks conducted on
action recognition datasets. In all scenarios and datasets, the
proposed approach achieved better results in comparison with
the 2D CNN model in isolation. Our results are promising
for representation learning. As future works, we intend to
investigate the use of the proposed approach in multimodal
scenarios, aiming to fuse information from multiple modalities
in unsupervised multimedia retrieval scenarios.
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